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“MODULARITY, POLYRHYTHMS, AND WHAT ROBOTICS AND CONTROL MAY YET 
LEARN FROM THE BRAIN”

Jean-Jacques Slotine, Nonlinear Systems Laboratory, MIT

Thursday, Nov 5th, 4:00 p.m.,  3110 Etcheverry Hall

ABSTRACT

Although neurons as computational elements are 7 orders of magnitude slower than their artificial 
counterparts, the primate brain grossly outperforms robotic algorithms in all but the most 
structured tasks. Parallelism alone is a poor explanation, and much recent functional modelling of 
the central nervous system focuses on its modular, heavily feedback-based computational 
architecture, the result of accumulation of subsystems throughout evolution. We discuss this 

architecture from a global functionality point of view, and show why evolution is likely to favor 
certain types of aggregate stability. We then study synchronization as a model of computations at 
different scales in the brain, such as pattern matching, restoration, priming, temporal binding of 
sensory data, and mirror neuron response. We derive a simple condition for a general dynamical 
system to globally converge to a regime where diverse groups of fully synchronized elements 
coexist, and show accordingly how patterns can be transiently selected and controlled by a very 

small number of inputs or connections. We also quantify how synchronization mechanisms can 
protect general nonlinear systems from noise. Applications to some classical questions in 
robotics, control, and systems neuroscience are discussed.

The development makes extensive use of nonlinear contraction theory, a comparatively
recent analysis tool whose main features will be briefly reviewed.
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Actor-Critic/Policy gradient for learning to walk in 20 minutes

Natural gradient
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� Dynamic gait:

� A bipedal walking gait is considered dynamic if the 
ground projection of the center of mass leaves the 
convex hull of the ground contact points during some 
portion of the walking cycle. 

� Why hard?

� Achieving stable dynamic walking on a bipedal robot 
is a difficult control problem because bipeds can only 
control the trajectory of their center of mass through 
the unilateral, intermittent, uncertain force contacts 
with the ground.

� �� “fully actuated walking”

Case study: learning bipedal walking Passive dynamic walkers

� The energy lost due to friction and collisions when the 
swing leg returns to the ground are balanced by the 
gradual conversion of potential energy into kinetic 
energy as the walker moves down the slope.

� Can we actuate them to have them walk on flat terrains? 

� John E. Wilson. Walking toy. Technical report, United States Patent Office, October 15 1936.

� Tad McGeer. Passive dynamic walking. International Journal of Robotics Research, 9(2):62.82, 

April 1990.

Passive dynamic walkers
Learning to walk in 20 minutes --- Tedrake, 
Zhang, Seung 2005
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Learning to walk in 20 minutes --- Tedrake, 
Zhang, Seung 2005

passive hip joint [1DOF]

2 x 2 (roll, pitch) 
position controlled 

servo motors [4 DOF]

44 cm

Natural gait down 0.03 radians ramp:
0.8Hz, 6.5cm steps

Arms: coupled to the 
opposite leg to reduce 

yaw  moment

freely swinging load [1DOF]

9DOFs:
* 6 internal DOFs

* 3 DOFs for the robot’s orientation 
(always assumed in contact with 

ground at a single point, absolute 
(x,y) ignored)

� q: vector of joint angles

� u: control vector (4D)

� d(t): time-varying vector of random disturbances

� Discrete footstep-to-footstep dynamics: consider state at 
touchdown of robot’s left leg

� Stochasticity due to

� Sensor noise

� Disturbances d(t)

Dynamics

q̈ = f (q, q̇, u, d(t))

Fπ(x
′, x) = P (x̂n+1 = x

′|x̂n = x; π)

� Goal: stabilize the limit cycle trajectory that the passive robot follows when walking 
down the ramp, making it invariant to slope.

� Reward function: 

� x* is taken from the gait of the walker down a slope of 0.03 radians

� Action space:

� At the beginning of each step cycle (=when a foot touches down) we choose an 
action in the discrete time RL formulation

� Our action choice is a feedback control policy to be deployed during the step, in 
this particular example it is a column vector  w

� Choosing this action means that throughout the following step cycle, the following 

continous-time feedback controls will be exerted:

� Goal: find the (constant) action choice w which maximizes expected sum of rewards

Reinforcement learning formulation

R(x(n)) = −
1

2
‖x(n)− x∗‖22

u(t) =
∑

i

wiφi(x̂(t)) = w
⊤φ(x̂(t))

� To apply the likelihood gradient ratio method, we need to 
define a stochastic policy class.  A natural choice is to 
choose our action vector w to be sampled from a Gaussian:

Which gives us:

[Note: it does not depend on x, this is the case b/c the 
actions we consider are feedback policies themselves!]

� The policy optimization becomes optimizing the mean of 
this Gaussian.  [In other papers people have also included 
the optimization of the variance parameter.]

Policy class

w ∼ N (θ, σ2I)

πθ(w|x) =
1

(2π)dσd
exp

(
−1

2σ2
(w − θ)⊤(w − θ)

)

Policy update

Likelihood ratio based gradient estimate from a single trace of H footsteps:

ĝ =

H−1∑

n=0

∇θ log πθ(w(n)|x̂(n))

(
H−1∑

k=n

R(x̂(k))− b

)

Rather than waiting till horizon H is reached, we can perform the updates
online as follows: (here ηθ is a step-size parameter, b(n) is the amount of baseline
we allocate to time n–see next slide)

e(n) = e(n− 1) +
1

2σ2
(w(n)− θ(n))

θ(n+ 1) = θ(n) + ηθe(n)(R(x̂(n))− b(n))

We have:

∇θ log πθ(w|x̂) =
1

2σ2
(w − θ)

To reduce variance, can discount the eligibilities:

e(n) = γe(n − 1) +
1

2σ2
(w(n)− θ(n))

Choosing the baseline b(n)

A good choice for the baseline is such that it corresponds to an estimate of
the expected reward we should have obtained under the current policy.

Assuming we have estimates of the value function V̂ under the current policy,
we can estimate such a baseline as follows:

b(n) = V̂ (x̂(n))− γV̂ (x̂(n+ 1))

To estimate V̂ we can use TD(0) with function approximation. Using linear
value function approximation, we have:

V̂ (x̂) =
∑

i

viψi(x̂).

This gives us the following update equations to learn V̂ with TD(0):

δ(n) = R(x̂(n)) + γV̂ (x̂(n+ 1))− V̂ (x̂(n))

v(n + 1) = v(n) + ηvδ(n)ψ(x̂(n))
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The complete actor critic learning algorithm

Before each foot step, sample the feedback control policy parameters w(n)
from N (θ(n), σ2I).

During the foot step, execute the following controls in continuous time:
u(t) = w(n)⊤φ(x̂(t)).

After the foot step is completed, compute the reward function R(x̂(n)) and
perform the following updates:

Policy updates:

e(n) = γe(n− 1) +
1

2σ2
(w − θ(n))

θ(n+ 1) = θ(n) + ηθe(n)(R(x̂(n))− b(n))

b(n) = V̂ (x̂(n))− γV̂ (x̂(n+ 1))

TD(0) updates:

δ(n) = R(x̂(n)) + γV̂ (x̂(n+ 1))− V̂ (x̂(n))

v(n+ 1) = v(n) + ηvδ(n)ψ(x̂(n))

� Decompose the control problem in the frontal and 
sagittal planes

� Due to simplicity of sagittal plane control---hand set.

� Left with control of the ankle roll actuators to control in 
the frontal plane

� Let roll control input only depend on θroll and dθroll/dt

� Basis functions: non-overlapping tile encoding
� Policy: 35 tiles (5 in θroll x 7 in dθroll/dt )

� Value: 11 tiles (a function in dθroll/dt only because the value 

is evaluated at the discrete time when θroll hits a particular 

value)

Manual dimensionality reduction

� When the learning begins, the policy parameters, w, are 
set to 0 and the baseline parameters, v, are initialized 
so that \hat{V}(x) ≈ R(x) / (1-γ)

� Train the robot on flat terrain.

� Reset with simple hand-designed controller that gets it 
into a random initial state every 10s.

� Results:

� After 1 minute: foot clearance on every step

� After 20 minutes: converged to a robust gait (=960 
steps at 0.8Hz)

Experimental setup and results Return maps

before learning after learning

[Note: this is a projection from 2x9-1 dim to 1dim]

Toddler movie

� On tread-mill: passive walking.  On ground: learning.


