CS 287: Advanced Robotics
Fall 2009

Lecture 5: Control 4: Optimal control / Reinforcement learning--- function
approximation in dynamic programming

Pieter Abbeel
UC Berkeley EECS

Today

= Recap + continuation of value iteration with function approximation

= Performance boosts
= Speed-ups

= Intermezzo: Extremely crude outline of (part of) the reinforcement learning
field [as it might assist when reading some of the references]

Great references:
Gordon, 1995, “Stable function approximation in dynamic programming”
Tsitsiklis and Van Roy, 1996, “Feature based methods for large scale dynamic programming”

Bertsekas and Tsitsiklis, “Neuro-dynamic programming,” Chap. 6

Recall: Discounted infinite horizon

= Markov decision process (MDP) (S, A, P, v, @)

= 7: discount factor

= (o, 1s---), P : S — A

J7(@) = B[g(@(t), u(t)) w0 = @, 7]

= Goal: find 7* € argming e J™

= Policy

= Value of a policy =:

Recall: Discounted infinite horizon

I
= Dynamic programming (DP) aka Value iteration (VI):
Fori=0,1, ...

ForallseS

(i+1) i / @) (g
JE(s) gggg(s,U)MzP(s Is,) J0 (s')

= Facts:

J@O = J* for i — oo

There is an optimal stationary policy: 7* = (u*, u*,...) which satisfies:
1 (5) = argmin g(s,w) + 5 3 P(s|s,u)"(s)
w v

s

= Issue in practice: Bellman’s curse of dimensionality: number of
states grows exponentially in the dimensionality of the state space

DP/VI with function approximation

Pick some S” C S [typically the idea is that [S"] << [S]].
Iterate for i = 0,1,2,...:

_ups:Vs L Jlitl) (g i s 7 !
back-ups:Vs € S : .J (s) + 21(1]4”](3 u) +72P(a [s,2) Jpc) (s")

projection: find some 60+Y such that Vs € S’ jgmn(s) = (ILJU+D)(5) & JOHD(s)

Projection enables generalization to s € S\ S’, which in
turn enables the Bellman back-ups in the next iteration.

0 parameterizes the class of functions used for
approximation of the cost-to-go function

Example --- piecewise linear

actual computation

JH=TJ() JW=TJO

back-up back-up for
ses’
S S

“abstract”

o Interpolate to T](1)
project successor
H states of S’
I S i S
J@=TI1D J=TIM
/_\f\/\[back-up back-up for
ses’
4LS s
Interpolate to
m® project successor 1 &)
- H states of S’ ,
H H H s

Page 1

Recall: VI with function approximation need not converge!

O ()

0 26

P(x2|x1,u) = 1; P(x2|x2,u) = 1
g(xL,u) = 0; g(x2,u) = 0;

Function approximator: [1 2] * ¢

VI w/ least squares function approximation

diverges for v > 5/6 [see last lecture for details]

Guarantees for fixed point

Theorem. Let J* be the optimal value function for a finite MDP with discount
factor . Let the projection operator II be a non-expansion w.r.t. the infinity
norm and let J be any fixed point of II. Suppose ||J — J*||l,c < e. Then IIT
converges to a value function J such that:

= 2¢
J—J* < —
I I<1=

Can we generally verify goodness of some
estimate J despite not having access to J*
I

Fact. Assume we have some J for which we have that ||J — T.J||oc < . Then
we have that ||/ — J"||e < 75

Proof:
=T = J=TJ+TJ=T?J+T?J=T?J + ... - ||
< N =Tl + |TF = T?J||oo + |T?F = T3J||oc + . + [T = T" |0
< etre+let ..
€
=1

= Of course, in most (perhaps all) large scale settings in
which function approximation is desirable, it will be hard
to compute the bound on the infinity norm ...

Contractions

I
= Fact. The Bellman operator, T, is a 7 -contraction w.r.t.
the infinity norm, i.e.,

VI, Ja : |TT = Thallee <9001 = Jafleo

= Theorem. The Bellman operator has a unique fixed
point J* = TJ* and for all J we have that T®J converges
to J* for k going to infinity.

= Note:

(T80T = T® oo

,YHT(k—l)J _ T(k—l)J*Hm

FIT = T oo

1TV =7

INIA

Le., with every back-up, the infinity norm distance to J* decreases.

Proof

What if the projection fails to be a non-expansion

I
= Assume I7 only introduces a little bit of noise, i.e.,

Y iterations i : |TJ — ITJ® ||, <€

Or, more generally, we have a noisy sequence of back-ups:

JED TJ0 4 w® with the noise w? satisfying: [[w? ||, < €

Fact. ||JO)—T"J|| < e(14+7y+...+7""!) and as a consequence limsup; _, , ||/ —

T <

Proof by induction:

Base case: We have [|JM) —TJO)| <e.

Induction: We also have for any i > 1:

[TT17O) — 761 _ =D
e+ AT IO — gD

e+ yle(l+y+92+ ... +9172))

IT7® =gy =

ININ

Page 2

Guarantees for greedy policy w.r.t.
approximate value function

Definition. p is the greedy policy w.r.t. J if for all states s:

u(s) € arg muing(s, u) + "/Z P(s'|s,u)J(s")

o

Fact. Suppose that J satisfies [|J — J*[|c < €. If p is a greedy policy based on
J, then
2ve

JH— Tl <
I e < 1=

Here J* = E[Y2) 7' g(se, uls0))]-

[See also Bertsekas and Ttsitsiklis, 6.1.1]

Proof

Recall:
(T)(s) = min g(s,u) +7 > P(s']s,u) I (s)

Similarly define:

(Lud)(s) = gls, u(s)) +7 D P(s']s, 1(5)) I ()

We have T'J* = J* and (same result for MDP with only 1 policy available)
T,JH = Jk.

A very typical proof follows, with the main ingredients adding and subtract-
ing the same terms to make terms pairwise easier to compare/bound:

7% = T lo 1T " = T*loo

1T T* = Ty dlloo + [T = Tl

AT = Tlloo + 17T = T * oo

AT = T oo + AT = Tlloe + AT = Tl
AT = T oo + 27,

A IAIA

and the result follows.

Recap function approximation

= DP/VI with function approximation:
= lterate: J € IITJ
= Need not converge!
= Guarantees when:
= The projection is an infinity norm non-expansion

= Bounded error in each projection/function
approximation step

= Inlater lectures we will also study the policy iteration
and linear programming approaches

Reinforcement learning---very crude map

= Exact methods w/full model available (e.g. Value
iteration/DP, policy iteration, LP)

= Approximate DP w/model available

= Sample states:

= Use all sampled data in batch > often reducible to
“exact methods” on an approximate transition model

= Use incremental updates - stochastic approximation
techniques might prove convergence to desired
solution

Improving performance with a given value function

1. Multi-stage lookahead aka Receding/Moving horizon

Rather than using greedy policy ;. w.r.t. approximate value
function, with

u(se) = argmin, g(s,u) +v,, P(s'|s,u) Jo(s")
Two-stage lookahead:
= Attime t perform back-ups for all s which are successor states of s;
= Then use these backed up values to perform the back-up for s,

N stage lookahead: similarly,perform back-ups to N-stages of
successor states of s; backward in time

Can't guarantee N-stage lookahead provides better
performance [Can guarantee tighter infinity norm bound on
attained value function estimates by N-stage lookahead.]

Example application areas in which it has improved

performance chess, backgammon
See also Bertsekas and Tsitsiklis, 6.1.2

Improving performance with a given value function

2. Roll-out policies

Given a policy w, choose the current action u by
evaluating the cost encurred by taking action u
followed by executing the policy 7 from then onwards

Guaranteed to perform better than the baseline policy
on top of which it builds (thanks to general
guarantees of policy iteration algorithm)

Baseline policy could be obtained with any method

Practicalities
= Todo ---fill in

See also Bertsekas and Tsitsiklis, 6.1.3

Page 3

Speed-ups

= Parallelization

= Vllends itself to parallellization
= Multi-grid, Coarse-to-fine grid, Variable resolution grid
= Prioritized sweeping
= Richardson extrapolation

= Kuhn triangulation

Richardson extrapolation

= Generic method to improve the rate of convergence of a sequence
= Assume h is the grid-size parameter in a discretization scheme
= Assume we can approximate JM(x) as follows:
JM(z) = J(z) + Ji(x)h + o(h)
= Similarly:

JE2 () = J(x) + Ji(x)h/2 + o(h)

= Then we can get rid of the order h error term by using the following
approximation which combines both:

2702 (z) — J®) (z) = J(z) + o(h)

Kuhn triangulation (from Munos and Moore)

1.1, Compntational issues
Altbougly the aumber of simplexes iuside s rectaugle is Gactorial with the dimension
4, the compurarion time for wrerpolating the value at any point inside a rectangle
is only of order (dlnd). which corresponds to a sorting of the d relative coordinares
(2. wrery 1) of the poin inside the roctan
to compure the indexes ¢,

ces of the
b with
orners of
in dimen

the coondiuztes fou th
permuration of {0....d
the indice

L1
7, > j,, 2 U Then
wplex comaiuing Ui poiat are:
Qg =g i+ 24 =20— L Tor
> 0 (lllustrated by the point

2 s & (e added 2
g of the point = mside the sim
quely) defined Ty: 370, 0

barycentric co

s the posilive = 1

. Usoally, these harye
i the case of Kuln
L= T T e M=
the previous example, the baryeeutric cordinate
Ne=wo o4 Ny =m

M=

Prioritized sweeping

I
Dynamic programming (DP) / Value iteration (VI):
Fori=0,1, ...

Foralls e S
(i+1) : / () (o
JOD() e ming(s,u) + 9)Pl u)T ()

Prioritized sweeping idea: focus updates on states for which the update is
expected to be most significant

Place states into priority queue and perform updates accordingly
= For every Bellman update: compute the difference JA{(i+1)} — JA{(i)}

= Then update the priority of the states s’ from which one could transition into s
based upon the above difference and the transition probability of
transitioning into s’

For details: See Moore and Atkeson, 1993, “Prioritized sweeping: RL with less
data and less real time”

Kuhn triangulation

T

= Allows efficient computation of the vertices participating in
a point’s barycentric coordinate system and of the convex
interpolation weights (aka the barycentric coordinates)

= See Munos and Moore, 2001 for further details.

Page 4

