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Abstract

We propose a new processing paradigm, called the
Expandable Split Window (ESW) paradigm, for exploiting fine-
grain parallelism. This paradigm considers a window of instruc-
tions (possibly having dependencies) as a single unit, and exploits
fine-grain parallelism by overlapping the execution of multiple
windows. The basic idea is to connect multiple sequential proces-
sors, in a decoupled and decentralized manner, to achieve overall
multiple issue. This processing paradigm shares a number of pro-
perties of the restricted dataflow machines, but was derived from
the sequential von Neumann architecture. We also present an
implementation of the Expandable Split Window execution
model, and preliminary performance results.

1. INTRODUCTION

The execution of a program, in an abstract form, can be
considered to be a dynamic dataflow graph that encapsulates the
data dependencies in the program. The nodes of the graph
represent computation operations, and the arcs of the graph
represent communication of values between the nodes. The exe-
cution time of a program is the time taken to perform the compu-
tations and communication in its dynamic dataflow graph. If there
are altogether n communication arcs in the graph, and at a time a
maximum of m communication arcs can be carried out, then the
execution time involves a minimum of n /m communication steps,
no matter how many parallel resources are used for computations.
With the continued advance in technology, switching components
become smaller and more efficient. The effect is that computation
becomes faster and faster. Communication speed, on the other
hand, seems to be restricted by the speed of light, and eventually
becomes the major bottleneck.

The abstract dataflow graph hides information about the
distances involved in the inter-node or inter-operation communi-
cation. When a dataflow graph is mapped onto a processing struc-
ture, interesting dynamics are introduced into the picture. First,
depending on the matching between the dataflow graph and the
processing structure, adjacent nodes in the graph (those directly
connected by a communication arc) may get mapped to either the
same processing element, physically adjacent (communication-
wise adjacent) processing elements, or distant processing ele-
ments. Based on the mapping used, the communication arcs of
the graph get ‘‘stretched’’ or ‘‘shrunk’’, causing changes in the
communication cost because it takes more time to send values
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over a distance. Second, since there can only be a finite amount
of fast storage for temporarily storing the intermediate computa-
tion values, the values have to be either consumed immediately or
stored away into some form of backup storage (for example, main
memory), creating more nodes and communication arcs.

An inspection of the dynamic dataflow graph of many
sequential programs reveals that there exists a large amount of
theoretically exploitable instruction-level parallelism
[2, 3, 5, 13, 24], i.e., a large number of computation nodes that can
be executed in parallel, provided a suitable processor model with
a suitable communication mechanism backed up by a suitable
temporary storage mechanism exists. Where is this parallelism
most likely to be found in a dynamic execution of the sequential
program? Because most programs are written in an imperative
language for a sequential machine with a limited number of archi-
tectural registers for storing temporary values, it is quite likely
that instructions of close proximity are data dependent. This
means that most of the parallelism can be found only further down
in the dynamic instruction stream. The obvious way to get to that
parallelism is to use a large window of dynamic instructions. This
motivates the following bipartite question: “What is the best way
to identify a large number of independent operations every cycle,
especially if they are to be extracted from a large block of opera-
tions intertwined with intricate dependencies, and at the same
time reduce the communication costs and the costs of storing tem-
porary results?” The design of a fine-grain parallel processor, to a
large extent, revolves around how one attempts to answer this
question and the train of questions that arise while attempting to
answer it. A good scheme should optimize not only the number
of operations executed in parallel, but also the communication
costs by reducing the communication distances and the temporary
storing away of values, thereby allowing expandability. We con-
sider a processor model to be expandable if its abilities can be
expanded easily, as hardware and software technology advances.
This requires the processor model to have no centralized resources
that can become potential bottlenecks.

Several processing paradigms have been proposed over the
years for exploiting fine-grain parallelism. The most general one,
the dataflow model, considers the entire dataflow graph to be a
single window and uses an unconventional programming para-
digm to expose the maximum amount of parallelism present in the
application. Such a general model allows the maximum number
of computation nodes to be active simultaneously, but incurs a
large performance penalty due to the ‘‘stretching’’ of the com-
munication arcs. It also suffers from the inability to express criti-
cal sections and imperative operations that are essential for the
efficient execution of operating system functions, such as resource
management [5, 17]. (Of late, more restricted forms of dataflow
architecture have been proposed [9, 14, 16, 17].) This is where the
power of sequentiality comes in. By ordering the computation
nodes in a suitable manner, sequentiality can be used to introduce
(and exploit) different kinds of temporal locality to minimize the



costs of communication and intermediate result storage. This has
the effect of combining several adjacent nodes into one, because
the communication arcs between them become very short when
temporal locality is exploited by hardware means. A good exam-
ple of this phenomenon are the vector machines, which exploit the
‘‘regular’’ type of parallelism found in many numeric applications
effectively by hardware means such as chaining (i.e., forwarding a
result directly from a producer to a consumer without intermediate
storage).

Sequential execution can be augmented to exploit the
‘‘irregular’’ type of parallelism found in most non-numeric appli-
cations. Superscalar processors [10, 12, 15, 18] and VLIW proces-
sors [4] do exactly this; they stay within the realm of sequential
execution, but attempt to execute multiple operations every cycle.
For achieving this, superscalars scan through a window of
(sequential) operations every cycle and dynamically detect
independent operations to be issued in a cycle. These von Neu-
man based machines use the conventional programming para-
digm, but require a sufficiently large centralized window
(obtained by going beyond several basic blocks), if even moderate
sustained issue rates are to be desired. The hardware required to
extract independent instructions from a large centralized window
and to enforce data dependencies typically involves wide associa-
tive searches, and is non-trivial. Furthermore, superscalars
require multi-ported register files and wide paths from the instruc-
tion cache to the issue unit. Although dynamic scheduling with a
large centralized window has the potential for high issue rates, a
realistic implementation is not likely to be possible because of its
complexity, unless novel schemes are developed to reduce the
complexity.

VLIW processors partially circumvent this problem by
detecting parallelism at compile time, and by using a large
instruction word to express the multiple operations to be issued in
a cycle. A major limitation of static scheduling is that it has to
play safe, by always making worst-case assumptions about infor-
mation that is not available at compile time. VLIW processors
also require some of the centralized resources required by super-
scalars, such as the multi-ported register files, crossbars for con-
necting the computation units, and wide paths to the issue unit.
These centralized resources can easily become bottlenecks and be
a severe limitation on the performance of these machines.

Looking at these existing models, we see that the concept
of sequential execution with a large window is good, but
definitely not sufficient by itself. The following additional criteria
are very important.

� The creation of the large window should be accurate. That is,
the window should consist mostly of instructions that are
guaranteed to execute, and not instructions that ‘‘might’’ be
executed.

� Factors such as the ability to feed instructions into this win-
dow, should not be a limitation. That is, it should be possible
to get farther down in the instruction stream, without fetching
and decoding the instructions in between.

� There should be provision to issue loads before proper address
disambiguation, i.e., in a speculative manner.

We also need a powerful way of decentralizing the critical
resources in the system. Our objective is to use the conventional
sequential programming paradigm with dynamic scheduling and
large windows, but augmented with novel techniques to decentral-
ize the critical resources. This is achieved by splitting a large
operation window into small windows, and executing many such
small windows in parallel. The principle of dataflow is used in a

restricted manner to pass values efficiently across the multiple
windows in execution; the execution model within each window
can be a simple, sequential processor. As we will see later in this
paper, such an approach has the synergistic effect of combining
the advantages of the sequential and the dataflow execution
models, and the advantages of static and dynamic scheduling.

1.1. Organization of the Paper

We have outlined the important issues pertaining to design-
ing a high-performance fine-grain parallel processor. The rest of
this paper is organized as follows. Section 2 describes the basic
philosophy behind the Expandable Split Window (ESW) process-
ing paradigm. Section 3 describes a possible implementation of
this paradigm. The description includes details of the instruction
issue mechanism (distributed instruction caches), the distributed
register file, the distributed memory disambiguation unit, and the
distributed data cache. Section 4 presents preliminary perfor-
mance results for the new paradigm, obtained from a simulation
study using the SPEC benchmarks. Section 5 provides a summary
of the research done so far, and the future course of work.

2. THE EXPANDABLE SPLIT WINDOW
PROCESSING PARADIGM

To have an expandable system that can handle large win-
dows in an efficient manner, and whose ability can be expanded
easily as technology advances, we need to decentralize all the crit-
ical resources in the system. These include the hardware for
dependency enforcement and identification of independent opera-
tions within the window, the instruction supply mechanism, and
the memory address disambiguation mechanism. A convenient
way of simplifying the hardware for identification of independent
operations is to split the large window into smaller windows (c.f.
Figure 1) so that the task of searching a large window can be split
into 2 smaller subtasks: (i) independent searches (if need be) in
small windows, all of which can be done in parallel, and (ii)
enforcement of control and data dependencies between the
smaller windows. The dynamic scheduling hardware can then be
divided into two hierarchical units — a distributed top-level unit
that enforces dependencies between the small windows, and
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Figure 1: Splitting a large window of instructions
into smaller windows
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several independent lower-level units at the bottom level, each of
which enforces dependencies within a small window and
identifies the independent instructions in that window. Each of
these lower-level units can be a separate execution unit akin to a
simple (possibly sequential) execution datapath.

Having decided to split the large operation window, the
next question is where to split. There are several issues to be con-
sidered here. First, the overall large window would invariably
consist of many basic blocks, obtained through dynamic branch
prediction. When a prediction is found to be incorrect, we would
like not to discard the part of the window before the mispredicted
branch. Second, it would be ideal if (at least some of) the infor-
mation available at compile time is conveyed to the dynamic
scheduling hardware. With these views in mind, we propose to
consider a single-entry loop-free call-free block of (dependent)
instructions (or a basic window) as a single unit, i.e., each
such block forms a small window1. Splitting the dynamic instruc-
tion stream at such statically determined boundaries has the fol-
lowing advantages:

(1) If a basic window is a basic block or a subset of a basic block,
then it is a straight-line piece of code that is entirely executed
once it is entered, and the registers read and written are the
same for any execution of that basic window. Ironically, the
dynamic scheduling hardware expends quite a bit of effort to
reconstruct this information. This information can be stati-
cally determined and conveyed to the hardware in a concise
manner (explained in Section 3.3.3), which simplifies the
hardware for the enforcement of register value dependencies
between the basic windows. If a basic window is a superset
of several basic blocks, then also it is possible to express this
information, but the information will be conservative, as it has
to consider all possible paths through the basic window.

(2) The control flow graph of most programs are embedded with
diamond-shaped structures (reconvergent fanouts, typically
due to if-then and if-then-else statements), which
tend to have low branch prediction accuracies. In such situa-
tions, there is merit in encompassing the diamond-shaped part
within a basic window so as to allow subsequent windows to
start execution earlier with no fear of being discarded later
due to an incorrect branch prediction at an earlier stage.

(3) By merging small basic blocks into one basic window, we can
tide over the problem of poor utilization of an execution unit
when small, data-dependent basic blocks appear next to each
other in the dynamic instruction stream. This situation arises
frequently in non-numeric benchmarks, where the mean basic
block size is typically 5-6 instructions.

Example: The basic idea behind the new paradigm is best illus-
trated by an example. Consider the following loop, which adds
the number 10 to 100 elements of an array and sets an element to
1000 if it is greater than 1000. This is a typical for loop with an
if statement enclosed within.
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1 If a single-entry loop-free call-free block is too large, or if it is a
collection of blocks with few data dependencies between them, then it can
be split into appropriate smaller blocks. In this paper, quite frequently we
use a basic block as a basic window for illustration purposes, although a
basic window could be a subset or a superset of basic blocks. We are still
investigating the issues involved in creating a basic window that is larger
than a basic block. We are also investigating the implications of removing
the "loop-free" requirement. The basic window discussed in this paper
should therefore be considered only as one example of a basic window of
instructions.

A: R1 = R1 + 1
R2 = [R1, base]
R3 = R2 + 10
BLT R3, 1000, B
R3 = 1000

B: [R1, base] = R3
BLT R1, 100, A

In this example, all the instructions in one iteration except
the last instruction can be executed only in strict sequential order.
We can consider each iteration of this loop to be a basic window;
at run time, the loop gets expanded into multiple basic windows
as shown below.
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Basic Window 1 Basic Window 2

� ���������������������������������������������������������������������������������������������������������������
A1: R11 = R10 + 1 A2: R12 = R11 + 1

R21 = [R11, base] R22 = [R12, base]
R31 = R21 + 10 R32 = R22 + 10
BLT R31, 1000, B1 BLT R32, 1000, B2
R31 = 1000 R32 = 1000

B1: [R11, base] = R31 B2: [R12, base] = R32
BLT R11, 100, A2 BLT R12, 100, A3

�
�
�
�
�
�
�
�
�
�
�

Multiple instances of a register are shown with different
subscripts, for example, R11 and R12 . Although the instructions
of a basic window in this example are sequentially dependent, a
new basic window can start execution once the first instruction of
the previous basic window has been executed. Our idea is to exe-
cute these multiple basic windows in parallel, with distinct execu-
tion units. Notice that among the two branches in an iteration,
branch prediction is performed only for the second one, which can
be predicted much more accurately than the other. The low
confidence branch (the first one) has been incorporated within the
basic window so that a poor branch prediction does not result in
an inaccurate dynamic window. For a general program, the com-
piler divides the instruction stream into basic windows based on
the following factors: (i) the pattern of data dependencies between
instructions, (ii) maximum size allowed for a basic window, and
(iii) predictability of branch outcomes.

3. IMPLEMENTATION OF THE ESW PARADIGM

As mentioned earlier, to be expandable, there should be no
centralized resources that could become potential bottlenecks.
Designing a dynamically scheduled fine-grain parallel processor
with decentralized resources poses several challenges, some of
which are: (i) an adequate decentralized instruction issue mechan-
ism, (ii) adequate CPU resources, and (iii) an adequate decentral-
ized memory system. Other issues, of no less magnitude, that
pose challenges especially when doing speculative execution are:
(i) efficient means of forwarding results from one instruction to
another when a number of instructions are simultaneously active,
(or efficient means of detecting and enforcing register dependen-
cies), (ii) disambiguating memory addresses and enforcing
memory dependencies, (iii) good branch handling/prediction
schemes that allow the dynamic window to be expanded fairly
accurately, and (iv) efficient mechanisms to recover a precise state
when special events such as incorrect branch predictions and
exceptions occur.

In this section, we discuss a possible implementation of the
new processing paradigm. In the ensuing subsections, it will
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Figure 2: Block Diagram of the Expandable Split Window Paradigm Implementation

become evident that throughout the design we have emphasized
two points — decentralization (which facilitates expandability)
and realizability. Several novel techniques have been used to
decentralize the resources, without which the potential of the new
paradigm could not have been exploited. The techniques used for
decentralizing the different parts of the system are different,
because their workings and the way they fit into the system are
different. As the purpose of this paper is to introduce the para-
digm and present an overall view, and because of space restric-
tions, some of the intricate design details are not presented here.

Figure 2 presents the block diagram of our machine. The
processor consists of several independent, identical stages, each of
which is equivalent to a typical datapath found in modern proces-
sors. The stages conceptually form a circular queue, with
hardware pointers to the head and tail of the queue. These

pointers are managed by a control unit (not shown in Figure 2 for
clarity), which also performs the task of assigning basic windows
to the stages. Dynamic branch prediction is used (if required) to
decide new basic windows, and every cycle, the control unit
assigns a new window to a stage unless the circular stage queue is
full. It is important to note that all that the control unit does when
it assigns a window to a stage unit is to tell the stage to execute a
basic window starting at a particular PC (program counter) value;
it is up to the stage to fetch the required instructions, decode them
and execute them (most likely in serial order) until the end of the
basic window is reached. The control unit does not perform
instruction decoding. (A major purpose of ‘‘decoding’’ instruc-
tions in a superscalar processor is to establish register dependen-
cies between instructions. We shall see in section 3.3 how we
enforce the register dependencies without dynamically decoding



the instructions.) Because the task of the control unit is relatively
straightforward, it does not become a potential bottleneck. (Con-
trol units with instruction decoders that feed centralized windows
are a major impediment to performance in superscalar processors,
as shown in [21].)

The active stages, the ones from the head to the tail,
together constitute the large dynamic window of operations, and
the stages contain basic windows, in the sequential order in which
the windows appear in the dynamic instruction stream. When all
the instructions in the stage at the head have completed execution,
the window is committed, and the control unit moves the head
pointer forward to the next stage. Consequently, the big window
is a sliding or continuous window, and not a fixed big window, a
feature that allows more parallelism to be exploited [24]. The
major parts of the ESW implementation are described below.

3.1. Distributed Issue and Execution Units

Each stage has as its heart an Issue and Execution (IE) unit,
which takes operations from a local instruction cache and pumps
them to its functional units after resolving their data dependen-
cies. An IE unit is comparable to the Instruction Issue and Execu-
tion Unit of a conventional processor in that it has its own set of
functional units. Notice that if the cost of functional units (espe-
cially the floating point units) is a concern, infrequently used
functional units may be shared by multiple stages. It is also possi-
ble to have a small interconnect from the IE units to a common
Functional Unit Complex. In any given cycle, up to a fixed
number of ready-to-execute instructions begins execution in each
of the active IE units. It is possible to have out-of-order execution
in an IE unit, if desired.

3.2. Distributed Instruction Supply Mechanism

The proposed scheme for exploiting instruction-level paral-
lelism by the execution of multiple basic windows in parallel will
bear fruit only if instructions are supplied to the IE units at an ade-
quate rate. Supplying multiple IE units in parallel with instruc-
tions from different basic windows can be a difficult task for an
ordinary centralized instruction cache. We need novel instruction
cache designs, ones that are suited to the issue strategy and the
execution model used.

We propose to use a two-level instruction cache, with the
level 1 (L1) (the level closest to the IE units) split into as many
parts as the number of stages, one for each stage, as shown in Fig-
ure 2. An IE unit accesses instructions from its L1 cache. If a
request misses in the L1 cache, it is forwarded to the L2 instruc-
tion cache. If the window is available in the L2 cache, it is sup-
plied to the requesting L1 cache (a fixed number of instructions
are transferred per cycle until the entire window is transferred —
a form of intelligent instruction prefetch). If the transferred win-
dow is a loop, the L1 caches of the subsequent stages can also
grab the window in parallel, much like the snarfing (read broad-
cast) scheme proposed for multiprocessor caches [8]. If the
request misses in the L2 cache, it is forwarded to main memory.
Notice that several IE units can simultaneously be fetching
instructions from their corresponding L1 caches, and several L1
caches can simultaneously be receiving a basic window (if the
window is a loop) from the L2 cache, in any given cycle.

3.3. Distributed Inter-Instruction Communication
Mechanism

A high-speed inter-instruction communication mechanism
is central to the design of any processor. Earlier we saw that a
centralized register file can become a bottleneck for the VLIW

and superscalar processors. In our processor, at any one time
there could be more than 100 active operations, many of which
may be executed simultaneously. Clearly, a centralized architec-
tural register file cannot handle the amount of register traffic
needed to support that many active operations; we need a decen-
tralized inter-instruction communication mechanism. The main
criteria to be considered in coming up with a good decentralized
scheme is that it should tie well with the distributed, speculative
execution feature of our model. (For instance, the split register
file proposed for the VLIW and superscalars cannot be of much
help to our model.)

In order to do a careful design of the decentralized register
file, we first conducted a quantitative study of the traffic handled
by the architectural registers in a load/store architecture (MIPS
R2000). In particular, we studied how soon newly created regis-
ter instances are used up by subsequent instructions and are even-
tually overwritten. These studies showed that: (i) a significant
number of register instances are used up in the same basic block
in which they are created, and (ii) most of the rest are used up in
the subsequent basic block. The first result implies that if we have
a local register file for each stage, much of the register traffic
occurring in a stage can be handled by the local register file itself.
Only the last updates to the registers in a stage need be passed on
to the subsequent stages. The second result implies that most of
these last updates need not be propagated beyond one stage. Thus
we can exploit the temporal locality of usage of register values to
design a good decentralized register file structure that ties well
with our execution model, and that is exactly what we do.

3.3.1. Distributed Future File

In our proposed design, each stage has a separate register
file called a future file. These distributed future files are the work-
ing files used by the functional units in the IE units. In that sense,
they work similar in spirit to the future file discussed in [20] for
implementing precise interrupts in pipelined processors. As we
will see in section 3.5, the distributed future file simplifies the task
of recovery when incorrect branch predictions are encountered. If
out-of-order execution within IE units is desired, then each IE unit
should also have some means of forwarding results within the unit
(possibly reservation stations [23]). Another advantage of the dis-
tributed future file structure in that case is that it allows indepen-
dent register renaming for each stage. An architectural register
file is maintained to facilitate restart in the event an exception
occurs in the IE unit at the head of the queue, and to bring the pro-
cessor to a quiescent state before system calls.

3.3.2. Register Data Dependencies Within a Stage

Register dependencies within a basic window are enforced
by either doing serial execution within an IE unit, or using reser-
vation stations (or renamed registers) with data forwarding.

3.3.3. Register Data Dependencies Across Stages

The burden of enforcing register data dependencies across
multiple basic windows becomes light when windows are ordered
in a sequence, and the data flowing into and out of basic window
boundaries are monitored. To keep the discussion simple, we
shall explain the working of the scheme for the case when basic
windows are either basic blocks or subsets of basic blocks. For a
given basic block, the registers through which externally-created
values flow into the basic block and the registers through which
internally-created values flow out of the basic block are invariants
for any execution of that basic block. We express these invariants
concisely by bit maps called use and create masks.



The create and use masks capture a good deal of
the information (related to register traffic) in a basic block in a
simple and powerful way. If there were no create masks,
each instruction in the large dynamic window has to be decoded
before identifying the destination register and setting the
corresponding ‘‘busy bit’’ in the register file. Subsequent instruc-
tions in the overall large window, even if independent, have to
wait until all previous instructions are decoded, and the ‘‘busy
bits’’ of the appropriate registers are set. The advantage of having
a create mask is that all the registers that are written in a
basic block are known immediately after the mask is fetched, i.e.,
even before the entire basic block is fetched from the instruction
cache and decoded. (As mentioned earlier, this ‘‘decoding’’ prob-
lem is a major problem in the superscalar processors proposed to
date.) Independent instructions from subsequent basic windows
can thus start execution, possibly from the next cycle onwards,
and the hardware that allows that is much simpler than the
hardware required to decode a large number of instructions in
parallel and compare their source and destination registers for
possible conflicts.

Generation of Register Masks

If adequate compile-time support is available, the masks
can be generated by the compiler itself2. If the use of compile-
time support is not an option (for example if object code compati-
bility is required), or if the additional code space overhead due to
the masks is considered intolerable, the masks can be generated at
run time by hardware the first time the block is encountered, and
stored in a dynamic table for later reuse.

Forwarding of Register Values

When an instruction completes execution, its results are
forwarded to subsequent instructions of that stage. If the result is
a register’s last update in that basic block, the result is written to
the future file of that stage, and forwarded to the future files of the
subsequent stages as well, one stage at a time. When a result from
a previous stage reaches a future file, the appropriate register is
updated. If the register entry appears in the use mask of that
stage, then the reservation stations in that unit are checked for
possible matchings. The result is also forwarded to the subse-
quent future file in the next cycle. The create and use
masks helps to reduce the forwarding traffic and the associative
search involved in forwarding the results. When the result of an
instruction (i.e., a new register instance) is forwarded to a future
file, the reservation stations in the corresponding IE unit need be
searched for possible matchings only if the register entry appears
in its use mask. Similarly, if the register entry appears in a
create mask, then the result need not be forwarded to the sub-
sequent stages, because they need a different instance of that
register3. Notice that data from several stages can simultaneously
be traveling to subsequent stages in a pipelined fashion. Queues
are used to facilitate this forwarding.
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2 All optimizing compilers invariably do dataflow analysis [1, 7];
the create and use masks are similar to the def and use variables
computed by these compilers for each basic block, except that the former
pair represent architectural registers and the latter pair represent variables
of the source program.

3 Since most of the register instances are used up either in the same
basic block in which they are created or in the subsequent basic block, we
can expect a significant reduction in the forwarding traffic because of the
create mask.

When the IE unit at the head commits, the last updates in
that window are written to the architectural register file for pur-
poses of precise state recovery (see section 3.5).

3.4. Distributed Data Memory System

When a processor attempts to issue and execute many
instructions in parallel, it is imperative that the memory system
should be capable of supporting multiple memory references per
cycle, preferably with small latencies [22]. The latency can be
reduced by using a data cache. In line with our objective of
expandability, the memory system also has to be decentralized.

Decentralizing the memory system is harder than most of
the other parts. When a system performs speculative execution, a
store operation can be allowed to proceed to the memory system
only when it is guaranteed to commit; otherwise the old memory
value is lost and recovery will not be possible. Nevertheless,
succeeding loads (from speculatively executed code) to the same
location do require the new value, and not the old value. Thus,
there must be some means of forwarding ‘‘uncommitted’’
memory values to subsequent loads, just like the forwarding of
‘‘uncommitted’’ register values. In the case of register values, the
distributed register files served as good temporary platforms to
hold these ‘‘uncommitted’’ register values, and the create and
use masks served to enforce the dependencies between them.
But such a straightforward replication scheme will not work for
the memory system, because of the following reasons.

(1) Even if replication of data caches was feasible, we still have
the problem of maintaining consistency among the multiple
copies, and that too, with the restriction that values have to be
written onto a memory location in the order given by the
sequential semantics of the program.

(2) With register values, maintaining this consistency was easily
done by using the static create and use masks. In the
case of memory values, the number of memory locations is
much too large to permit the use of such bitmaps. Further-
more, memory addresses, unlike register addresses, are com-
puted at run time, and therefore have the aliasing problem.
Although some addresses could be disambiguated statically,
many others, especially those arising from pointer variables in
the source program, can be determined only at run time. This
is reflected in the fact that even if the data cache is decentral-
ized, we still need to do a global memory disambiguation
within the large active window.

3.4.1. Enforcing Memory Data Dependencies

To guarantee correctness of execution, before a load opera-
tion is issued, the load address has to be checked (for possible
conflicts) with the addresses of all pending stores in the same
basic window as well as the preceding active basic windows.
Whereas performing this (centralized) associative search is one
problem, the more serious problem is that the memory addresses
of some of the previous stores may not be determined yet. If
worst-case assumptions are made about possible memory hazards
and a load operation is made to wait until the addresses of all
pending stores are determined, parallelism is inhibited and perfor-
mance might be affected badly. What we need to do is to allow
for the execution of load instructions without proper disambigua-
tion, with facilities provided for recovery actions when it is deter-
mined that an incorrect value has been loaded. For this recovery,
we can use the same facility that has been provided for fast
recovery in times of incorrect branch prediction. Our analysis of



the memory traffic in programs indicates that most of the stored
values are not reloaded in the immediate future, say within the
next 100 instructions (a good compiler would keep soon-to-be-
used values in registers). Therefore, we expect that most of the
time, the unresolved loads will fetch the correct values from the
data cache/main memory.

To detect if an unresolved load fetched an incorrect value,
we need to perform global memory disambiguation within the
large active window. On first glance, this appears to be a sequen-
tial process, or one requiring a large associative search; but we
have developed a decentralized scheme for carrying this out. The
scheme, called an Address Resolution Buffer (ARB), is the solu-
tion that we settled on after considering several other options.

3.4.2. Interleaved Address Resolution Buffer

As with all other major resources, the ARB is also decen-
tralized. The ARB is a special cache for storing information
relevant to the loads and stores that have been issued from the
active large window. It is interleaved (based on the memory
address) to permit multiple accesses per cycle. Figure 3 shows
the block diagram of a 2-way interleaved ARB. Each ARB bank
would typically have provision for storing 4 - 8 addresses and
related information. Associated with each address entry is a bit-
map with twice as many bits as the number of stages. Of the 2
bits per stage, one is used for indicating if a (partially resolved)
load has been performed from the corresponding stage, and the
other is for indicating if a store has been performed from that
stage. There is also a value field associated with each address
entry to store one memory value for that location.

Within each stage, memory disambiguation is done in a
strict serial order with the help of a local queue-like structure,
which also has provision for forwarding values from stores to
loads within that stage. When a load is properly resolved locally
within its stage (automatic if each unit executes sequentially), it is
ready to be issued. When the load is issued, the addresses of the
entries in the appropriate ARB bank are associatively checked
(notice that this associative search is only 4-way or 8-way, search-
ing for a single key) to see if the same address is present in the
ARB. If the address is not present, an ARB entry is allotted to the
new address. If the address is present in the ARB, then a check is
made in its bitmap to see if an earlier store has been made to the
same address from a previous stage. If so, then it takes the value
stored in the value field of the entry. Finally, the load bit
corresponding to the stage is set to 1.

When a store is performed, a similar associative check is
performed to see if the address is already present in the ARB. If
not, an entry is allotted to the new address. The bitmap
corresponding to the store address is updated to reflect the fact
that a store has been performed from a particular stage. The value
to be stored is deposited in the value field of the bitmap. If the
store address was already present in the ARB, then a check is also
performed to see if an earlier load has been made to the same
address from a succeeding stage. If so, recovery action is initiated
so that all stages beyond the one that made the incorrect load are
nullified, and restarted. Since there is provision for storing only
one ‘‘store value’’ at a time for any address, special recovery
actions are taken when a second store request occurs to an
address.

When the stage at the head is retired, all load and store
marks corresponding to that stage are erased immediately. This
requires a facility to clear all the bits in 2 columns of the ARB in
1 cycle. Similarly, when the tail pointer is moved backwards dur-
ing recovery, the columns corresponding to the stages stepped

over by the tail pointer are also cleared immediately. An ARB
entry is reclaimed for reuse when all the load and store bits asso-
ciated with the entry are cleared.

The ARB scheme has the full power of a hypothetical
scheme that performs associative compares of the memory
addresses in the entire large window. Here also, we use the con-
cept of splitting a large task (memory disambiguation within a
large window) into smaller subtasks. Furthermore, it ties well
with our execution model. It allows speculative loads and specu-
lative stores! It also allows forwarding of memory values when
loads are performed, and all stores are effectively ‘‘cache hits’’
because the value is stored only in the ARB until its stage is com-
mitted.
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Figure 3: A Two-Way Interleaved Address Resolution Buffer

We feel that the ARB is a very powerful, decentralized
(and thus expandable) way of dynamically disambiguating
memory references. We are considering the performance impact
of set-associative mappings in the ARB, as well as other perfor-
mance implications of this ‘‘cache besides the cache’’.

3.4.3. Interleaved Data Cache

As seen from the discussion so far, conventional data
caches are not appropriate for the ESW paradigm; the exact nature
of the data caches is a subject of our future research. Currently
we propose to use an interleaved non-blocking cache similar to
the one proposed in [22].

3.5. Enforcing Control Dependencies

Dynamic branch prediction is used (if required) to fetch
new basic windows. When a conditional branch instruction or a
return instruction is executed in an IE unit, its outcome is com-
pared with the earlier prediction. If there is a mismatch, then all
subsequent windows are discarded. This is easily done by
advancing the tail pointer (of the circular stage queue) to the stage
that succeeds the one containing the mispredicted branch. In the
next cycle, the IE unit at the tail starts fetching the correct set of
instructions. Notice that the distributed future file system helps to
maintain precise states at each basic window boundary, which
eases the implementation of the recovery mechanism
significantly.



4. PERFORMANCE ISSUES

4.1. Preliminary Experimental Results

We are in the process of conducting several simulation stu-
dies, both to verify the potential of the new processor design and
to study the effects of compiler optimizations. A sound evalua-
tion of the execution model can be done only after the develop-
ment of a compiler that considers the idiosyncrasies of the model
and exploits its potential. In this section, we present some of the
preliminary results obtained in our simulation studies. These
results should be viewed as a realistic starting point.

The simulator that we developed uses the MIPS R2000 -
R2010 instruction set and functional unit latencies. All important
features of the ESW paradigm, such as the split instruction
caches, distributed address resolution buffer, and data caches,
have been included in the simulator. The simulator accepts exe-
cutable images of programs, and executes them; it is not trace
driven. Its features are listed below:
� Number of stages can be varied.
� Up to 2 instructions are fetched/decoded/issued from each of

the active IE units, every cycle; out-of-order execution is used
in each stage.

� A basic window can have up to 32 instructions.
� The data cache is 64Kbytes, direct-mapped, and has an access

latency of 2 cycles (one cycle to pass through the interconnect
between the IE units and the cache, and another to access the
ARB and the cache in parallel). The interleaving factor of the
data cache and the ARB is the smallest power of 2 that is
equal to or greater than twice the number of stages. (For
instance, if the number of stages is 6, the interleaving factor
used is 16.) The cache miss latency is 4 cycles.

� Each stage has a 4Kword L1 instruction cache.
� The L2 instruction cache has not been included in the simula-

tor; instead, we assume 100% hit ratio for the L2 instruction
cache.

� The branch prediction mechanism for conditional branches
uses the 3-bit counter scheme proposed in [19]. For effec-
tively predicting the return addresses of procedure calls, there
is a stack-like mechanism similar to the one discussed in [11],
with a stack depth of 20.

The simulator is not equipped to detect basic windows that
are supersets of basic blocks (which needs a control flow analysis
within each procedure to make sure that each basic window has
only a single entry); currently it uses basic blocks (or smaller
blocks if a basic block is larger than 32) as basic windows.

For benchmarks, we used the SPEC benchmark suite. The
benchmark programs were compiled for a DECstation 3100;
notice that the a.out executables so obtained have been com-
piled for a single-IPC machine. The C benchmarks were simu-
lated to completion; the FORTRAN benchmarks were simulated
up to approximately 1 billion instructions.

Table 1 presents the results obtained with code generated
for an ordinary single IPC machine, and with basic blocks used as
basic windows. The latter feature affects the performance of the
integer benchmarks because they contain several small basic
blocks with poor predictability, as is evident from the ‘‘Mean
Basic Block Size’’ column and the ‘‘Branch Prediction Accu-
racy’’ column. The C benchmarks are executed with 4 stages and
the FORTRAN benchmarks with 10 stages.

From Table 1 we see that, even using basic blocks as basic
windows, we get fairly impressive completion rates, ranging from
1.81 to 2.04 for the C programs, and 1.92 to 5.88 for the

FORTRAN benchmarks, even using code that is not
compiled/scheduled for our machine model. (Notice that the
actual speedup numbers would be higher because the instruction
completion rate of a conventional processor is ≤ 1.)

Table 1: Instruction Completion Rates with Unmodified Code

� ���������������������������������������������������������������������������������������������������������������
Mean No. Branch Completion

Basic Block of PredictionBenchmarks
Size Stages Accuracy Rate� ���������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������

eqntott 4.19 4 90.14% 2.04
espresso 6.47 4 83.13% 2.06
gcc 5.64 4 85.11% 1.81
xlisp 5.04 4 80.21% 1.91

� ���������������������������������������������������������������������������������������������������������������
dnasa7 26.60 10 99.13% 2.73
doduc 12.22 10 86.90% 1.92
fpppp 113.42 10 88.86% 3.87
matrix300 21.49 10 99.35% 5.88
spice2g6 6.14 10 86.95% 3.23
tomcatv 45.98 10 99.28% 3.64

� ���������������������������������������������������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

In comparing our results to other results in the literature,
we see that we are achieving issue rates similar to Butler, et. al.
[3], with similar resources but larger window sizes (our results are
slightly better in several cases), and much better than the issue
rates achieved by Smith, et. al [21]. This is despite the fact that
we include all stalls, specifically stalls due to: instruction and data
cache misses (instruction cache miss stalls cause a noticeable
degradation in performance in many schemes), data cache bank
contention (including contention due to speculative loads),
recovery due to incorrect speculative loads (we do not assume
disambiguated memory operations), and recovery due to branch
prediction with a real predictor (our predictor does not do too
well, as can be seen in Table 1), whereas the other studies make
optimistic assumptions in these cases.

We tried using more stages for the C benchmarks, and our
results improved somewhat, but not significantly (about 20-30%
increase in performance) because of our using a basic block as a
basic window, and the small average size of a basic block in the
code compiled for a single-IPC machine.

4.2. Role of the Compiler

The compiler has the opportunity to play an important role
in bringing to reality the full potential of this processing para-
digm. The compiler can introduce helpful transformations that
are tailored to the idiosyncrasies of the execution model. For
instance, if the compiler partitions the instruction stream into
basic windows that are larger than basic blocks, or if the compiler
knows how the instruction stream would be dynamically parti-
tioned into windows, it can attempt to move up within a window
the operations whose results are needed early on in the following
window. Similarly, it can perform a static memory disambigua-
tion, and push down (within a window) those loads which are
guaranteed to conflict with stores in the previous windows. Many
other ‘‘optimizations’’ are also possible. The important ones
include:

� Partition the program into basic windows that are supersets of
basic blocks and convey this to the hardware. This would
allow a more accurate expansion of the dynamic window to
get at more parallelism. (This information is present in the
control flow graph constructed by the compiler.) In case the



basic block is large, decide where to split.

� Perform static code re-scheduling based on the idiosyncrasies
of the ESW model, as described earlier. For example, pack
all dependent instructions into a basic window.

Table 2 gives a feel of the improvements we can expect to
see when some of the above points are incorporated. The results
in Table 2 were obtained by manually performing the optimiza-
tions in one or two important routines in some of the benchmarks.
Hand code scheduling was performed only for those benchmarks
which spend at least 50% of the time in a limited portion of the
code, so that manual analysis is possible. The only transforma-
tions that were performed are: (i) moving up within a basic win-
dow those instructions whose results are needed in the critical
path in the following basic windows. (Such instructions typically
include induction variables, which are usually incremented at the
end of a loop when code is generated by an ordinary compiler.)
(ii) in the cmppt routine of eqntott, we expand a basic win-
dow to a superset of 3 basic blocks. (iii) in the compl_lift and
elim_lowering routines of espresso, we consider basic win-
dows that are supersets of basic blocks.

Table 2: Instruction Completion Rates with Modified Code

���������������������������������������������������������������������������������������
No. of Prediction Completion

Benchmarks
Stages Accuracy Rate������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

4 95.58% 4.23
eqntott

8 96.14% 4.97
espresso 4 92.17% 2.30

���������������������������������������������������������������������������������������
dnasa7 10 98.95% 7.17
matrix300 10 99.34% 7.02
tomcatv 10 99.31% 4.49
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Even the simple optimizations implemented for Table 2
boost performance considerably in the cases considered —
eqntott is achieving close to 5 instructions per cycle, and
matrix300 and dnasa7 are able to sustain over 7 instructions per
cycle (the completion rate for dnasa7 has improved from 2.73 to
7.17 with this simple code scheduling). We expect that with such
simple compiler enhancements (for example facilitating the
hardware’s task of recovering part of the control structure of the
program), we will be able to double the performance of the C
benchmarks. We base our expectation on an analysis of the C
programs which suggests that expanding the basic window into a
sequence of basic blocks will not only increase the average size of
the basic window (in terms of useful instructions executed) by a
factor of about 2, but also allow us to get past of many of the
‘‘badly predicted’’ branches since they become part of the basic
window and do not prevent us from accurately expanding the
dynamic window. (Notice that the branch prediction accuracies
for eqntott in Table 2 are much better than those in Table 1 for
precisely this reason; the prediction accuracies are different for 4
and 8 stages because the exact dynamic instruction stream that
enters the IE units differs with different number of stages.) For
the FORTRAN programs, the primary impediment to greater per-
formance in most cases is the hardware limitation, though in some
cases, such as tomcatv, static memory disambiguation would
assist in reducing the cycles lost due to incorrect speculative
loads.

5. SUMMARY AND FUTURE WORK

5.1. Summary

We have proposed a new processing paradigm for exploit-
ing fine-grain parallelism. The model, which we call the Expand-
able Split Window (ESW) paradigm, shares a number of proper-
ties with the restricted dataflow machines, but was derived from
the von Neumann architecture. The essence of dynamic dataflow
execution is captured by simple data forwarding schemes for both
register and memory values. The fundamental properties of the
von Neumann architecture that we retained includes a sequential
instruction stream, which relies on inter-instruction communica-
tion through a set of registers and memory locations. The result is
a simple architecture that accepts ordinary sequential code, but
behaves as a fairly restricted dataflow machine.

We proposed an implementation of the proposed model. In
our view, the beauty of the ESW model and its implementation
lies in its realizability, not to mention its novelty. It draws heavily
on the recent developments in microprocessor technology, yet
goes far beyond the centralized window-based superscalar proces-
sors in exploiting ‘‘irregular’’ fine-grain parallelism. It has no
centralized resource bottlenecks that we are aware of. This is
very important, because many existing execution models are
plagued by the need for centralized resources. Almost all the
parts of our implementation are found in conventional serial pro-
cessors, the only exception is the Address Resolution Buffer
(ARB); yet these parts have been arranged in such a way as to
extract much more parallelism than was thought to be realistically
possible before. The ARB scheme presented in this paper is, to
the best of our knowledge, the first decentralized design for
memory disambiguation with a large window of instructions4.

Another feature of the ESW paradigm is its expandability.
When advances in technology allow more transistors to be put on
a chip, our implementation can be easily expanded by adding
more stages; there is no need to redesign the
implementation/architecture.

The performance results are also very promising. We are
able to achieve about 2 instructions per cycle, with 4 stages, for
the C programs, and more for the FORTRAN programs, with no
special code transformations, and taking all stalls that degrade
performance into account. When we applied some optimizations
suited to the ESW model to some of the benchmarks, the perfor-
mance was enhanced substantially; the completion rate increased
by a factor of 2.5 for eqntott and a factor of 2.6 for dnasa7. We
strongly feel that the ESW model has significant potential for
becoming the model of choice for future fine-grain parallel pro-
cessors. It encompasses many of the strengths of the VLIW,
superscalar, decoupled, systolic, and restricted dataflow models of
computation, and overcomes most of their drawbacks.

5.2. Future Work

We would like to conduct a series of studies to determine
what a basic window of instructions should be. Currently, we use
a single-entry call-free loop-free block of instructions as a basic
window. We are investigating the implications of removing the
‘‘loop-free’’ requirement. Studies are also needed to determine
the optimum number of stages and the maximum number of
�����������������������������������������������������������������������

4 There is an ongoing independent work on hardware support for
dynamic disambiguation of memory references in the context of a VLIW
processor in industry [6].



instructions to be issued from each IE unit in a cycle. Another
issue worth investigating is the benefit of out-of-order execution
within an IE unit when it contains a straight-line piece of code. If
a window consists mostly of dependent operations, serial execu-
tion within each IE unit might suffice, thereby saving the associa-
tive hardware and reservation stations required within each IE unit
to perform out-of-order execution.

The design of our fine-grain parallel processor is at a stage
where many of the hardware issues have been investigated, and
the arena slowly shifts to software issues. We expect to conduct
further analysis of programs for the purpose of software develop-
ment, especially a suitable compiler for the machine. We feel that
the compiler effort would not be as detailed as that required for
some other fine-grain parallel models since most of the tasks that
we ask of the compiler, such as the construction of the basic win-
dow and simple code scheduling are routinely done by compliers,
and some of the harder tasks, such as static memory disambigua-
tion are helpful, but not essential to our execution model.
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