CS 287: Advanced Robotics
Fall 2009

Lecture 2: Control 1: Feedforward, feedback, PID, Lyapunov direct method

Pieter Abbeel
UC Berkeley EECS

CS 287 Advanced Robotics

= Control

= Estimation

= Manipulation/Grasping
s Reinforcement Learning
» Misc. Topics

= Case Studies

Today'’s lecture

T
= Feedforward vs. feedback

= PID (Proportional Integral Derivative)

= Lyapunov direct method --- a method that can be helpful
in proving guarantees about controllers
= Reading materials:
= Astrom and Murray, 10.3
= Tedrake, 1.2
= Optional: Slotine and Li, Example 3.21.

Based on a survey of over eleven thousand controllers in the refining, chemicals
and pulp and paper industries, 97% of regulatory controllers utilize PID feedback.
L. Desborough and R. Miller, 2002 [DM02]. [Quote from Astrom and Murray,
2009]

Announcements

T
= Office hours: Thursdays 2-3pm + by email arrangement,
746 SDH

= SDH 7' floor should be unlocked during office hours
on Thursdays

= Questions about last lecture?

Control in CS287

= Overarching goal:
= Understand what makes control problems hard

= What techniques do we have available to tackle the
hard (and the easy) problems

= Any applicability of control outside robotics? Yes, many!

= Process industry, feedback in nature, networks and
computing systems, economics, ...

« [See, e.g., Chapter 1 of Astrom and Murray, http:/www.cds caltech.edu/~murray/amwiki/Main_Page, for more
details-—_optional_ reading. Fwiw: Astrom and Murray is a great read on mostly classical feedback control
and s freely available at above link]

= We will not have time to study these application
areas within CS287 [except for perhaps in your final
project!]

Today'’s lecture

T
= Practical result: can build a trajectory controller for a
fully actuated robot arm

= Our abstraction: torque control input to motor, read out
angle [in practice: voltages and encoder values]

Page 1

Intermezzo: Unconventional (?) robot arm use

Single link manipulator (aka the simple pendulum)
I

U
Y.
l l
0
g9 - m
T0(t) + bO(t) + mglsin 0(t) = u(t) I=mi?

Single link manipulator

I6(t) + bA(t) + mglsin 6(t) = u(t)

How to hold arm at 6 = 45 degrees?

The Matlab code that generated all discussed simulations will be posted on www.

Single link manipulator
I

Simulation results:

T6(t) + cb(t) + mglsinf(t) = u(t), u=mglsinZ

et it il conitons maching gt " focforward with ntal conditions difeert ram target

—_—1
=

o Can we do better
’ 02 than this?

B0) fED 0 2500 30 0 4000 450 G0
time (i 1100 S) ime (n

0(0) = Z,0(0)=0 6(0) = 0,0(0) =0

Feedforward control

l
e

m

T0(t) + b(t) + mgl sin 6(t) = u(t)

How to make arm follow a trajectory 6°(t) ?

u(t) = I6*(t) + cf* (t) + mgl sin 6* (t)

Feedforward control

Simulation results:

I0(t) + cB(t) + mglsin 6(t) = u(t) 6(0) = 0,6(0) =0
u(t) = I6°(t) + cb*(t) + mglsin 0% (t)

foedfonuard i trajectory

Can we do better
than this?

FEE

ime in

n DOF (degrees of freedom) manipulator?

|
= Thus far: l ¢ % ! T0(t) + b(t) + mglsin 0(t) = u(t)
g & m

= n DOF manipulator: standard manipulator equations

) H(q)j+ C(q,q) + G(q) = B(g)u

= H : “inertial matrix,” full rank
= B :identity matrix if every joint is actuated

= > Given trajectory ¢(t), can readily solve for
feedforward controls w(t) for all times ¢

Fully-Actuated vs. Underactuated

I
= A systemis fully actuated when in a certain state (¢,\dot{g},t) if, when in that
state, it can be controlled to instantaneously accelerate in any direction.

= Many systems of interest are of the form:
§=fi(g,4,t) + f2(q, 4, t)u (1)
= Defn. Fully actuated: A control system described by Eqn. (1) is fully-actuated

in state (g,\dot{q},t) if it is able to command an instantaneous acceleration in
an arbitrary direction in g:

rank f>(g, ¢, t) = dimg
= Defn. Underactuated: A control system described by Eqn. (1) is

underactuated in configuration (g,\dot{q}.t) if it is not able to command an
instantaneous acceleration in an arbitrary direction in q:

rankf>(q, ¢, t) < dimg

Fully-Actuated vs. Underactuated

G = f1(q,4,t) + f2(q, ¢, t)u fully actuated in (g, ¢,) iff rankf2(g, ¢, t) = dimg.

= Hence, for any fully actuated system, we can follow a trajectory by
simply solving for u(t):

u(t) = f51(g,4,1) (§ — f1(q:4,t))

= [We can also transform it into a linear system through a change of
variables from u to v:

i(t) = v(t)
u(t) = f5 (9,4, 1) (v(t) — fi(g,4,1))

The literature on control for linear systems is very extensive and
hence this can be useful. This is an example of feedback
linearization. More on this in future lectures.]

=_[See also, Tedrake, Section 1.2.]

Fully-Actuated vs. Underactuated

¢j|: fi(a,4,t)+ f2(q, ¢, t)u fully actuated in (g, ¢, t) iff rank fo(q, ¢, t) = dimg.

= n DOF manipulator
H(q)§+ C(g,4) + Glg) = Blg)u
fo = H™'B, H full rank, B = I, hence rank(H ~!B) = rank(B)
= Alljoints actuated > rank(B) = n > fully actuated
= Only p < n joints actuated - rank(B) = p - underactuated

Example underactuated systems

= Car = Acrobot

Fully actuated systems: is our feedforward control
solution sufficient in practice?

I U

Z

l
g9 J’ 0/, m

T0(t) + bO(t) + mgl sin 6(t) = u(t)

Task: hold arm at 45 degrees.
= What if parameters off? --- by 5%, 10%, 20%, ...

= What is the effect of perturbations?

Page 3

Fully actuated systems: is our feedforward control
solution sufficient in practice?

I U

i
g L 04
T0(t) + bi(t) + mgl sin 6(t) = u(t)

Task: hold arm at 45 degrees.

= Mass off by 10%:

-> steady-state error

Fully actuated systems: is our feedforward control
solution sufficient in practice?

T0(t) + b(t) + mgl sin 6(t) = u(t)

Task: swing arm up to 180 degrees and hold there

= Perturbation after 1sec:

> Does **not** recover

[6 = 180 is an “unstable” i
equilibrium point]

Proportional control

Task: hold arm at 45 degrees

et i nione Pt g ot g 10 s
%

s 10) o

u(t) = Useedforward (t) u(t) = Ueedforward (t) + Kp(qdesivea (t) — q(t))

= Feedback can provide
= Robustness to model errors
= However, still:
= Overshoot issues --- ignoring momentum/velocity!

= Steady-state error --- simply crank up the qiin?

Proportional control

Task: swing arm up to 180
degrees and hold there

z e e

u(t) = Uteedsorward (t)

e s

u(t) = Ugeedforward (t) + Kp(Qaesirea(t) — (t)

Current status

I
= Feedback can provide

= Robustness to model errors

= Stabilization around states which are unstable in open-loop
= Overshoot issues --- ignoring momentum/velocity!

= Steady-state error --- simply crank up the gain?

PD control

u(t) = Kp(qaesirea(t) — q(t)) + Ka(daesivea — 4(t))

210 feedforward + Kp = 100, Kd =0, 10, 50 with zero inital conditions and model error
4

35 4 45 5

Page 4

Eliminate steady state error by cranking up Kp ?

I
. . Task: hold arm at 45 degrees
16(t) + b0(t) + mgl sin O(¢) = u(t)

0.0, 0,

u(t) = Uteedtorward (t) + Kp(aesirea(t) — q(t))

In steady-state, ¢ = ¢ = 0 and we get:
mglsin@ = ugeedsorward + Kp(0* — 0)
Using some trigoniometry and assuming 6 is close to 6* we get:

0 g+ — Ueodforwara — myglsin 67
K, + mgl cos 0*

‘ Eliminate steady state error by cranking up Kp ?

u(t+8t) =

Kp(qaesired (1) — q(t))

1cfero feedforvard + o =0, 10,20, 50, 100, 200 with 10/1000 doiay
2

2 25 3
time i 171000 5)

\ PID

|
u(t) = Kp(quesivea (t) — 4(t)) + Ka(daesired — d(1)) + K [(qaesivea(T) — g(7))dr

= Zero error in steady-state: [assumes steady-state is achieved!]

G=¢=0, u=0, hence, taking derivatives of above:

@ = Kp(Gdesired — 4(t)) + Ka(Gaesivea — (t)) + Ki(qaesirea(t) — q(t))
0 K (qaesired (t) — q(t))

Recap so far

= Given a fully actuated system and a (smooth) target trajectory

= Can solve dynamics equations for required control inputs =
“feedforward controls”
= Feedforward control is insufficient in presence of
= Model inaccuracy
= Perturbations + instability

= Proportional feedback control can alleviate some of the above issues.
= Steady state error reduced by (roughly) factor K, but large K|, can be
problematic in presence of delay > Add integral term
= Ignores momentum -> Add derivative term

= Remaining questions:
= How to choose PID constants? Aka “tuning”

= Any guarantees?

PID tuning

= Typically done by hand (3 numbers to play with) [policy
search should be able to automate this in many settings]

= Ziegler-Nichols method (1940s) provides recipe for
starting point
= Frequency response method

= Step response method

= Recipe results from
= (a) Extensively hand-tuning controllers for many settings

= (b) Fitting a function that maps from easy to measure
parameters to the three gains

[See also Astrom and Murray Section 10.3]

PID tuning: Ziegler-Nichols frequency domain method

T
= Set derivative and integral gain to zero

= Drive up the proportional gain until steady oscillation
occurs, record the corresponding gain k, and period T,

= Use the following table to set the three gains:

Type K, T, 1,
P 05k
k PI 04k, 087,
PID 0.6k 057, 0.1257,

Notation: K; = %, Kp = k,Tqy

Page 5

PID tuning: Ziegler-Nichols step response method

Type kp T; T;

P 1/a
PI 09/ 37
PID 124a 2t 057

1. Record open-loop step-
response characteristics

2. Read gains out from
above table

Frequency domain Ziegler-Nichols for single link

£4
l l
g9 -9/ m
I .
™
W 1
= Kc=100;
= Tc=0.63s;

ZN and TLC results

2610 ondfvand + LG PID
2ot esdonward + g ichls PID '

14
0]
12 ool
Jr
' o
o]
ol
® 05
o] 04
03]
04
02
02| 01

05 1 s : 25 3 35 ¢ 45 &
e 11000)

Tyreus-Luyben tuning chart:
Kp=ke/2.2,T; =2.2T,,T; =T./6.3
Tends to:
increase robustness,
decrease oscillation.

7 I;

P 05k
Pl 04k, 08T,
PID 0.6k 05T,

0.1257,

Aside: Integrator wind-up

= Recipe: Stop integrating error when the controls
saturate

= Reason: Otherwise it will take a long time to react in the
opposite direction in the future.

= Matters in practice!

[See also Astrom and Murray, Section 10.4]

Recap of main points

= To control a fully actuated system:

Compute feedforward by solving for u(t)

However, feedforward is insufficient when:
= Model is imperfect (i.e., aways when dealing with real systems) o
= System is unstable

Feedback can address these issues
- Standard feedback: PID

In practice, often even only feedback (i.e., without feedforward) can
already provide ok results - in these settings, no model needed, which
can be very convenient

= In this lecture no solution provided for underactuated systems

= Note: many underactuated systems do use PID type controllers in their core (e.g.,
helicopter governor. guro)

Page 6

