
Reducing Synchronization Overhead Using Hardware
Transactional Memory

Vamsi Chitters
vchitters@berkeley.edu

Adam Midvidy
amidvidy@berkeley.edu

Jeff Tsui
tsui.jeff@berkeley.edu

ABSTRACT
Transactional Memory (TM) is a high-level ab-
straction for synchronizing access to shared data
that allows programmers to easily group shared
data accesses into atomic blocks. Intel’s latest
processor generation, Haswell, provides support
for the Transactional Synchronization Extensions
(TSX), an extension to the x86 instruction set
that provides TM functionality. We modify Lev-
elDB, a write optimized persistent key-value store,
to use TSX for synchronization. A comparison
of the TSX-augmented LevelDB with the origi-
nal LevelDB is performed to assess the perfor-
mance tradeoffs of TSX under various workloads.
Our modified LevelDB exhibits increased perfor-
mance on write-intensive simulated workloads, as
well as 25% improvement in write throughput on
the standard LevelDB benchmark suite.

Keywords
LevelDB, Transactional Memory, Intel, Haswell,
TSX

1. INTRODUCTION
As physical limitations have curtailed the growth
of processor clock speeds, CPU designers have turned
to increasing the number of processor cores on
a single CPU to improve performance. Conse-
quently, application developers must exploit con-
currency in their programs to fully utilize the un-
derlying hardware. Unfortunately, traditional lock-
based approaches to coordinating access to shared
data lead to an unappealing tradeoff between per-
formance and complexity: coarse-grained locking
results in increased synchronization overhead, while
fine-grained locking imposes a significant mental
burden on the programmer, resulting in race con-
ditions, deadlock and starvation.

Taking a page from the database research com-
munity, systems researchers have proposed Trans-
actional Memory (TM) as a higher-level abstrac-

This paper is a research project on Hardware Transaction Memory for
CS262A. December 2013, Berkeley, California.

tion for synchronizing access to shared data. With
TM, programmers group related updates to shared
data into atomic blocks that are executed as an
atomic unit, in isolation from other processes or
threads that may concurrently access the shared
state. Programmers no longer have to keep track
of locks and the complexities associated with them
(deadlock, starvation, and priority inversion etc.)
nor do they have to worry about the overhead of
lock handling.

def t r an s f e rCoa r s e (from acct , to acc t ,
amt) :
globalAccountLock . l o ck () ;
f rom acct −= amount ;
t o a c c t += amount ;
globalAccountLock . unlock () ;

Listing 1: Coarse grained synchronization

def t r an s f e rF i n e (from acct , to acc t ,
amt) :
i f f rom acct . id < to account . id {

f rom acct . l o ck ()
t o a c c t . l o ck ()

} else {
t o a c c t . l o ck ()
f rom acct . l o ck ()

}
f rom acct −= amount ;
t o a c c t += amount ;
f rom acct . unlock ()
t o a c c t . unlock ()

Listing 2: Fine grained synchronization

def transferTM (from acct , to acc t ,
amt) :
atomic {

f rom acct −= amount ;
t o a c c t += amount ;

}

Listing 3: Synchronization with TM

To further compare transactional memory to tra-
ditional database transactions, atomic blocks al-
low programmers to enforce atomicity, consistency,
and isolation in the synchronized region of code.
A transactional block either commits successfully
or aborts and restores pre-transactional state, the
very definition of atomicity. If the transactional
blocks are grouped correctly with regards to the
semantics of the application, all executions will
result in a consistent state. Furthermore, concur-
rent transactions are isolated from each other as
uncommitted results are stored in a thread local
L1$.

Transactional memory can be implemented at the
hardware (HTM) or software (STM) level. STM
optimistically updates shared data while keeping
track of a log of all modifications of shared state.
Transactions are later validated by inspecting the
log and verifying that there are no concurrent ac-
cesses to shared data before committing. STM
suffers from significant performance in maintain-
ing the log and verifying transactions when com-
pared to fine grained locking. On the other hand,
HTM leverages the underlying CPU’s cache and
bus protocol to support transactions. HTM has
previously been implemented in experimental ar-
chitectures, such as the Sun Rock processor [8],
specialized mainframe processors such as the IBM
Blue Gene/Q [13] and a specialized Java accelera-
tion appliance by Azul Systems [4]. However, In-
tel’s recent Haswell architecture includes the first
HTM implementation widely available on a com-
modity architecture. As HTM heads towards be-
ing widely available on commodity servers, multi-
threaded applications must exploit the advantages
of HTM to make full use of the underlying hard-
ware.

2. BACKGROUND
2.1 Lock Elision
Intel’s latest processor architecture, Haswell, sup-
ports an extension to the x86 instruction set called
the Transactional Synchronization Extensions
(TSX). TSX implements best effort hardware trans-
actions, that is, transactions are not guaranteed
to commit and a non-transactional fallback path
must be specified to ensure forward progress. In
practice, real-world code employing TSX must main-
tain a separate lock-based code path, with hard-
ware transactions providing a potential performance
increase due to the ability to perform lock elision.
Lock elision is an approach to speed up existing
lock-based programs with TM by allowing threads
to speculate past critical section locks in an opti-
mistic manner, using the underlying transactional
runtime to detect data conflicts and retry aborted
transactions. As explained by by Roy, et. al [3]:

In general, lock elision can only improve scala-
bility when (a) there is little contention between
the work different threads do in a critical section
(e.g. speculation cannot speed up a critical sec-
tion incrementing a single shared counter), and

(b) there is contention for the lock protecting the
critical section.

2.2 TSX: Mechanical Sympathy
In the current implementation of TSX, when a
hardware thread begins transactional execution,
all writes to memory by that thread are buffered in
L1$. Note that this limits the size of data that can
be modified in a single transaction to the L1$ size
(32KB, 8-way set associative), which is further re-
duced if hyperthreading is enabled, as two threads
will then share a single L1$. Aborts that occur
due to insufficient buffer space are termed capac-
ity aborts. When a transaction commits, the pro-
cessor uses the cache-coherency protocol to check
for conflicting data access by other threads at the
granularity of a single cache line. If there are
no conflicts, a thread commits its writes to main
memory, at which point modifications made dur-
ing the transaction become visible to other threads.
Aborts that occur due to conflicting data modifi-
cations are termed conflict aborts. If the transac-
tion aborts due to conflict or capacity reasons, reg-
ister and memory state are restored to their con-
tents at the beginning of the transaction. In addi-
tion to capacity and conflict aborts, TSX transac-
tions can be aborted for additional reasons includ-
ing any event that causes a switch to the kernel
(page faults, interrupts, system calls, etc.) and
certain ’unfriendly instructions’ such as PAUSE
or instructions to set the direction of the branch
predictor.

Intel provides two interfaces to TSX: Hardware
Lock Elision (HLE) and Restricted Transactional
Memory (RTM). HLE instructions are backwards
compatible with older architectures and can be
used elide existing spinlocks in existing applica-
tions without modifying code, but HLE mandates
an inflexible abort path that defaults to acquiring
the lock after a single transactional abort. The
RTM instructions are not backwards compatible,
but they allow the programmer to specify an alter-
nate fallback path to be executed if a transaction
aborts. In this paper we elect to utilize the more
powerful RTM instructions as backwards compat-
ibility is not a concern and RTM’s increased flexi-
bility permits greater variety of optimization tech-
niques.

2.3 LevelDB
We aim to use the new HTM capabilities in Haswell
to improve the performance of LevelDB [18], a
write optimized, persistent key-value store. Google
developed LevelDB as an embedded key value store
based on the BigTable[9] SSTable structure, which
provides a persistent, ordered immutable map from
byte-string keys to values. LevelDB was released
as a ’clean’ implementation of the SSTable de-
sign, without dependencies on other proprietary
Google technologies. As a result of its high quality
codebase and permissive open-source BSD license,
LevelDB has been adopted as a building block for
many other open source projects. Prominent ex-

amples include distributed databases such as Hy-
perDex[12] and Riak[23], the IndexedDB API in
Google Chrome and the official Bitcoin client[6].

The on disk storage format of LevelDB is based
on the log-structured merge-tree (LSM tree) [20].
This provides indexed access to files with high
insert volume and can be used to increase write
throughput. The core idea behind this form of
memory management is to exploit the tradeoff be-
tween size per level and data access rate. As data
fills up the closest level to memory, a compaction
process takes place and moves the data to the next
level where there is more space, but increased cost
to access the data. As a result, read access is slow
when there are multiple levels to search for to find
the specified key.

Stock LevelDB uses coarse grained locking for all
write transactions. A write operation in LevelDB
consists of acquiring a mutex, writing the data to
memory buffer in a skip list data structure (similar
to a B-tree) and recoverable log, then releasing the
mutex. During the period where a thread holds
the mutex, no other write threads can access the
data. Once the data is in memory, a background
process arranges the data in a hierarchy of levels
based on access frequency. When the skip list is
filled, the data is moved to immutable memory,
and when immutable memory is filled it is com-
pacted to an ordered array of levels in the form of
.sst files.

Figure 1: LevelDB Write Path - Modified from
Basho Technology speaker deck [5]

We choose to modify LevelDB (as opposed to other
databases or applications) because of its high qual-
ity codebase and its usage of coarse grained lock-
ing. LevelDB keeps a global mutex that is ac-
quired during all operations to ensure that modi-
fications to in-memory data structures are atomic.
This concurrency scheme presents a good oppor-

tunity for lock elision as one expects that eliding
a shared mutex will lead to higher throughput if
concurrent threads operate on disjoint data.

3. INITIAL APPROACH: SYNTHETIC
BENCHMARK

To get an understanding of the performance char-
acteristics of TSX we wrote a preliminary bench-
mark to measure the overhead of transactional ex-
ecution relative to that of fine and coarse grained
locking. Each synchronization method was used
to guard an array of counters that were randomly
incremented 1 million times each by 8 threads.
At the conclusion of the benchmark, the counters
were summed to verify that the correct number
of writes was recorded. Figure 2 shows the re-
sulting write throughput for each synchronization
method.

Figure 2: Synchronization overhead as a function of
contention. As the number of elements increases,
the probability of two threads accessing the same
resource decreases. TSX provides higher through-
put over a wide range of contentions compared to
coarse and fine grain locking.

For the coarse grained implementation, all threads
competed to acquire a shared spinlock before mod-
ifying a counter. The fine grained implementation
used a separate spinlock for each entry. For the
naive TSX implementation the write was wrapped
in a transaction that would retry indefinitely un-
til committing. While this method gave the best
performance as the transactions were short and
usually committed successfully, it is not possible
to use TSX in this manner in a production system
as forward progress is not guaranteed. The TSX
enabled implementations reused the same coarse
and fine grained locking code, but elided the ac-
tual lock acquisition using an XScope wrapper (see
section 4.1). We also enabled transaction coarsen-
ing (section 4.2.2) and adaptive lock elision (sec-
tion 4.2.1). Note that the TSX accelerated ver-
sions have higher throughput for most contention

levels. For the high contention case with 64 coun-
ters, the TSX-coarse version performs badly as the
high rate of aborts causes the fallback path to be
executed frequently. As the amount of counters in-
creases, thereby decreasing contention, the perfor-
mance of the TSX-coarse version approaches the
performance of the TSX-fine grained implementa-
tion (which is faster for all contention levels).

4. IMPLEMENTATION
4.1 XSync
LevelDB provides cross-platform mutex and con-
dition variable classes that delegate to the un-
derlying system’s native synchronization facilities.
On the Linux system used for development, the
underlying primitives were provided by the PThreads
API. To avoid cluttering the LevelDB codebase
with raw TSX instructions, we decided to imple-
ment TSX-enabled versions of LevelDB’s synchro-
nization primitives.

Rather than explicitly locking a shared mutex upon
entering a critical section, LevelDB employs the
scoped locking pattern, in which a stack allocated
object is created to acquire the lock for the du-
ration of a given scope. We developed XScope,
a TSX-enabled lock wrapper that makes it sim-
ple to elide locks in code that already uses scoped
locking. When an XScope object is instantiated,
the thread attempts to execute transactionally for
the lifetime of the containing scope. If an abort
occurs, the transaction is retried until a predeter-
mined limit of aborts is reached, at which point
the lock is acquired and the scope is re-executed
non-transactionally.

// Unsynchronized
doThreadSafe () ;
{

// mu i s a shared mutex
MutexLock lock (&mu) ;
// Synchronized by l o c k
doCr i t i c a l () ;

}
// MutexLock d e s t r u c t o r i s c a l l e d
// when the prev ious scope
// e x i t s , so execu t ion i s c u r r en t l y
// unsynchronized

Listing 4: Example LevelDB MutexLock construct

// Unsynchronized
doThreadSafe () ;
{

// mu i s a shared mutex
xsync : : XScope xact(&mu) ;
// Synchronized by TSX
// (or p o s s i b l y l o c k i f
// the r e have been many abor t s)
doCr i t i c a l () ;

}

Listing 5: Lock elision with XSync

In addition to mutexes, LevelDB also makes use
of condition variables to order concurrent writes
in a fair manner. The stock codebase provides a

condition variable class that wraps Pthread con-
dition variables; unfortunately, any operations on
the stock condition variables cause aborts during
transactional execution as they result in the execu-
tion of system calls (see section 2.1 for an overview
of TSX abort causes). As multiple condition vari-
able operations are used in the LevelDB write-
path, we implemented XCondVar, a deferred-signal
transactional condition variable [21] that does not
cause aborts during transactional execution.

Our implementation relies on the Linux futex ab-
straction, which provides a low level interface to
kernel synchronization facilities. The futex wait
call takes as input a pointer to an integer in mem-
ory (the ’futex counter’) that is shared between
the threads using that condition variable and a
comparison value. The call returns immediately
if the value of the futex counter is different than
the comparison value, otherwise the thread is put
to sleep and added to a queue in the kernel. There
is also a corresponding signal call that takes the
futex counter as input as well as the number of
threads to wake from the queue. For additional
performance, we use an undocumented kernel flag
that provides faster operation in the case that the
futex is shared only between threads of a single
process.

When a thread executes a wait operation on an
XCondVar, it first commits partial results, and then
waits on a futex until it is awoken by a signaling
thread, at which point it resumes transactional ex-
ecution. We exploit the futex counter mechanism
to prevent lost wakeups due to concurrent signal
and wait calls. The current value of the counter is
read by the waiter before committing partial re-
sults, and then the cached counter value is used as
the comparison value for the subsequent wait call.
A signaling thread performs an atomic increment
of the futex counter before executing the signal
call. Thus a waiting thread will immediately re-
turn if another thread signals between the time at
which a waiter begins committing partial results
and when the futex wait call is actually executed.

The XCondVar signal operation is implemented by
registering a callback that is executed by the sig-
naling thread after it commits its current transac-
tion. As TSX does not natively provide commit
actions, we added runtime support for them in
the XScope wrapper. An XScope instance main-
tains an internal queue of callbacks that is exe-
cuted in FIFO order when the transactional scope
exits. We note that the recent addition of powerful
C++11 features such as std::function, std::bind,
and inline lambda expressions enabled a succinct
implementation of this feature.

4.2 Optimizations
We explored various optimization techniques, par-
ticularly within the local synthetic benchmark, which
are worth mentioning with respect to hardware
transactional memory.

4.2.1 Adaptive Lock Elision
Robust usage of TSX requires a separate a fallback
path to be available in the case that the transac-
tion repeatedly aborts. Furthermore, there must
be some kind of retry policy in place to determine
when the fallback path should actually be taken.
The simplest policy is to use a static limit to the
number of attempts to execute the critical section
transactionally. While it is possible to optimize
this limit carefully when the workload is known in
advance, the static approach is suboptimal when
the amount of contention is unpredictable. To bet-
ter exploit the performance of TSX in such situ-
ations we developed adaptive lock elision policies
that scale the number of retries dynamically at
runtime.

To perform adaptive lock elision, each thread main-
tains a vector of statistics counters to record the
number of total aborts, the number of successive
aborts, the number of successive commits and the
number of total commits. The counters must be
thread-local as they are incremented during trans-
actional execution, and they are padded to a cache
line to reduce the overhead in L1$ usage and to
minimize cache misses. When a thread aborts a
transaction, we immediately reduce the retry limit
to one, to rapidly reduce the overhead of failed
lock elision during periods of high contention. When
a transaction commits successfully, the abort count
limit is incremented up to a predefined maximum.
This technique allows lock elision to perform ef-
fectively under varying levels of contention.

4.2.2 Transaction Coarsening
During periods of low contention, it can be prof-
itable to combine multiple transactions into a sin-
gle larger transaction to amortize the overhead of
entering and exiting a transactional region. Intel
researchers [24] have termed this technique trans-
action coarsening, which they perform by stati-
cally merging the transactions of separate loop it-
erations during a tight loop over a critical section.
In line with our approach to lock elision, we pre-
fer a coarsening policy that can adapt to the level
of contention at runtime. As relevant statistics
are already kept to perform adaptive lock elision,
we piggyback off the same thread-local counters
to perform transaction coarsening when low con-
tention is detected at runtime.

We initiate transaction coarsening when a thread
successfully reaches a predetermined threshold of
successive commits. When the active XScope ex-
its, the aforementioned coarsening criterion is tested,
in which case the scope exits without committing
the current transaction. When the thread subse-
quently starts a new transaction, we branch on the
xtest instruction [14] , returning immediately if
the thread is already executing transactionally. If
a thread successfully commits a coarsened transac-
tion, it will attempt to execute its next transaction
at an even larger granularity. However, as transac-
tion coarsening greatly increases the required L1$

buffer space needed to store uncommitted results
(section 2.2), we halve the transaction granularity
in response to any capacity aborts. If any conflict
aborts occur, we disable coarsening and reexecute
the transaction at its natural granularity.

5. EVALUATION
In this section, we evaluate our accelerated Lev-
elDB with Intel TSX against the stock LevelDB
on a set of synthetic and simulated application-
level workloads. Micro-benchmarks are performed
using LevelDB’s built in db bench benchmarking
suite and macro-benchmarks are done through Ya-
hoo! Cloud Serving Benchmark (YCSB) [7].

Our evaluation answers the following questions:

1. How does the performance of LevelDB mod-
ified with TSX compare to stock LevelDB?

2. What kinds of workloads benefit most from
using TSX?

3. What are the performance tradeoffs for hard-
ware transactional memory?

5.1 Methodology
All our evaluations are performed on a single ma-
chine with the an Intel Haswell i7-4770 CPU sup-
porting TSX intrinsics. The machine has 4 phys-
ical cores running at 3.40 GHz and supports 8
logical threads with hyperthreading enabled. The
total cache size is 8MB, with an L1$ cache size
of 32KB. Our evaluation focuses on write-heavy
workloads as LevelDB’s log structured merge tree
architecture is explicitly designed for high write
performance. The micro-benchmark focuses ex-
clusively on writes while the macro-benchmark us-
ing YCSB comprises both a write heavy workload
as well as six other workloads that cover a wide
range of simulated real world use cases to assess
the overall performance tradeoffs of TSX modified
LevelDB.

5.2 LevelDB Benchmark Suite
We first measure the performance of the included
benchmarks from LevelDB’s db bench suite. The
first measures sequential writes (FillSequential) and
the second measures random writes (FillRandom).
In each benchmark, 100,000 key-value pairs are
inserted into LevelDB using varying numbers of
threads and the resulting throughput is measured.
With a higher number of threads, the amount of
contention increases in the workload due to the
need to modify shared data-structures during the
LevelDB write path. Both benchmarks use 16 byte
keys, and 50 byte values. These micro-benchmarks
show a 20-25% increase in throughput with TSX
under mid-high contention workloads.

Figure 3: Throughput for 100,000 sequential inserts
done with varying numbers of threads using Lev-
elDB’s FillSeq benchmark.

Figure 4: Throughput for 100,000 random inserts
done with varying numbers of threads using Lev-
elDB’s FillRandom benchmark.

The FillRandom benchmark shows throughput im-
provement with respect to stock LevelDB as the
number of threads varies from 1 to 8. At 8 threads,
we see a 25.2% improvement in overall through-
put. Similarly, the FillSequential shows a higher
performance for the TSX accelerated LevelDB, with
a 22.5% performance increase with 8 writer threads.
We posit that the contention in the system is higher
for the FillRandom benchmark due to the need to
sort a value in the in-memory before completing
a write. As LevelDB releases the database lock
when data is actually being read or written to disk,
the writers in the FillRandom benchmark collec-
tively spend more time holding the lock and thus
the FillRandom benchmark benefits more from the
reduced synchronization overhead provided by lock
elision.

The two LevelDB write benchmarks provide a good
understanding of how TSX interacts with Lev-
elDB. Clearly TSX results in better throughput
as a result of eliding locks and eliminating locking
overhead. As the amount of contention increases,
there is a greater performance improvement with
TSX modified LevelDB compared with stock Lev-
elDB.

5.2 Yahoo! Cloud Serving Benchmark (YCSB)
In addition to the performance tests described above,
we evaluate TSX modified LevelDB using a macro-
benchmark to gauge its performance characteris-
tics on application-level workloads. This allows
us to understand TSX implications on LevelDB
when stress-tested with real-world data. We use
the Yahoo! Cloud Serving Benchmark (YCSB),
an industry-standard benchmark for cloud stor-
age performance. YCSB is easy to extend and
configure, providing many tunable parameters to
express a variety of workloads. Each workload is
configured by specifying the number of operations
to perform, the ratio of reads, inserts, updates,
and scans, number of threads simultaneously exe-
cuting the operations, and the type of distribution
used to access the data.

To test out the hypothesis that there will be no-
ticeable performance benefit with TSX on write
heavy workloads, we create a new write heavy
workload of 10 million operations with 50% reads
and 50% inserts (values are 1 KB in size), using a
zipfian distribution for data access. A zipfian dis-
tribution simulates real world data access patterns
by taking into account the fact that some records
are more popular (head of the distribution) while
the majority are not (the tail). The access pat-
tern of 50% reads and 50% writes is chosen to
mimic the workload experienced by a typical ses-
sion store keeping track of user state such as cook-
ies. We measure the throughput and latency for
TSX modified LevelDB and compare it to that of
stock LevelDB for varying numbers of threads.

TSX modified LevelDB exhibits considerably bet-
ter throughput than stock LevelDB while running
the workload using 8 threads. Figure 5 shows
the difference in the number of operations com-
pleted by TSX minus the number of operations
completed by stock LevelDB each minute. The
fluctuations in the graph are due to different write
compaction intervals, but the overall trend is clearly
increasing for 2 and 8 threads. These cases con-
firm our expectations and are consistent with the
db bench results that LevelDB provides perfor-
mance improvements for write heavy workloads
with contention. We are still investigating why
stock LevelDB completes more operations than
TSX modified LevelDB for the majority of the run
time for the 4 thread case.

Figure 5: Difference in operations completed over
time (TSX operations - Stock Level DB operations)
sampled at each minute. The workload consists of 10
million operations with 50% reads and 50% writes
using a zipfian distribution.

Figure 6: 10, 25, 75, and 90th percentile latencies
vs number of threads for a workload of 10 million
operations with 50% reads and 50% writes using a
zipfian distribution.

We also measure the latency associated with reads
and inserts for this workload for 2, 4, and 8 threads
(Figure 6). While the read latencies are relatively
equal for TSX modified and stock LevelDB, there
is significant write latency improvement for TSX
modified LevelDB. Furthermore, the amount of
improvement increases as the contention in the
workload increases. In the 8 thread case, TSX
modified LevelDB decreases the latency the most,
as seen by the lower 75th percentile. This is consis-
tent with our understanding of the coarse grained
locking characteristics of LevelDB and shows there

is a significant amount of time spent in waiting
for locks (locking overhead). The high amount
of variation in latencies is primarily due to write
compactions. When one of the .sst files in LevelDB
becomes too full, the data is compacted and moved
to a lower level. During these write compactions,
none of the operations (reads or inserts) are able to
proceed. While these write compactions can not
be avoided using lock elision, TSX effectively re-
duces the latency for inserts, which is the primary
source of latency in LevelDB.

Figure 7: The five core workloads that are part of
YCSB’s benchmark suite–standard metric used by
various other projects.

Figure 8: Throughput for the 5 core workloads spec-
ified in the Yahoo! Cloud Serving Benchmark de-
signed to simulate the spectrum of real world work-
loads. The workloads were modified to run with 4
concurrent client threads.

YCSB provides a set of 5 core workloads designed
to simulate the spectrum workloads experienced
by real world systems (Figure 7/8). The work-
loads are for 1000 operations with varying ratios
of insert, read, update, and scan operations. We
modify these workloads to perform the same op-
erations across 4 threads to assess TSX perfor-
mance benefits. TSX has comparable through-
put for workload e, lower throughput for work-

load a, and higher throughput for workloads b,
c, and d. Overall, however, the throughputs are
comparable. We are still investigating why there
is not a more measurable performance difference
between TSX modified and stock LevelDB. We
expected TSX to exhibit higher throughput for
workload a and slightly higher throughputs for the
others. An explanation may be that the work-
loads involve much fewer operations compared to
the other workloads analyzed and so the results
exhibit higher variance. In addition, because we
modify the workloads to use 4 threads, this may be
lowering the accuracy of the benchmark due to the
way YCSB implements multithreaded workloads.

6. RELATED WORK
6.1 Intel’s TSX Evaluation
Intel researchers performed an evaluation of TSX
performance [24] based primarily on HPC work-
loads. They were able to achieve an average speedup
of 1.41x for HPC workloads, and 1.31x improve-
ment on a user level TCP-IP stack. Our approach
differs in that we chose to optimize OLTP-style
workloads, a common case in non-HPC distributed
computing. While we drew inspiration from the
optimizations proposed by the Intel researchers,
such as transaction coarsening, we extended their
techniques by implementing a lightweight runtime
to maintain thread-local statistics to allow run-
time adaptation.

6.2 Transactional LuaProc
Skyrme and Rodriguez [1] ported the luaproc corou-
tine library to use STM for synchronization. Un-
like our LevelDB fork, which uses TSX-enabled
implementations of traditional synchronization con-
structs, their luaproc implementation echewed locks
and condition variables for unbounded transac-
tions and non-blocking coroutine communication
channels. Unfortunately, their implementation re-
sulted in a considerable performance penalty when
compared to the existing lock-based version of lu-
aproc - the transactional implementation performed
up to 20% worse on average with 8 active threads.

6.3 Transactional Main-memory Databases
Leis et. al propose a new design for a main-memory
database optimized to exploit HTM for perfor-
mance. [28] Their design uses a timestamp order-
ing scheme to assemble smaller, physical hardware
transactions into larger, logical database transac-
tions. The authors achieve a 9x performance in-
crease on a TPC-C benchmark on a simulated 32-
core HTM capable processor. While the authors
claim a greater performance benefit, they also ben-
efit from designing their database system from the
group up to exploit HTM; conversely LevelDB was
designed to use traditional lock-based synchroniza-
tion. Furthermore, the authors express their final
results in terms of simulated performance on a hy-
pothetical processor, while our evaluation is based
on execution speed on a physical CPU.

6.4 Transactional Programming Languages
Brian Carlstrom et. al from Stanford’s Computer
Systems Laboratory propose a transactional pro-
gramming language, called Atomos, which is de-
rived from JAVA and allows for a high level ap-
proach to effectively use transactional memory. [4]
It features atomic blocks that define basic nested
transactions, transaction based condition waiting
(similar to conditional critical regions), open nested
transactions, and violation handlers which handle
general exceptions. The performance of Atomos
transactional programming is compared to Java
lock-based programming and Atomos shows lin-
ear scaling up to 32 CPUs and either retains the
basic scalability of Java implementation or out-
performs it in general (2-5x). Clearly, there are
basic principles and implementation ideas that are
noteworthy and considered for extension, but the
scope of the Atomos paper pertains to software
transactional memory techniques, while the goal
of this paper is to explore the relatively new area
of hardware transactional memory.

7. CONCLUSION AND FUTURE WORK
This paper analyzes the impact of Haswell’s TSX
instructions on LevelDB. We compare the impact
of using lock elision in TSX modified LevelDB ver-
sus coarse grained locking in stock LevelDB to
show that transactional memory results in per-
formance gains under a subset of workloads. We
measure a 20-25% increase in throughput for TSX
modified LevelDB for write-only workloads as well
as an increase in throughput and latency for work-
loads consisting of 50% reads and 50% writes. An-
other major contribution in this project is XSync,
a library containing TSX-enabled versions of Lev-
elDB’s synchronization primitives. XSync is writ-
ten to be integrated into LevelDB with minimal
effort and we expect the design to be useful in inte-
grating TSX instructions to other systems as well.
To fully leverage the performance benefits of TSX,
the workload characteristics must be well under-
stood. For the workloads specified in this paper,
TSX gives programmers the benefit of easily mark-
ing code regions to be executed synchronously,
while also providing performance improvements.

As LevelDB is commonly used as a database for
a higher-level distributed store, we would like to
assess the performance of a TSX optimized Lev-
elDB as a storage engine for a distributed system.
Furthermore, there have been many other forks of
LevelDB that have claimed to acheive improved
performance such as HyperLevelDB [12] and Face-
book’s RocksDB [26]. We would like to explore ap-
plying our modification to those LevelDB forks to
see if there could be a further performance gain
over the original codebase. Additionally, it re-
mains to be seen if other categories of complex
software, e.g. web browsers, compilers, etc, could
benefit from transactional memory and/or lock eli-
sion.

8. ACKNOWLEDGMENTS
We would like to thank John Kubiatowicz and
Anthony Joseph for guiding us throughout the
project. In addition, we would like to thank Matt
Moskewicz for providing us with access to the lat-
est Haswell machine.

9. REFERENCES
1. Alexandre Skyrme and Noemi Rodriguez. From

Locks to Transactional Memory: Lessons Learned
from Porting a Real-world Application. In
Proc. of TRANSACT, 2013.

2. Amitabha Roy, Steven Hand, and Tim Har-
ris. A Runtime System for Software Lock Eli-
sion. In Proc. of EuroSys, 2009.

3. Arrvindh Shriraman and Sandhya Dwarkadas.
Refereeing conflicts in hardware transactional
memory. In Proc. of ICS, 2009.

4. Austen McDonald, Hassan Chäıň ↪A, JaeWoong
Chung, Chi Cao Minh, Christos Kozyrakis,
and Kunle Olukotun. The Atomos transac-
tional programming language. In Proc. of
ACM SIGPLAN Notices. Vol. 41. No. 6. ACM,
2006.

4. Azul Systems. http://www.azulsystems.com/.

5. Basho Technologies. Optimizing leveldb for
Performance and Scale.
https://speakerdeck.com/basho/
optimizing-leveldb-for-performance-and-scale-
ricon-east-2013.

6. Bitcoin. https://github.com/bitcoin/leveldb/.

7. Brian F. Cooper, Adam Silberstein, Erwin
Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with
YCSB. In Proc. of SoCC, 2010.

8. Dave Dice, Yossi Lev, Mark Moir, Dan Nuss-
baum, and Marek Olszewski. Early Experi-
ence with a Commercial Hardware Transac-
tional Memory Implementation. Intel, Tech-
nical Report TR-2009-180, 2009.

9. Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. In Proc.
of OSDI, 2012.

10. Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist:
Lessons Learned in Designing TM-Supported
Range Queries. In Proc. of PODC, 2013.

11. Hubertus Franke and Rusty Russell. Fuss,
Futexes and Furwocks: Fast Userlevel Lock-
ing in Linux. In Proc. of Ottawa Linux Sym-
posium, 2002.

12. HyperDex. http://hyperdex.org/.

13. IBM Blue Gene/Q.
http://www-03.ibm.com/systems/
technicalcomputing/solutions/bluegene/.

14. Intel Corporation. Intel 64 and IA-32 Archi-
tectures Optimization Reference Manual.
http://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-
architectures-optimization-manual.html

15. Intel Corporation. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual.
http://www.intel.com/content/www/us/en/
processors/architectures-software-
developer-manuals.html

16. Jared Casper, Tayo Oguntebi, Sungpack Hong,
Nathan G. Bronson, Christos Kozyrakis, and
Kunle Olukotun. Hardware Acceleration of
Transactional Memory on Commodity Sys-
tems. In Proc. of ASPLOS, 2011.

17. Jayaram Bobba, Kevin E. Moore, Haris Vo-
los, Luke Yen, Mark D. Hill, Michael M. Swift,
and David A. Wood. Performance Patholo-
gies in Hardware Transactional Memory. In
Proc. of ISCA, 2007.

18. LevelDB. https://code.google.com/p/leveldb/.

19. Luke Dalessandro, Francois Carouge, Sean White,
Yossi Lev, Mark Moir, Michael L. Scott, and
Michael F. Spear. Hybrid NOrec: A Case
Study in the Effectiveness of Best Effort Hard-
ware Transactional Memory. In Proc. of AS-
PLOS, 2011.

20. Patrick O’Neil, Edward Cheng, Dieter Gawlick,
and Elizabeth O’Neil. The Log-Structured
Merge-Tree (LSM-Tree). In Acta Informat-
ica.

21. Polina Dudnik and Michael M. Swift. Con-
dition Variables and Transactional Memory:
Problem or Opportunity? In Proc. of TRANS-
ACT, 2013.

22. Ravi Rajwar and James R. Goodman. Spec-
ulative Lock Elision: Enabling Highly Con-
current Multithreaded Execution. In Proc.
of International Symposium on Microarchi-
tecture (MICRO), 2001.

23. Riak. http://basho.com/riak/.

24. Richard M. Yoo, Christopher J. Hughes, Kon-
rad Lai, and Ravi Rajwar. Performance Eval-
uation of Intel R Transactional Synchroniza-
tion Extensions for High-Performance Com-
puting. In Proc. of IEEE - 2013 SC, 2013.

25. Robert Escriva, Bernard Wong, and Emin Gun
Sirer. HyperDex: A Distributed, Searchable
Key-Value Store. In Proc. of SIGCOMM,
2012.

26. RocksDB. http://rocksdb.org/.

28. Viktor Leis, Alfons Kemper, and Thomas Neu-
mann. Exploiting Hardware Transactional Mem-
ory in Main-Memory Databases. In Proc. of
ICDE, 2014.

