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CS 287: Advanced Robotics

Fall 2009

Lecture 11: Reinforcement Learning

Pieter Abbeel

UC Berkeley EECS

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Reinforcement Learning

� Model: Markov decision process (S, A, T, R, γ)

� Goal: Find π that maximizes expected sum of rewards

� T and R might be unknown

MDP (S, A, T, γ, R),     goal:  maxπ E [ ∑t γ t R(st, at) | π ]

� Cleaning robot

� Walking robot

� Pole balancing

� Games: tetris, backgammon

� Server management

� Shortest path problems

� Model for animals, people

Examples

Canonical Example: Grid World

� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not 
always go as planned:

� 80% of the time, the action 

North takes the agent North 
(if there is no wall there)

� 10% of the time, North takes 

the agent West; 10% East

� If there is a wall in the direction 

the agent would have been 
taken, the agent stays put

� Big rewards come at the end

Solving MDPs

� In deterministic single-agent search problem, want an 
optimal plan, or sequence of actions, from start to a goal

� In an MDP, we want an optimal policy π*: S → A

� A policy π gives an action for each state

� An optimal policy maximizes expected utility if followed

� Defines a reflex agent

Example Optimal Policies

R(s) = -2.0R(s) = -0.1

R(s) = -0.04R(s) = -0.02
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� Recap and extend exact methods

� Value iteration

� Policy iteration

� Generalized policy iteration

� Linear programming [later]

� Additional challenges we will address by building on top 
of the above:

� Unknown transition model and reward function

� Very large state spaces

Outline current and next few lectures

Value Iteration

� Algorithm:

� Start with V0(s) = 0 for all s.

� Given Vi, calculate the values for all states for depth i+1:

� This is called a value update or Bellman update/back-up

� Repeat until convergence

Example: Bellman Updates

Example: Value Iteration

� Information propagates outward from terminal 
states and eventually all states have correct 
value estimates

V2 V3

Convergence

Infinity norm: ‖V ‖∞ = maxs |V (s)|

Fact. Value iteration converges to the optimal value function V ∗ which satisfies
the Bellman equation:

∀s ∈ S : V ∗(s) = max
a

∑

s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

Or in operator notation: V ∗ = TV ∗ where T denotes the Bellman operator.

Fact. If an estimate V satisfies ‖V − TV ‖∞ ≤ ǫ then we have that

‖V − V ∗‖∞ ≤
ǫ

1− γ

Practice: Computing Actions

� Which action should we chose from state s:

� Given optimal values V*?

� = greedy action with respect to V*

� = action choice with one step lookahead w.r.t. V*
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Policy Iteration

� Alternative approach:

� Step 1: Policy evaluation: calculate value function for 
a fixed policy (not optimal!) until convergence

� Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not 
optimal!) value function

� Repeat steps until policy converges

� This is policy iteration

� It’s still optimal!

� Can converge faster under some conditions
13

Policy Iteration

� Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates:

� Iterate until values converge

� Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead
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Comparison

� Value iteration:

� Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy)

� Policy iteration:

� Several passes to update utilities with frozen policy

� Occasional passes to update policies

� Generalized policy iteration:

� General idea of two interacting processes revolving around an 
approximate policy and an approximate value

� Asynchronous versions:

� Any sequences of partial updates to either policy entries or 
utilities will converge if every state is visited infinitely often
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