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CS 287: Advanced Robotics

Fall 2009

Lecture 2: Control 1: Feedforward, feedback, PID, Lyapunov direct method

Pieter Abbeel

UC Berkeley EECS

� Office hours: Thursdays 2-3pm + by email arrangement, 
746 SDH

� SDH 7th floor should be unlocked during office hours 
on Thursdays

� Questions about last lecture?

Announcements

� Control

� Estimation

� Manipulation/Grasping

� Reinforcement Learning

� Misc. Topics

� Case Studies

CS 287 Advanced Robotics

� Overarching goal:

� Understand what makes control problems hard

� What techniques do we have available to tackle the 
hard (and the easy) problems

� Any applicability of control outside robotics?  Yes, many!

� Process industry, feedback in nature, networks and 
computing systems, economics, … 

� [See, e.g., Chapter 1 of Astrom and Murray, http://www.cds.caltech.edu/~murray/amwiki/Main_Page, for more 

details---_optional_ reading.  Fwiw: Astrom and Murray is a great read on mostly classical feedback control 

and is freely available at above link.]

� We will not have time to study these application 
areas within CS287 [except for perhaps in your final 
project!]

Control in CS287

� Feedforward vs. feedback

� PID (Proportional Integral Derivative)

� Lyapunov direct method --- a method that can be helpful 
in proving guarantees about controllers

� Reading materials:

� Astrom and Murray, 10.3

� Tedrake, 1.2 

� Optional: Slotine and Li, Example 3.21.

Today’s lecture

Based on a survey of over eleven thousand controllers in the refining, chemicals 
and pulp and paper industries, 97% of regulatory controllers utilize PID feedback.

L. Desborough and R. Miller, 2002 [DM02].  [Quote from Astrom and Murray, 
2009]

� Practical result: can build a trajectory controller for a 
fully actuated robot arm

� Our abstraction: torque control input to motor, read out 
angle  [in practice: voltages and encoder values]

Today’s lecture
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Intermezzo: Unconventional (?) robot arm use Single link manipulator (aka the simple pendulum)

θ
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Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

l

I = ml2

Single link manipulator

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
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u
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How to hold arm at θ = 45 degrees?

Single link manipulator

Simulation results:

Iθ̈(t) + cθ̇(t) +mgl sin θ(t) = u(t), u = mgl sin π
4

θ(0) = π
4
, θ̇(0) = 0 θ(0) = 0, θ̇(0) = 0

Can we do better 
than this?

The Matlab code that generated all discussed simulations will be posted on www.

Feedforward control

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)
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How to make arm follow a trajectory θ*(t) ?  

θ(0) = 0, θ̇(0) = 0

u(t) = Iθ̈∗(t) + cθ̇∗(t) +mgl sin θ∗(t)

Feedforward control

Simulation results:

Iθ̈(t) + cθ̇(t) +mgl sin θ(t) = u(t)

Can we do better 
than this?

θ(0) = 0, θ̇(0) = 0

u(t) = Iθ̈∗(t) + cθ̇∗(t) +mgl sin θ∗(t)
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� Thus far:

� n DOF manipulator: standard manipulator equations

� H : “inertial matrix,” full rank  

� B : identity matrix if every joint is actuated

� � Given trajectory q(t), can readily solve for 
feedforward controls u(t) for all times t

n DOF (degrees of freedom) manipulator?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

H(q)q̈ + C(q, q̇) +G(q) = B(q)u

� A system is fully actuated when in a certain state (q,\dot{q},t)  if, when in that 

state, it can be controlled to instantaneously accelerate in any direction.  

� Many systems of interest are of the form:

� Defn. Fully actuated: A control system described by Eqn. (1) is fully-actuated 

in state (q,\dot{q},t) if it is able to command an instantaneous acceleration in 
an arbitrary direction in q:

� Defn. Underactuated: A control system described by Eqn. (1) is 

underactuated in configuration (q,\dot{q},t) if it is not able to command an 
instantaneous acceleration in an arbitrary direction in q:

� [See also, Tedrake, Section 1.2.]

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u (1)

rankf2(q, q̇, t) = dimq

rankf2(q, q̇, t) < dimq

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t)+f2(q, q̇, t)u fully actuated in (q, q̇, t) iff rankf2(q, q̇, t) = dimq.

� Hence, for any fully actuated system, we can follow a trajectory by 
simply solving for u(t):

� [We can also transform it into a linear system through a change of 
variables from u to v:

The literature on control for linear systems is very extensive and 

hence this can be useful.  This is an example of feedback 

linearization.  More on this in future lectures.]

u(t) = f−1
2
(q, q̇, t) (q̈ − f1(q, q̇, t))

u(t) = f−1
2
(q, q̇, t) (v(t)− f1(q, q̇, t))

q̈(t) = v(t)

� n DOF manipulator

� All joints actuated � rank(B) = n � fully actuated

� Only p < n joints actuated � rank(B) = p � underactuated

Fully-Actuated vs. Underactuated

q̈ = f1(q, q̇, t)+f2(q, q̇, t)u fully actuated in (q, q̇, t) iff rankf2(q, q̇, t) = dimq.

H(q)q̈ + C(q, q̇) +G(q) = B(q)u

f2 = H−1B, H full rank, B = I , hence rank(H−1B) = rank(B)

� Car

� Cart-pole

Example underactuated systems

� Acrobot

� Helicopter

Fully actuated systems: is our feedforward control 
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u
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Task: hold arm at 45 degrees.

� What if parameters off?   --- by 5%, 10%, 20%, …

� What is the effect of perturbations?
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Fully actuated systems: is our feedforward control 
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

Task: hold arm at 45 degrees.

� Mass off by 10%:

� steady-state error

Fully actuated systems: is our feedforward control 
solution sufficient in practice?

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

θ
mg

u

l

Task: swing arm up to 180 degrees and hold there

� Perturbation after 1sec:

� Does **not** recover

[θ = 180 is an “unstable” 

equilibrium point]

� Feedback can provide

� Robustness to model errors

� However, still:

� Overshoot issues --- ignoring momentum/velocity!

� Steady-state error --- simply crank up the gain?

Proportional control

u(t) = ufeedforward(t)

Task: hold arm at  45 degrees

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Proportional control

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Task: swing arm up to 180
degrees and hold there

u(t) = ufeedforward(t)

Current status

� Feedback can provide

� Robustness to model errors

� Stabilization around states which are unstable in open-loop

� Overshoot issues --- ignoring momentum/velocity!

� Steady-state error --- simply crank up the gain?

PD control

u(t) = Kp(qdesired(t)− q(t)) +Kd(q̇desired − q̇(t))
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Eliminate steady state error by cranking up Kp ?

u(t) = ufeedforward(t) +Kp(qdesired(t)− q(t))

Task: hold arm at  45 degrees
Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = u(t)

In steady-state, q̈ = q̇ = 0 and we get:

mgl sin θ = ufeedforward +Kp(θ
∗
− θ)

Using some trigoniometry and assuming θ is close to θ∗ we get:

θ − θ∗ =
ufeedforward −mgl sin θ∗

Kp +mgl cos θ∗

Eliminate steady state error by cranking up Kp ?

u(t+ δt) = Kp(qdesired(t)− q(t))

PID

u(t) = Kp(qdesired(t)− q(t))+Kd(q̇desired− q̇(t))+Ki

∫ t
0
(qdesired(τ)− q(τ ))dτ

� Zero error in steady-state:  [assumes steady-state is achieved!]

q̈ = q̇ = 0, u̇ = 0, hence, taking derivatives of above:

u̇ = Kp(q̇desired − q̇(t)) +Kd(q̈desired − q̈(t)) +Ki(qdesired(t) − q(t))

0 = Kk(qdesired(t)− q(t))

� Given a fully actuated system and a (smooth) target trajectory

� Can solve dynamics equations for required control inputs = 

“feedforward controls”

� Feedforward control is insufficient in presence of

� Model inaccuracy

� Perturbations + instability

� Proportional feedback control can alleviate some of the above issues.  

� Steady state error reduced by (roughly) factor Kp, but large Kp can be 

problematic in presence of delay  � Add integral term

� Ignores momentum � Add derivative term

� Remaining questions:

� How to choose PID constants?  Aka “tuning”

� Any guarantees?

Recap so far

� Typically done by hand (3 numbers to play with) [policy 
search should be able to automate this in many settings]

� Ziegler-Nichols method (1940s) provides recipe for 
starting point

� Frequency response method

� Step response method

� Recipe results from

� (a) Extensively hand-tuning controllers for many settings

� (b) Fitting a function that maps from easy to measure 
parameters to the three gains

[See also Astrom and Murray Section 10.3]

PID tuning

� Set derivative and integral gain to zero

� Drive up the proportional gain until steady oscillation 
occurs, record the corresponding gain kc and period Tc

� Use the following table to set the three gains:

PID tuning: Ziegler-Nichols frequency domain method

Notation: KI =
kp
Ti
, KD = kpTd
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PID tuning: Ziegler-Nichols step response method

1. Record open-loop step-
response characteristics

2. Read gains out from 
above table

� Kc = 100; 

� Tc = 0.63s;

Frequency domain Ziegler-Nichols for single link

θ
mg

u

l

ZN and TLC results

Tyreus-Luyben tuning chart:
Kp = kc/2.2, Ti = 2.2Tc, Td = Tc/6.3
Tends to:
increase robustness,
decrease oscillation.

� Recipe: Stop integrating error when the controls 
saturate

� Reason: Otherwise it will take a long time to react in the 
opposite direction in the future.

� Matters in practice!

[See also Astrom and Murray, Section 10.4]

Aside: Integrator wind-up

� To control a fully actuated system:

� Compute feedforward by solving for u(t)

� However, feedforward is insufficient when:
� Model is imperfect (i.e., always when dealing with real systems)

� System is unstable

� Feedback can address these issues
� Standard feedback: PID

� In practice, often even only feedback (i.e., without feedforward) can 
already provide ok results � in these settings, no model needed, which 

can be very convenient

� In this lecture no solution provided for underactuated systems

� Note: many underactuated systems do use PID type controllers in their core (e.g., 

helicopter governor, gyro)

Recap of main points

?


