
Page 1

CS 287: Advanced Robotics

Fall 2009

Lecture 13: Reinforcement Learning

Pieter Abbeel

UC Berkeley EECS

� Model-free approaches

� Recap TD(0)

� Sarsa

� Q learning

� TD(λ), sarsa(λ), Q(λ)

� Function approximation and TD

� TD Gammon

Outline

Page 2

TD(0) for estimating Vπ

Note: this is really Vπ

Stochastic version of the policy evaluation update:

Problems with TD Value Learning

� TD value leaning is model-free for policy evaluation

� However, if we want to turn our value estimates into a

policy---as required for a policy update step---we’re sunk:

� Idea: learn Q-values directly

� Makes action selection model-free too!

Page 3

� When experiencing st, at, st+1, rt+1, at+1 perform the following “sarsa”

update:

� Will find the Q values for the current policy π.

� How about Q(s,a) for action a inconsistent with the policy π at state s?

� Converges (w.p. 1) to Q function for current policy π for all states and

actions *if* all states and actions are visited infinitely often (assuming

proper step-sizing)

Update Q values directly

Qπ(st, at) ← (1− α)Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)]

= Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)−Qπ(st, at)]

� To ensure convergence for all Q(s,a) we need to visit

every (s,a) infinitely often

� The policy π needs to include some randomness

� Simplest: random actions (ε greedy)
� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to some current policy

� � This results in a new policy π’

� We end up finding the Q values for this new policy π’

Exploration aspect

Page 4

� Policy iteration iterates:

� Evaluate value of current policy Vπ

� Improve policy by choosing the greedy policy w.r.t. Vπ

� Answer: Using the epsilon greedy policies can be

interpreted as running policy iteration w.r.t. a related

MDP which differs slighty in its transition model: with
probability ǫ the transition is according to a random

action in the new MDP

Does policy iteration still work when we
execute epsilon greedy policies?

� Recall: Generalized policy iteration methods: interleave

policy improvement and policy evaluation and

guaranteed to converge to the optimal policy as long as

value for every state updated infinitely often

� � Sarsa: continuously update the policy by choosing
actions ǫ greedy w.r.t. the current Q function

Need not wait till convergence with the
policy improvement step

Page 5

Sarsa: updates Q values directly

Sarsa converges w.p. 1 to an optimal policy and action-

value function as long as all state-action pairs are visited an

infinite number of times and the policy converges in the limit

to the greedy policy (which can be arranged, e.g., by having
ǫ greedy policies with ǫ = 1 / t).

� Directly approximate the optimal Q function Q*:

� Compare to sarsa:

Q learning

Qπ(st, at) ← (1− α)Qπ(st, at) + α [r(st, at, st+1) + γQπ(st+1, at+1)]

Q(st, at) ← (1− α)Q(st, at) + α
[
r(st, at, st+1) + max

a
γQπ(st+1, a)

]

Page 6

Q learning

Q-Learning Properties

� Will converge to optimal Q function if

� Every (s,a) visited infinitely often

� α is chosen to decay according to standard stochastic

approximation requirements

� Neat property: learns optimal Q-values regardless of

policy used to collect the experience

� “Off policy” method

� Strictly better than TD, sarsa? Some caveats.

Page 7

� Reward = 0 at goal; -100 in cliff region; -1 everywhere else

� ǫ = 0.1

Behaviour of Q-learning vs. sarsa

Exploration / Exploitation

� Several schemes for forcing exploration

� Simplest: random actions (ε greedy)
� Every time step, flip a coin

� With probability ε, act randomly

� With probability 1-ε, act according to current policy

� Problems with random actions?
� You do explore the space, but keep thrashing around once

learning is done

� Takes a long time to explore certain spaces

� One solution: lower ε over time

� Another solution: exploration functions

Page 8

Exploration Functions

� When to explore

� Random actions: explore a fixed amount

� Better idea: explore areas whose badness is not (yet)

established

� Exploration function

� Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important---for

optimality guarantees: it should guarantee that every (s,a) is

visited infinitely often _or_ that Q(s,a) is always optimistic)

TD(λ) --- motivation (grid world)

Page 9

TD(λ) --- motivation

� t:

� t+1:

+also perform:

� t+2:

+also:

TD(λ) “backward view”

V (st)← V (st) + αγλδt+1

V (st)← V (st) + α[R(st) + γV (st+1)− V (st)]

V (st+1)← V (st+1) + α[R(st+1) + γV (st+2)− V (st+1)]

V (st+2)← V (st+2) + α[R(st+2) + γV (st+3)− V (st+2)]

V (st+1)← V (st+1) + αγλδt+2

V (st)← V (st) + αγ2λ2δt+2

Page 10

V (st)← V (st) + α [R(st) + γV (st+1) − V (st)]︸ ︷︷ ︸
δt

Similarly, the update at the next time step is

V (st+1)← V (st+1) + α (R(st+1) + γV (st+2)− V (st+1)︸ ︷︷ ︸
δt+1

Note that at the next time step we update V (st+1). This (crudely speaking)
results in having a better estimate of the value function for state st+1. TD(λ)
takes advantage of the availability of this better estimate to improve the update
we performed for V (st) in the previous step of the algorithm. Concretely, TD(λ)
performs another update on V (st) to account for our improved estimate of
V (st+1) as follows:

V (st)← V (st) + αγλδt+1

where λ is a fudge factor that determines how heavily we weight changes in
the value function for st+1.

Similarly, at time t + 2 we perform the following set of updates:

V (st+2)← V (st+2) + α [R(st+2) + γV (st+2)− V (st+3)]︸ ︷︷ ︸
δt+2

...

V (st+1)← V (st+1) + αγλδt+2

V (st) ← V (st) + α γ2λ2︸︷︷︸
e(st)

δt+2

The term e(st) is called the eligibility vector.

TD(λ) --- backward view wordy

TD(λ)

Page 11

TD(λ) --- example

A B Q RK
100 0 0 0 0 0

Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

� TD:

� Sample =

� λ ∈ [0,1]

� Forward view equivalent to backward view

TD(λ) --- “forward view”

V (st)← (1− α)V (st) + α sample

R(st) + γV (st+1)

R(st) + γR(st+1) + γ2V (st+2)

R(st) + γR(st+1) + γ2R(st+2) + γ3V (st+3)

. . .

R(st) + γR(st+1) + γ2R(st+2) + . . . + γTR(sT)

Page 12

Sarsa(λ)

Watkins Q(λ)

Page 13

� What if a state is visited at two different times t1 and t2 ?

� Recall TD(λ)

Replacing traces

Replacing traces: example 1

A B Q RK
100 0 0 0 0 0

Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

Page 14

Replacing traces: example 2

� When model is available:

� VI, PI, GPI, LP

� When model is not available:

� Model-based RL: collect data, estimate model, run one of the

above methods for estimated model

� Model-free RL: learn V, Q directly from experience:

� TD(λ), sarsa(λ), Q(λ)

� What about large MDPs for which we cannot represent

all states in memory or cannot collect experience from

all states?

� Function Approximation

Recap RL so far

