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Solving an MDP with linear programming

Outline

= LP approach for finding the optimal value function of
MDPs

= Model-free approaches

Solving an MDP with linear programming

Solving an MDP with linear programming

The dual LP
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The dual LP: interpretation

max T(s,a,s')A(s,a)R(s,a,s)

A>0
s,a,8"

s.t. Vs Z A(s,a) = c(s) + Z A(s',a)T(s',a,s)

= Meaning A(s,a) ?

= Meaning c(s) ?

LP approach recap

The

o V(s) 2 max 3
Equivalently, (= > max, , is o

Vs, Va: V(s) = 3T 5,a,8) + V(). (1)

vev

fon o (1), it suffices to add an objective function

a,8) [R(s,0,8) + V(] (2)

her interesting LP:

Announcements

T
= PS 1: posted on class website, due Monday October 26.

= Final project abstracts due tomorrow.

= Value iteration:
= Start with V(s) = 0 for all s. lterate until convergence:

Vit1(s) <= maxa g T(s,a,8") [R(s,a,5) + 7 V()]
= Policy iteration:
= Policy evaluation: Iterate until values converge
VI (8) = Xy Ts,mi(s), 8) [R(s,mi(s), 8) + 7 V()]
= Policy improvement:
mp+1(s) = argmax, g T(s,a, ") [R(s,a,s") +~yV™(s")]

= Generalized policy iteration:
= Any interleaving of policy evaluation and policy improvement
= Note: for particular choice of interleaving - value iteration

= Linear programming:
mine'V st Vs,a: V(s)> Z'I'(s, a,s') (R(s,a, s+ 'yV(s’))

What if T and R unknown

= Model-based reinforcement learning
= Estimate model from experience
= Solve the MDP as if the model were correct

= Model-free reinforcement learning

= Adaptations of the exact algorithms which only require (s, a, r, s)
traces [some of them use (s, a, 1, s, @)]

= No model is built in the process

Sample Avg to Replace Expectation?

Vi1(8) = 3 T(s,m(s), s R(s,m(s),s") + Vi (s)]

= Who needs T and R? Approximate the
expectation with samples (drawn from T!)

sample; = R(s,a, ) + V7 (s})
samples = R(s,a, ) + V{7 (sh)

sampley, = R(s,a,s}) + V" (s})

Problem: We need
to estimate these
too!
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Sample Avg to Replace Expectation?

= We could estimate V~(s) for all states simultaneously:

Sample of V(s): sample = R(s,7(s),s') +~V7(s")
Update to V(s): V" (s) — (1 — a)V™(s) + (a)sample

Same update: V7 (s) — V7 (s) + a(sample — V7 (s))

= Old updates will use very poor estimates of V7(s’)

= This will surely affect our estimates of V7(s) initially,
but will this also affect our final estimate?

‘TD(O) for estimating V=

nntil s is rerminal

Note: this is really V»

Sample Avg to Replace Expectation?

l Big idea: why bother learning T?
= Update V(s) each time we experience (s,a,s’)
= Likely s’ will contribute updates more often

= Temporal difference learning ( TD or TD(0) )
= Policy still fixed!

= Move values toward value of whatever
successor occurs: running average!

Sample of V(s): sample = R(s,7(s),s') +~V7(s)
Update to V(s): V" (s) — (1 — a)V™(s) + (a)sample

Same update: V7(s) < V" (s) + a(sample — V" (s))

Convergence guarantees for TD(0)

T
= Convergence with probability 1 for the states which are
visited infinitely often if the step-size parameter
decreases according to the “usual” stochastic
approximation conditions

oo
E ap = 00
k=0
oo

Y ai<oo
k=0

= Examples:
= 1k
= C/(C+k)

Exponential Moving Average

T
= Weighted averages emphasize certain samples

n
s Wi T
e —
Do Wi
= Exponential moving average
= Makes recent samples more important
ot (l—a) z,  +(1—a)? 2, o+...
T+(1—a)+(0-a)2+...
= Forgets about the past (which contains mistakes in TD)

n —

= Easy to compute from the running average

Tn=(01—-0) Zn1+a 2,

= Decreasing learning rate can give converging averages

Experience replay

T
= |f limited number of trials available: could repeatedly go
through the data and perform the TD updates again

= Under this procedure, the values will converge to the
values under the empirical transition and reward model.
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