CS 287: Advanced Robotics
Fall 2009

Lecture 13: Reinforcement Learning

Pieter Abbeel
UC Berkeley EECS

Outline

|
= Model-free approaches

= Recap TD(0)

= Sarsa

Q learning

TD(), sarsa(\), Q(\)

Function approximation and TD

TD Gammon

Page 1

‘TD(O) for estimating V™

|
Stochastic version of the policy evaluation update:

VT(s) = T(s,7(s),8) [R(s,7(s),s) + 4V (s)]

Initialize V'(s) arbitrarily, = to the pclicy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by 7w for s
Take action a; observe reward, v, and next state, s’
V(s) «— Vi(s)+ar+V(s) - V(s
§— &

until & is terminal

Note: this is really V=

Problems with TD Value Learning

TD value leaning is model-free for policy evaluation

However, if we want to turn our value estimates into a
policy---as required for a policy update step---we’re sunk:

me1(s) = arg max Q™ (s, a)

Q™ (s,a) = ZT(S, a,s) [R(s, a,s) + ’yVﬂk(s/)}

Idea: learn Q-values directly

Makes action selection model-free too!

Page 2

Update Q values directly

When experiencing s;, a,, Si,+, f',1, a1 Perform the following “sarsa”
update:

Q" (st,ar) <+ (1—a)Q"(st,a0) + a[r(se, ar, $p41) +YQ™ (8¢41, Ar41)]

= Q" (st,a¢) + a[r(se, ar, Se41) + YR (St41, A1) — Q7 (¢, ar)]

Will find the Q values for the current policy .
How about Q(s,a) for action a inconsistent with the policy = at state s?

Converges (w.p. 1) to Q function for current policy = for all states and
actions *if* all states and actions are visited infinitely often (assuming
proper step-sizing)

Exploration aspect

= To ensure convergence for all Q(s,a) we need to visit
every (s,a) infinitely often

- The policy 7 needs to include some randomness

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to some current policy

= > This results in a new policy =’
« We end up finding the Q values for this new policy =’

Page 3

Does policy iteration still work when we
execute epsilon greedy policies?

= Policy iteration iterates:
= Evaluate value of current policy V~
= Improve policy by choosing the greedy policy w.r.t. V~

= Answer: Using the epsilon greedy policies can be
interpreted as running policy iteration w.r.t. a related
MDP which differs slighty in its transition model: with
probability e the transition is according to a random
action in the new MDP

Need not wait till convergence with the
policy improvement step
|

= Recall: Generalized policy iteration methods: interleave
policy improvement and policy evaluation and
guaranteed to converge to the optimal policy as long as
value for every state updated infinitely often

= —> Sarsa: continuously update the policy by choosing
actions e greedy w.r.t. the current Q function

Page 4

Sarsa: updates Q values directly

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g.. e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s
Choose a' from s' using policy derived from Q (e.g., e-greedy)

Q(s,a) — Q(s,a) + n[r +Q(s',a") — Q{s,a}]

r
s— s a—d,;

until s is terminal

Sarsa converges w.p. 1 to an optimal policy and action-
value function as long as all state-action pairs are visited an
infinite number of times and the policy converges in the limit

to the greedy policy (which can be arranged, e.g., by having
e greedy policies with e = 1 /1).

‘Q learning

|
= Directly approximate the optimal Q function Q*:

Q(st,ar) +— (1—a)Q(st,a1) + {T(Shat? St+1) + mgXVQF(StH,a)}
= Compare to sarsa:

Q"(styar) (L= a)Q7(st,ar) + a[r(se, at, se41) + YQ" (St41, Gt41)]

Page 5

‘Q learning

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., e-greedy)
Take action a, observe r, '

Q(s.a) «— Q(s,a) + a|r + vy maxy Q(s',a’) — Q(s, a)]

5+ §';

until s is terminal

‘ Q-Learning Properties

|
= Will converge to optimal Q function if

= Every (s,a) visited infinitely often

= «is chosen to decay according to standard stochastic
approximation requirements

= Neat property: learns optimal Q-values regardless of
policy used to collect the experience

> “Off policy” method

= Strictly better than TD, sarsa? Some caveats.

Page 6

Behaviour of Q-learning vs. sarsa

|
= Reward = 0 at goal; -100 in cliff region; -1 everywhere else

] €=0.1

r=-1 sale path

optimal path

T

=100 T T T 1
o 1o 200 200 400 s00

Episodes

Exploration / Exploitation

= Several schemes for forcing exploration

= Simplest: random actions (e greedy)
« Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing around once
learning is done

= Takes a long time to explore certain spaces
= One solution: lower € over time
= Another solution: exploration functions

Page 7

Exploration Functions

|
= When to explore

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) =u+k/n (exact form not important---for
optimality guarantees: it should guarantee that every (s,a) is
visited infinitely often _or_ that Q(s,a) is always optimistic)

Qit1(5,0) —a R(s,a,8) +ymaxQy(s.a)

Qi+1(87 CL) —a R(S a, S/) + Y maa/x f(Qi(S/a CL/), N(S/7 a/))

TD()) --- motivation (grid world)

Page 8

‘ TD()) --- motivation

|
|
[
|
t

‘ TD()) “backward view”

m i V(st) < V(st) + a[R(st) + YV (st41) — V(s¢)]

w t+1: V(st41) ¢ V(st41) + a[R(st+1) + 7V (st42) — V(st41)]

+also perform: V(s;) «+ V(si) + ayAei1

. 142 V(sty2) < V(str2) + o[R(st42) + 9V (st43) = V(seq2)]

+also: V(st+1) < V(st41) + ayAdpio
V(St) «— V(st) + a72A25t+2

Page 9

‘ TD()\) --- backward view wordy

V(se) = V(se) + a[R(s4) + 7V (se41) = V(se)]
o

Similarly, the update at the next time step is

V(st41) < V(str1) + o (R(st1) + 7V (5142) = Vise)

1

Note that at the next time step we update V(s;41). This (crudely speaking)
results in having a better estimate of the value function for state s;+1. TD(\)
takes advantage of the availability of this better estimate to improve the update
we performed for V(s;) in the previous step of the algorithm. Concretely, TD(\)
performs another update on V(s;) to account for our improved estimate of
V (st41) as follows:

V(st) < V(st) + ayAde1
where) is a fudge factor that determines how heavily we weight changes in

the value function for s;;1.
Similarly, at time ¢ + 2 we perform the following set of updates:

V(stt2) ¢ V(ser2) + a [R(sp42) + 7V (st42) = V(seia)] ...

Sive
V(st41) ¢ V(st41) + ayAdpy2
V(st) + V(st)+ ay? N2 0iy0
N
e(st)

The term e(s;) is called the eligibility vector.

‘ TD()\)

Initialize V'(s) arbitrarily and e(s) =0, for all s €S
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a « action given by 7 for s
Take action a, observe reward, r, and next state, s’
& —r+~V(s)—V(s)
e(s)«—e(s)+1
For all s:
V(s) «— V(s) + ade(s)
es) — 7y Ae(s)

& .‘:‘f

until s is terminal

Page 10

TD()\) --- example

|
Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

- Online TD(X)

on Random Walk

TN Aanaam

N
54 g

‘TD()\) --- “forward view”

s TD: V(st) « (1 —)V(st) + @ sample
= Sample = R(st) + 7V (st+1)
R(s¢) + yR(s141) + 72V (s142)

R(s¢) +yR(st41) + 72 R(st42) +7°V (s143)

R(s¢) + YR(se41) + 7V R(se42) + ... + 7T R(st)

B A€ [0,1]

= Forward view equivalent to backward view

Page 11

Sarsa(\)

Initialize (s, @) arbitrarily and e(s, a) = 0, for all s, e
Repeat (for each episode).
Initialize s, a
Repeat (for each step of episode):
Take action a, observe r, s
Chocse ' [rom 5" using policy derived from @ (e.g., e-greedy)
8+ yQ(s' a') — Q(s,0)
e(s,a) «— e(s,a)+1
For all s a:
Q(s,a) — Q(s,a; + ade(s, a)
e(s,a) «— yXe(s,a)

s—sia—ad

until ¢ is terminal

Watkins Q()\)

Initialize @)(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

Take action a, observe r, s’

Choose a' from s’ using policy derived from @ (e.g., e-greedy)
a® — argmax;, Q(s',b) (if @' ties for the max, then a* — a)
§ —r+7Q(s"a”) — Q(s,a)
e(s,a) —e(s,a) +1
For all s, a:

Q(s,a) — Q(s,a) + ade(s,a)

If o’ = a*, then e(s,a) «— yAe(s,a)

else e(s,a) «— 0

se—s§:a—ad

until s is terminal

Page 12

Replacing traces

|
= Whatif a state is visited at two different times t; and t, ?

Initialize V(s) arbitrarily and e(s) =0, for all s € §

| Reca" TD()\) Repeat (for each episode):

Initialize s

Repeat (for each step of episode):
a «— action given by m for s
Take action a, observe reward, 7, and next state, s”
§—r+AV(s)=V(s)
e(s) «—e(s)+1
For all s:
V(s) « V(s) + ade(s)
els) — yAe(s)

5 — s

until s is terminal

Replacing traces: example 1

|
Random walk over 19 states. Left and rightmost states are
sinks. Rewards always zero, except when entering right sink.

0.5

@
04 °
lating !
RMS error A fanes B
atbest o H
03 °f'
Ap
0.2 replacing
traces

T T T T T T
o 02 0.4 06 08]

Page 13

Replacing traces: example 2

00000,

) ‘) Y}) ranY i 0
NS yignt | S rignt | WSright | WA right | NAright

Recap RL so far

I
= When model is available:

= VI, Pl, GPI, LP

s When model is not available:

= Model-based RL: collect data, estimate model, run one of the
above methods for estimated model

= Model-free RL: learn V, Q directly from experience:
= TD()), sarsa()), Q())

= What about large MDPs for which we cannot represent
all states in memory or cannot collect experience from
all states?

- Function Approximation

Page 14

