
Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 5: Control 4: Optimal control / Reinforcement learning--- function

approximation in dynamic programming

Pieter Abbeel

UC Berkeley EECS

� Recap + continuation of value iteration with function approximation

� Performance boosts

� Speed-ups

� Intermezzo: Extremely crude outline of (part of) the reinforcement learning

field [as it might assist when reading some of the references]

Great references:

Gordon, 1995, “Stable function approximation in dynamic programming”

Tsitsiklis and Van Roy, 1996, “Feature based methods for large scale dynamic programming”

Bertsekas and Tsitsiklis, “Neuro-dynamic programming,” Chap. 6

Today

� Markov decision process (MDP) (S, A, P, γ, g)

� γ: discount factor

� Policy

� Value of a policy π:

� Goal: find

Recall: Discounted infinite horizon

π = (µ0, µ1, . . .), µk : S → A

Jπ(x) = E[
∑

∞

t=0 γtg(x(t), u(t))|x0 = x, π]

π∗ ∈ arg minπ∈Π Jπ

� Dynamic programming (DP) aka Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Facts:

� Issue in practice: Bellman’s curse of dimensionality: number of

states grows exponentially in the dimensionality of the state space

Recall: Discounted infinite horizon

J(i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

There is an optimal stationary policy: π∗ = (µ∗, µ∗, . . .) which satisfies:

µ∗(s) = arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J∗(s)

J(i) → J∗ for i →∞

DP/VI with function approximation

Pick some S′ ⊆ S [typically the idea is that |S ′| << |S|].
Iterate for i = 0, 1, 2, . . .:

back-ups:∀s ∈ S′ : J̄(i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)Ĵθ(i)(s
′)

projection: find some θ(i+1) such that ∀s ∈ S′ Ĵθ(i+1)(s) = (ΠJ̄(i+1))(s) ≈ J̄ (i+1)(s)

Projection enables generalization to , which in
turn enables the Bellman back-ups in the next iteration.

θ parameterizes the class of functions used for

approximation of the cost-to-go function

s ∈ S \ S′

“abstract”

Example --- piecewise linear

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

actual computation

back-up

back-up

project

project

s

J(1)=TJ(0)

s

ΠJ(1)

s

J(2)=TJ(1)

s

ΠJ(2)

x
x x x

x

xx

xx
x

x x
xx x x

Interpolate to
successor

states of S’

Interpolate to
successor

states of S’

back-up for
s ∈∈∈∈ S’

back-up for
s ∈∈∈∈ S’

xx xx x

x

Page 2

Recall: VI with function approximation need not converge!

P(x2|x1,u) = 1; P(x2|x2,u) = 1
g(x1,u) = 0; g(x2,u) = 0;

Function approximator: [1 2] * θ

VI w/ least squares function approximation
diverges for γ > 5/6 [see last lecture for details]

θ θ

� Fact. The Bellman operator, T, is a γ -contraction w.r.t.

the infinity norm, i.e.,

� Theorem. The Bellman operator has a unique fixed

point J* = TJ* and for all J we have that T(k)J converges
to J* for k going to infinity.

� Note:

Contractions

∀J1, J2 : ‖TJ1 − TJ2‖∞ ≤ γ‖J1 − J2‖∞

‖T (k)J − J∗‖∞ = ‖T (k)J − T (k)J∗‖∞

≤ γ‖T (k−1)J − T (k−1)J∗‖∞

≤ γk‖J − J∗‖∞

I.e., with every back-up, the infinity norm distance to J∗ decreases.

Theorem. Let J∗ be the optimal value function for a finite MDP with discount
factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity
norm and let J̃ be any fixed point of Π. Suppose ‖J̃ − J∗‖∞ ≤ ǫ. Then ΠT
converges to a value function J̄ such that:

‖J̄ − J∗‖ ≤
2ǫ

1− γ

Guarantees for fixed point

[See also Gordon 1995]

Proof

Fact. Assume we have some Ĵ for which we have that ‖Ĵ − T Ĵ‖∞ ≤ ǫ. Then
we have that ‖Ĵ − J∗‖∞ ≤ ǫ

1−γ .
Proof:

‖Ĵ − J∗‖∞ = ‖Ĵ − T Ĵ + T Ĵ − T 2Ĵ + T 2Ĵ − T 3Ĵ + ...− J∗‖∞

≤ ‖Ĵ − T Ĵ‖∞ + ‖T Ĵ − T 2Ĵ‖∞ + ‖T 2Ĵ − T 3Ĵ‖∞ + ... + ‖T∞Ĵ − J∗‖∞

≤ ǫ + γǫ + γ2ǫ + ...

=
ǫ

1− γ

Can we generally verify goodness of some
estimate J despite not having access to J*

� Of course, in most (perhaps all) large scale settings in
which function approximation is desirable, it will be hard
to compute the bound on the infinity norm …

� Assume Π only introduces a little bit of noise, i.e.,

Or, more generally, we have a noisy sequence of back-ups:

What if the projection fails to be a non-expansion

∀ iterations i : ‖T J̄(i) − ΠT J̄(i)‖∞ ≤ ǫ

J(i+1) ← TJ (i) + w(i) with the noise w(i) satisfying: ‖w(i)‖∞ ≤ ǫ

Fact. ‖J (i)−T iJ‖ ≤ ǫ(1+γ+. . .+γi−1) and as a consequence lim supi→∞ ‖J
(i)−

J∗‖ ≤ ǫ
1−γ

.

Proof by induction:

Base case: We have ‖J (1) − TJ (0)‖∞ ≤ ǫ.
Induction: We also have for any i > 1:

‖T iJ (0) − J(i)‖∞ = ‖TT i−1J (0) − TJ(i−1) − w(i−1)‖∞

≤ ǫ + γ‖T i−1J (0) − J (i−1)‖∞

≤ ǫ + γ(ǫ(1 + γ + γ2 + . . . + γ(i−2)))

Page 3

[See also Bertsekas and Ttsitsiklis, 6.1.1]

Guarantees for greedy policy w.r.t.
approximate value function

Fact. Suppose that J satisfies ‖J − J∗‖∞ ≤ ǫ. If µ is a greedy policy based on
J, then

‖Jµ − J∗‖∞ ≤
2γǫ

1 − γ

Definition. µ is the greedy policy w.r.t. J if for all states s:

µ(s) ∈ arg min
u

g(s, u) + γ
∑

s′

P (s′|s, u)J(s′)

Here Jµ = E[
∑

∞

t=0 γtg(st, µ(st))].

Recall:
(TJ)(s) = min

u
g(s, u) + γ

∑

s′

P (s′|s, u)J(s′)

Similarly define:

(TµJ)(s) = g(s, µ(s)) + γ
∑

s′

P (s′|s, µ(s))J(s′)

We have TJ∗ = J∗ and (same result for MDP with only 1 policy available)
TµJµ = Jµ.

A very typical proof follows, with the main ingredients adding and subtract-
ing the same terms to make terms pairwise easier to compare/bound:

‖Jµ − J∗‖∞ = ‖TµJµ − J∗‖∞

≤ ‖TµJµ − TµJ‖∞+ ‖TµJ − J∗‖∞

≤ γ‖Jµ − J‖∞ + ‖T J − J ∗ ‖∞

≤ γ‖Jµ − J∗‖∞ + γ‖J∗ − J‖∞ + γ‖J − J∗‖∞

= γ‖Jµ − J∗‖∞ + 2γǫ,

and the result follows.

Proof

� DP/VI with function approximation:

� Iterate: J � Π T J

� Need not converge!

� Guarantees when:

� The projection is an infinity norm non-expansion

� Bounded error in each projection/function
approximation step

� In later lectures we will also study the policy iteration
and linear programming approaches

Recap function approximation

� Exact methods w/full model available (e.g. Value
iteration/DP, policy iteration, LP)

� Approximate DP w/model available

� Sample states:

� Use all sampled data in batch � often reducible to
“exact methods” on an approximate transition model

� Use incremental updates � stochastic approximation
techniques might prove convergence to desired
solution

Reinforcement learning---very crude map

1. Multi-stage lookahead aka Receding/Moving horizon

� Rather than using greedy policy µ w.r.t. approximate value

function, with

� Two-stage lookahead:

� At time t perform back-ups for all s’ which are successor states of st

� Then use these backed up values to perform the back-up for st

� N stage lookahead: similarly,perform back-ups to N-stages of

successor states of st backward in time

� Can’t guarantee N-stage lookahead provides better

performance [Can guarantee tighter infinity norm bound on

attained value function estimates by N-stage lookahead.]

� Example application areas in which it has improved

performance chess, backgammon

Improving performance with a given value function

µ(st) = arg minu g(s, u) + γ
∑

s′ P (s′|s, u)Ĵθ(s
′)

See also Bertsekas and Tsitsiklis, 6.1.2

2. Roll-out policies

� Given a policy π, choose the current action u by

evaluating the cost encurred by taking action u
followed by executing the policy π from then onwards

� Guaranteed to perform better than the baseline policy
on top of which it builds (thanks to general
guarantees of policy iteration algorithm)

� Baseline policy could be obtained with any method

� Practicalities

� Todo --- fill in

Improving performance with a given value function

See also Bertsekas and Tsitsiklis, 6.1.3

Page 4

� Parallelization

� VI lends itself to parallellization

� Multi-grid, Coarse-to-fine grid, Variable resolution grid

� Prioritized sweeping

� Richardson extrapolation

� Kuhn triangulation

Speed-ups Prioritized sweeping

� Dynamic programming (DP) / Value iteration (VI):

For i=0,1, …

For all s ∈ S

� Prioritized sweeping idea: focus updates on states for which the update is

expected to be most significant

� Place states into priority queue and perform updates accordingly

� For every Bellman update: compute the difference J^{(i+1)} – J^{(i)}

� Then update the priority of the states s’ from which one could transition into s

based upon the above difference and the transition probability of
transitioning into s’

� For details: See Moore and Atkeson, 1993, “Prioritized sweeping: RL with less
data and less real time”

J(i+1)(s) ← min
u∈A

g(s, u) + γ
∑

s′

P (s′|s, u)J (i)(s′)

� Generic method to improve the rate of convergence of a sequence

� Assume h is the grid-size parameter in a discretization scheme

� Assume we can approximate J(h)(x) as follows:

� Similarly:

� Then we can get rid of the order h error term by using the following

approximation which combines both:

Richardson extrapolation

J(h)(x) = J(x) + J1(x)h + o(h)

J(h/2)(x) = J(x) + J1(x)h/2 + o(h)

2J(h/2)(x)− J(h)(x) = J(x) + o(h)

� Allows efficient computation of the vertices participating in
a point’s barycentric coordinate system and of the convex
interpolation weights (aka the barycentric coordinates)

� See Munos and Moore, 2001 for further details.

Kuhn triangulation

Kuhn triangulation (from Munos and Moore)

