
Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 6: Control 5: Optimal control --- [Function approximation in dynamic

programming---special case: quadratic]

Pieter Abbeel

UC Berkeley EECS

PHD

Page 2

� Will there be lecture this Thursday (Sept 24)?

� Yes.

� No office hours this Thursday (as I am examining

students for prelims).

� Feel free to schedule an appointment by email instead.

Announcements

� Final project contents:

� Original investigation into an area that relates sufficiently closely to

the course.

� Could be algorithmic/theoretical idea

� Could be application of existing algorithm(s) to a platform or domain in

which these algorithms carry promise but have not been applied

� Alternatively: Significant improvement for an existing (or new)

assignment for this course or for an existing (or new) assignment for

188 which has close ties to this course.

� Ideally: we are able to identify a topic that relates both to your on-

going PhD research and the course.

� You are very welcome to come up with your own project ideas, yet

make sure to pass them by me **before** you submit your abstract.

� Feel free to stop by office hours or set an appointment (via email) to

discuss potential projects.

Announcements

Page 3

� Final project logistics:

� Final result: 6-8 page paper.

� Should be structured like a conference paper, i.e., focus on the

problem setting, why it matters, what is interesting/unsolved about it,

your approach, results, analysis, and so forth. Cite and briefly survey

prior work as appropriate, but don’t re-write prior work when not

directly relevant to understand your approach.

� Milestones:

� Oct. 9th, 23:59: **Approved-by-me** abstracts due: 1 page description

of project + goals for milestone. Make sure to sync up with me before

then!

� Nov 9th, 23:59: 1 page milestone report due

� Dec 3rd, In-class project presentations [tentatively]

� Dec 11th, 23:59: Final paper due

� 1 or 2 students/project. If you are two students on 1 final project,

I will expect twice as much research effort has gone into it!

Announcements

Bellman’s curse of dimensionality

� n-dimensional state space

� Number of states grows exponentially in n

� In practice

� Discretization is considered only computationally

feasible up to 5 or 6 dimensional state spaces even

when using

� Variable resolution discretization

� Very fast implementations

Page 4

� Linear Quadratic (LQ) setting --- special case: can solve continuous

optimal control problem exactly

Great reference:

[optional] Anderson and Moore, Linear Quadratic Methods --- standard reference for LQ
setting

Today

Linear Quadratic Regulator (LQR)

The LQR setting assumes a linear dynamical system:

xt+1 = Axt + But,

xt: state at time t
ut: input at time t
It assumes a quadratic cost function:

g(xt, ut) = x⊤t Qxt + u⊤t Rut

with Q ≻ 0, R ≻ 0.
For a square matrix X we have X ≻ 0 if and only if for all vectors z we

have z⊤Xz > 0. Hence there is a non-zero cost for any state different from the
all-zeros state, and any input different from the all-zeros input.

Page 5

While LQ assumptions might seem very restrictive,
we will see the method can be made applicable
for non-linear systems, e.g., helicopter.

Value iteration

� Back-up step for i+1 steps to go:

� LQR:

= min
u

[
x⊤Qx + u⊤Ru + γ Ji(Ax + Bu)

]

Page 6

LQR value iteration: J1

Initialize J0(x) = x⊤P0x.

J1(x) = min
u

[
x⊤Qx + u⊤Ru + J0(Ax+ Bu)

]

= min
u

[
x⊤Qx + u⊤Ru + (Ax + Bu)⊤P0(Ax+ Bu)

]
(1)

To find the minimum over u, we set the gradient w.r.t. u equal to zero:

∇u [. . .] = 2Ru + 2B⊤P0(Ax+ Bu) = 0,

hence: u = −(R + B⊤P0B)−1B⊤P0Ax (2)

(2) into (1): J1(x) = x⊤P1x

for: P1 = Q + K⊤

1 RK1 + (A + BK1)
⊤P0(A + BK1)

K1 = −(R + B⊤P0B)−1B⊤P0A.

LQR value iteration: J1 (ctd)

� In summary:

� J1(x) is quadratic, just like J0(x).

�Value iteration update is the same for all times and can be done

in closed form!

J1(x) = x⊤P1x

for: P1 = Q + K⊤

1 RK1 + (A + BK1)
⊤P0(A + BK1)

K1 = −(R + B⊤P0B)−1B⊤P0A.

J0(x) = x⊤P0x

xt+1 = Axt + But
g(x, u) = u⊤Ru + x⊤Qx

J2(x) = x⊤P2x

for: P2 = Q + K⊤

2 RK2 + (A + BK2)
⊤P1(A + BK2)

K2 = −(R + B⊤P1B)−1B⊤P1A.

Page 7

Value iteration solution to LQR

Set P0 = 0.
for i = 1, 2, 3, . . .

Ki = −(R + B⊤Pi−1B)−1B⊤Pi−1A

Pi = Q + K⊤

i RKi + (A + BKi)
⊤Pi−1(A + BKi)

The optimal policy for a i-step horizon is given by:

π(x) = Kix

The cost-to-go function for a i-step horizon is given by:

Ji(x) = x⊤Pix.

� Extensions which make it more generally applicable:

� Affine systems

� System with stochasticity

� Regulation around non-zero fixed point for non-linear systems

� Penalization for change in control inputs

� Linear time varying (LTV) systems

� Trajectory following for non-linear systems

LQR assumptions revisited

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

= for keeping a linear system at the all-zeros state.

Page 8

� Optimal control policy remains linear, optimal cost-to-go

function remains quadratic

� Two avenues to do derivation:

� 1. Work through the DP update as we did for standard setting

� 2. Redefine the state as: z_t = [x_t; 1], then we have:

LQR Ext0: Affine systems

xt+1 = Axt + But + c

g(xt, ut) = x⊤t Qxt + u⊤t Rut

zt+1 =

[
xt+1

1

]
=

[
A c

0 1

] [
xt
1

]
+

[
B

0

]
ut = A′zt + B′ut

� Exercise: work through similar derivation as we did for

the deterministic case.

� Result:

� Same optimal control policy

� Cost-to-go function is almost identical: has one additional term

which depends on the variance in the noise (and which cannot

be influenced by the choice of control inputs)

LQR Ext1: stochastic system

xt+1 = Axt + But + wt

g(xt, ut) = x⊤t Qxt + u⊤t Rut

wt, t = 0, 1, . . . are zero mean and independent

Page 9

Nonlinear system:

We can keep the system at the state x* iff

Linearizing the dynamics around x* gives:

Equivalently:

Let zt = xt – x* , let vt = ut – u*, then:

[=standard LQR]

LQR Ext2: non-linear systems

xt+1 = f(xt, ut)

∃u∗s.t. x∗ = f(x∗, u∗)

xt+1 ≈ f(x∗, u∗) +
∂f

∂x
(x∗, u∗)(xt − x∗) +

∂f

∂u
(x∗, u∗)(ut − u∗)

xt+1 − x∗ ≈ A(xt − x∗) + B(ut − u∗)

A B

zt+1 = Azt + Bvt, cost = z⊤t Qzt + v⊤t Rvt

vt = Kzt ⇒ ut − u∗ = K(xt − x∗) ⇒ ut = u∗ + K(xt − x∗)

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� When run in this format on real systems: often high frequency

control inputs get generated. Typically highly undesirable and

results in poor control performance.

� Why?

� Solution: frequency shaping of the cost function. (See, e.g.,

Anderson and Moore.)

� Simple special case which works well in practice: penalize for

change in control inputs. ---- How ??

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

Page 10

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� How to incorporate the change in controls into the

cost/reward function?

� Soln. method A: explicitly incorporate into the state and the

reward function, and re-do the derivation based upon value

iteration.

� Soln. method B: change of variables to fit into the standard LQR

setting.

xt+1 = Axt + But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

LQR Ext3: penalize for change in control inputs

� Standard LQR:

� Introducing change in controls ∆u:
[
xt+1
ut+1

]
=

[
A B

0 I

] [
xt
ut−1

]
+

[
B

I

]
∆ut

A’ B’x’t+ x’t= + u’t

Q′ =

[
Q 0
0 R

]

R′ = penalty for change in controls

cost = −(x′⊤Q′x′ + ∆u⊤R′∆u)

[If R’=0, then equivalent to standard LQR.]

xt+1 = Axt +But

g(xt, ut) = x⊤t Qxt + u⊤t Rut

Page 11

LQR Ext4: Linear Time Varying (LTV) Systems

xt+1 = Atxt + Btut

g(xt, ut) = x⊤t Qtxt + u⊤t Rtut

LQR Ext4: Linear Time Varying (LTV) Systems

Set P0 = 0.
for i = 1, 2, 3, . . .

Ki = −(RH−i + B⊤H−iPi−1BH−i)
−1B⊤

H−iPi−1AH−i

Pi = QH−i + K⊤

i RH−iKi + (AH−i + BH−iKi)
⊤Pi−1(AH−i + BH−iKi)

The optimal policy for a i-step horizon is given by:

π(x) = Kix

The cost-to-go function for a i-step horizon is given by:

Ji(x) = x⊤Pix.

Page 12

LQR Ext5: Trajectory following for non-linear systems

� A state sequence x*, x*, …, xH* is a feasible target

trajectory iff

� Problem statement:

� Transform into linear time varying case (LTV):

∃u∗0, u
∗
1, . . . , u

∗

H−1 : ∀t ∈ {0, 1, . . . , H − 1} : x∗t+1 = f(x∗t , u
∗
t)

minu0,u1,...,uH−1

∑H−1
t=0 (xt − x∗t)

⊤Q(xt − x∗t) + (ut − u∗t)
⊤R(ut − u∗t)

s.t. xt+1 = f(xt, ut)

xt+1 ≈ f(x∗t , u
∗

t) +
∂f

∂x
(x∗t , u

∗

t)(xt − x∗t) +
∂f

∂u
(x∗t , u

∗

t)(ut − u∗t)

xt+1 − x∗t ≈ At(xt − x∗t) + Bt(ut − u∗t)
At Bt

LQR Ext5: Trajectory following for non-linear systems

� Transformed into linear time varying case (LTV):

� Now we can run the standard LQR back-up iterations.

� Resulting policy at i time-steps from the end:

� The target trajectory need not be feasible to apply this technique,

however, if it is infeasible then the linearizations are not around the

(state,input) pairs that will be visited

minu0,u1,...,uH−1

∑H−1
t=0 (xt − x∗t)

⊤Q(xt − x∗t) + (ut − u∗t)
⊤R(ut − u∗t)

s.t. xt+1 − x∗t+1 ≈ At(xt − x∗t) + Bt(ut − u∗t)

uH−i − u∗H−i = Ki(xH−i − x∗H−i)

Page 13

� Methods which attempt to solve the generic optimal

control problem

by iteratively approximating it and leveraging the fact

that the linear quadratic formulation is easy to solve.

Most general cases

minu

H∑

t=0

g(xt, ut)

subject to xt+1 = f(xt, ut) ∀t

Iteratively apply LQR

Initialize the algorithm by picking either (a) A control policy π(0) or (b) A

sequence of states x
(0)
0 , x

(0)
1 , . . . , x

(0)
H and control inputs u

(0)
0 , u

(0)
1 , . . . , u

(0)
H . With

initialization (a), start in Step (1). With initialization (b), start in Step (2).
Iterate the following:

(1) Execute the current policy π(i) and record the resulting state-input tra-

jectory x
(i)
0 , u

(i)
0 , x

(i)
1 , u

(i)
1 , . . . , x

(i)
H , u

(i)
H .

(2) Compute the LQ approximation of the optimal control around the ob-
tained state-input trajectory by computing a first-order Taylor expansion
of the dynamics model, and a second-order Taylor expansion of the cost
function.

(3) Use the LQR back-ups to solve for the optimal control policy π(i+1) for
the LQ approximation obtained in Step (2).

(4) Set i = i + 1 and go to Step (1).

Page 14

Standard LTV is of the form zt+1 = Atzt + Btvt, g(z, v) = z⊤Qz + v⊤Rv.

Linearizing around (x
(i)
t , u

(i)
t) in iteration i of the iterative LQR algorithm

gives us (up to first order!):

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

Subtracting the same term on both sides gives the format we want:

xt+1−x
(i)
t+1 = f(x

(i)
t , u

(i)
t)−x

(i)
t+1+

∂f

∂x
(x
(i)
t , u

(i)
t)(xt−x

(i)
t)+

∂f

∂u
(x
(i)
t , u

(i)
t)(ut−u

(i)
t)

Hence we get the standard format if using:

zt = [xt − x
(i)
t 1]⊤

vt = (ut − u
(i)
t)

At =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t) − x

(i)
t+1

0 1

]

Bt =

[
∂f
∂u

(x
(i)
t , u

(i)
t)

0

]

Iterative LQR: in standard LTV format

� Need not converge as formulated!

� Reason: the optimal policy for the LQ approximation

might end up not staying close to the sequence of

points around which the LQ approximation was

computed by Taylor expansion.

� Solution: in each iteration, adjust the cost function so

this is the case, i.e., use the cost function

Assuming g is bounded, for α close enough to one,

the 2nd term will dominate and ensure the

linearizations are good approximations around the

solution trajectory found by LQR.

Iteratively apply LQR: convergence

(1− α)g(xt, ut) + α(‖xt − x
(i)
t ‖

2
2 + ‖ut − u

(i)
t ‖

2
2)

Page 15

� f is non-linear, hence this is a non-convex optimization

problem. Can get stuck in local optima! Good

initialization matters.

� g could be non-convex: Then the LQ approximation fails

to have positive-definite cost matrices.

Iteratively apply LQR: practicalities

Standard LTV is of the form zt+1 = Atzt + Btvt, g(z, v) = z⊤Qz + v⊤Rv.

Linearizing around (x
(i)
t , u

(i)
t) in iteration i of the iterative LQR algorithm

gives us (up to first order!):

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

Subtracting the same term on both sides gives the format we want:

xt+1−x
(i)
t+1 = f(x

(i)
t , u

(i)
t)−x

(i)
t+1+

∂f

∂x
(x
(i)
t , u

(i)
t)(xt−x

(i)
t)+

∂f

∂u
(x
(i)
t , u

(i)
t)(ut−u

(i)
t)

Hence we get the standard format if using:

zt = [xt − x
(i)
t 1]⊤

vt = (ut − u
(i)
t)

At =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t)− x

(i)
t+1

0 1

]

Bt =

[
∂f
∂u

(x
(i)
t , u

(i)
t)

0

]

A similar derivation is needed to find Q and R.

Iterative LQR: in standard LTV format

Page 16

While there is no need to follow this particular route, this is a (imho) partic-
ularly convenient way of turning the linearized and quadraticized approximation
in the iLQR iterations into the standard LQR format for the setting of trajectory
following with a quadratic penalty for deviation from the trajectory.

Let x
(i)
t , u

(i)
t be the state and control around which we linearize. Let x∗t , u

∗

t

be the target controls then we have:

xt+1 = f(x
(i)
t , u

(i)
t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t)

xt+1 − x∗t+1 = f(x
(i)
t , u

(i)
t)− x∗t+1 +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x

(i)
t − x∗t + x∗t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u

(i)
t − u∗t + u∗t)

xt+1 − x∗t+1 = f(x
(i)
t , u

(i)
t)− x∗t+1 +

∂f

∂x
(x
(i)
t , u

(i)
t)(xt − x∗t) +

∂f

∂x
(x
(i)
t , u

(i)
t)(x∗t − x

(i)
t)

+
∂f

∂u
(x
(i)
t , u

(i)
t)(ut − u∗t) +

∂f

∂u
(x
(i)
t , u

(i)
t)(u∗t − u

(i)
t)

[
xt+1 − x∗t+1; 1

]
= A[(xt − x∗t); 1] + B(ut − u∗t)

For

A =

[
∂f
∂x

(x
(i)
t , u

(i)
t) f(x

(i)
t , u

(i)
t)− x∗t+1 + ∂f

∂x
(x
(i)
t , u

(i)
t)(x∗t − x

(i)
t) + ∂f

∂u
(x
(i)
t , u

(i)
t)(u∗t − u

(i)
t)

0 1

]

and

B =

[
∂f

∂u
(x
(i)
t , u

(i)
t)

0

]

The cost function can be used as is: (xt−x
∗

t)
⊤Q(xt−x

∗

t)+(ut−u
∗

t)
⊤R(ut−u

∗

t).

Iterative LQR for trajectory following

� Often loosely used to refer to iterative LQR procedure.

� More precisely: Directly perform 2nd order Taylor expansion of the

Bellman back-up equation [rather than linearizing the dynamics and

2nd order approximating the cost]

� Turns out this retains a term in the back-up equation which is

discarded in the iterative LQR approach

� [It’s a quadratic term in the dynamics model though, so even if cost is

convex, resulting LQ problem could be non-convex …]

[Typically cited book: Jacobson and Mayne, “Differential dynamic

programming,” 1970]

Differential Dynamic Programming (DDP)

Page 17

Ji+1(x) = min
u

2nd order expansion of g around (x∗, u∗)

+Ji(f(x∗, u∗))

+
dJ

dx
(f(x, u)− f(x∗, u∗))

+(f(x, u)− f(x∗, u∗))⊤
d2J

dx2
(f(x, u)− f(x∗, u∗))

Differential dynamic programming

To keep entire expression 2nd order:
Use Taylor expansions of f and then remove all resulting
terms which are higher than 2nd order.
Turns out this keeps 1 additional term compared to
iterative LQR

� Yes!

� At convergence of iLQR and DDP, we end up with linearizations around

the (state,input) trajectory the algorithm converged to

� In practice: the system could not be on this trajectory due to

perturbations / initial state being off / dynamics model being off / …

� Solution: at time t when asked to generate control input ut, we could re-

solve the control problem using iLQR or DDP over the time steps t

through H

� Replanning entire trajectory is often impractical � in practice: replan over
horizon h. = receding horizon control

� This requires providing a cost to go J^{(t+h)} which accounts for all

future costs. This could be taken from the offline iLQR or DDP run

Can we do even better?

Page 18

� In many systems of interest, there is noise entering the

system which is multiplicative in the control inputs, i.e.:

� Exercise: LQR derivation for this setting

[optional related reading:Todorov and Jordan, nips 2003]

Multiplicative noise

xt+1 = Axt + (B + Bwwt)ut

Cart-pole

[See also Section 3.3 in Tedrake notes.]

H(q)q̈ + C(q, q̇) + G(q) = B(q)u

H(q) =

[
mc + mp mpl cos θ
mpl cos θ mpl

2

]

C(q, q̇) =

[
0 −mplθ̇ sin θ
0 0

]

G(q) =

[
0
mpgl sin θ

]

B =

[
1
0

]

Page 19

Cart-pole --- LQR

Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 0; [x, theta, xdot, thetadot]

Page 20

Cart-pole --- LQR

Q = diag([1;1;1;1]); R = 1; [x, theta, xdot, thetadot]

We will not cover any details, but here is the basic result:

Assume x* is an equilibrium point for f(x), i.e., x* = f(x*).

If x* is an asymptotically stable equilibrium point for the

linearized system, then it is asymptotically stable for the

non-linear system.

If x* is unstable for the linear system, it’s unstable for the

non-linear system.

If x* is marginally stable for the linear system, no

conclusion can be drawn.

This provides additional justification for using linear control

design techniques for non-linear systems.

Lyapunov’s linearization method

[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.]

