
Design Choices in the SHRIMP System: An Empirical Study

Matthias A. Blumrich∗, Richard D. Alpert†, Yuqun Chen∗, Douglas W. Clark∗,
Stefanos N. Damianakis∗, Cezary Dubnicki∗, Edward W. Felten∗, Liviu Iftode‡,

Kai Li∗, Margaret Martonosi§, and Robert A. Shillner∗

Abstract

The SHRIMP cluster-computing system has progressed
to a point of relative maturity; a variety of applications are
running on a 16-node system. We have enough experience
to understand what we did right and wrong in designing
and building the system. In this paper we discuss some
of the lessons we learned about computer architecture,
and about the challenges involved in building a significant
working system in an academic research environment.
We evaluate significant design choices by modifying the
network interface firmware and the system software in order
to empirically compare our design to other approaches.

1 Introduction

Multicomputer and multiprocessor architectures appear
to be converging due to technological and economic
forces. A typical architecture is now a commodity
network connecting a set of compute nodes where each
node consists of one or more microprocessors, caches,
DRAMs, and a network interface. The node architectures
of different systems are not only similar to one another,
but are often commodity high-volume uniprocessor or
symmetric multiprocessor systems. This approach can
track technology well and achieve low cost/performance
ratios. In such architectures, the network interface
becomes arguably the key component that determines the
functionality and performance of communication.

1.1 Network Interface Design Challenges

An ideal network interface should have a simple design
and yet deliver communication performance close to the

∗Department of Computer Science, Princeton University, Princeton, NJ
08544

†NEC Research Institute, Princeton, NJ 08540
‡Rutgers University, Department of Computer Science, Piscataway, NJ

08855
§Department of Electrical Engineering, Princeton University,

Princeton, NJ 08544

hardware limit imposed by the nodes and the routing
network. It should support low-level communication
mechanisms upon which message-passing and shared-
memory systems, and applications perform well. It should
also provide protection in a multiprogrammed, client/server
environment. This is challenging for several reasons. First,
the network interface device sees only physical memory
whereas applications use virtual memory. Second, the
network interface is a single, physical device shared among
multiple untrusting processes, whereas the application
processes would like a private communication mechanism
to guarantee performance, reliability and protection.

Traditional network interface designs often impose large
software overhead (thousands of CPU cycles) to send and
receive a message because they rely on the operating system
kernel to obtain exclusive access, check for protection,
translate between virtual and physical addresses, perform
buffer management, create packets, and set up DMA
transfers.

The SHRIMP project studies how to design network
interfaces to satisfy the design challenges. Our approach is
to use a virtual memory-mapped communication model [12,
21], and implement it with some hardware support at the
network interface level to minimize software overhead.
Several other projects and commercial products have used
similar memory-mapped communication models, including
HP’s Hamlyn project [15], Digital’s MemoryChannel [23]
and Dolphin’s network interface. Although these efforts all
proved that the memory-mapped communication paradigm
can indeed achieve high-performance communication with
minimal software overhead, many network interface design
issues for virtual memory-mapped communication are not
well understood.

1.2 Lessons Learned

This paper reports our experimental results on a 16-
node SHRIMP multicomputer. In addition to measuring
the behavior of the system as it is, we reprogrammed the
network interface and low-level communication software to
answer “what if” questions about the design. We measured

Shrimp

K
ai is T

he M
an

SHRIMP

Figure 1. Photographs of the network interface (left) and the 16-node SHRIMP system (right)

performance with applications from four categories: using
the virtual memory-mapped communication mechanism
directly, using an NX-compatible message-passing library,
using a stream-sockets-compatible library, and using shared
virtual memory systems of several types.

Our experiments evaluate the consequences of our
architectural approach, as well as answer questions about
hardware parameters. Among the questions we consider are
the following:

• Did it make sense to build custom hardware, or could
we have gotten comparable results by using off-the-
shelf hardware and clever software?

• Was the automatic update mechanism in SHRIMP
useful, or would a simple block transfer mechanism
have given nearly the same performance?

• Was user-level initiation of outgoing DMA transfers
necessary, or could we have gotten nearly the
same performance with a simple system-call-based
approach and clever software?

• How important was our emphasis on avoiding receiver-
side interrupts?

In addition to answering these questions, we discuss other
lessons learned, including some things that consumed much
of our design time, yet turned out not to matter.

2 The SHRIMP System

The architecture of the SHRIMP system has been
described in several previous publications [10, 11, 12, 22]—
notably [9]—and will only be described in as much detail
as necessary here. Specific details of the architecture

and implementation will be described more thoroughly
throughout this paper.

2.1 Architecture

The SHRIMP system consists of sixteen PC nodes
connected by an Intel routing backplane, which is the same
as that used for the Paragon multicomputer [27]. The
backplane is organized as a two-dimensional mesh, and
supports oblivious, wormhole routing with a maximum link
bandwidth of 200 Mbytes/second [43]. The right-hand
photograph in Figure 1 shows the basic interconnection
between the nodes and the backplane. The backplane is
actually relatively small but, for convenience, we power
it with the standard Paragon cabinet which is capable of
housing a complete 64-node system.

The custom hardware components in the system consist
of the SHRIMP network interfaces (one per node), and
simple transceiver boards (not shown) to connect each
network interface to a router on the backplane. The
transceiver boards are necessary because the PCs and
the backplane are on separate power supplies, requiring
differential signaling between them.

The SHRIMP network interface (Figure 1) consists of
two boards because it connects to both the Xpress memory
bus [28] and the EISA I/O bus [6]. The memory-bus board
simply snoops all main-memory writes, passing address and
data pairs to the EISA-bus board. The EISA-bus board
contains the bulk of the hardware, and connects to the
routing backplane. Figure 2 shows the principal datapaths
of the network interface.

Three important aspects of the DEC 560ST PCs used to
construct the SHRIMP system bear mentioning. First, the
60 MHz Pentium processor has a two-level cache hierarchy
that snoops the memory bus and remains consistent with

Page
Outgoing

P
ac

ke
ti

zi
n

g

A
rb

it
er

Page
Table

Incoming

Engine
DMA

Incoming

Format
and

Send

Interface

Interface
Network

Chip

Bus
EISA

IN
T

E
R

C
O

N
N

E
C

T

Engine
Update

Deliberate

Table Outgoing
FIFO

X
p

re
ss

 (
M

em
o

ry
)

B
u

s

Snoop
Logic

E
IS

A
 (

I/O
)

B
u

s

Figure 2. Basic architecture of the SHRIMP network interface

all main memory transactions, including those from the
network interface. Second, the caches can be specified to
operate in write-back, write-through, or no-caching mode
on a per-page basis. Third, the memory bus does not cycle-
share between the CPU and any other main memory master.

The SHRIMP network interface was designed to work
in concert with the communication programming model,
called Virtual Memory-Mapped Communication (VMMC),
in order to provide an efficient, high-performance
communication subsystem. The following description takes
a top-down approach, beginning with VMMC.

2.2 Communication Model

Buffers and Import/Export The basic VMMC model
supports direct data transfer to receive buffers, which
are variable-sized regions of contiguous virtual memory.
In order to receive data to a receive buffer, a process
exports the buffer together with a set of permissions.
Any other process with proper permission can import the
receive buffer to a proxy receive buffer, which is a local
representation of the remote receive buffer.

Deliberate Update In order to transfer data, a process
specifies a virtual address in its memory, a virtual
address within a proxy receive buffer, and a transfer size.
This causes the communication subsystem to transfer a
contiguous data block of the specified size starting at the
specified memory address to the remote receive buffer
indicated by the specified proxy address (subject to buffer
size restrictions). Such a transfer is called deliberate update
because the transfer is initiated explicitly.

Automatic Update Alternatively, a portion of virtual
memory can be bound to an imported receive buffer (or
portion thereof) such that all writes to the bound memory
are automatically transferred to the remote receive buffer as
a side-effect of the local memory write. This mechanism

is called automatic update because no explicit transfer
initiation is required. Due to implementation restrictions,
automatic update bindings (also called mappings) must be
page-aligned on both the sender and receiver.

Notifications VMMC allows a process to enable
notifications for an exported receive buffer. This causes a
control transfer to a specified user-level handler whenever
a message is received for that buffer. Notification control
transfers are similar in semantics to Unix signals. The
system provides no guarantee as to when the notification is
delivered to user level, and it does not prevent the received
data from being over-written. However, it does provide
queueing of multiple notifications. Exporting processes
can optionally block and un-block notifications, but not for
individual receive buffers.

2.3 Implementation

The SHRIMP network interface (Figure 2) supports the
basic communication mechanisms of the VMMC model.
There is a thin user-level library layer that implements
the actual application programming interface (API) of the
model for high-level libraries and applications.

Buffers and Import/Export The export implementation
pins virtual pages of the receive buffer to physical pages.
The import implementation allocates an Outgoing Page
Table (OPT) entry for each page of the proxy receive buffer,
and configures the entries to point to the remote physical
pages of the actual receive buffer.

Deliberate Update An application or user-level library
initiates a deliberate update transfer by using the network
interface’s user-level DMA mechanism [10]. By executing
a two-instruction load/store sequence to special I/O-mapped
addresses, the application tells the SHRIMP DMA engine
the source, destination, and size of the desired transfer.

Protection is guaranteed by a combination of page-mapping
tricks and simple error checking in the network interface
hardware.

Automatic Update To implement automatic update, the
network interface maintains a one-to-one mapping between
physical memory page numbers and OPT entries. This
allows a write that is snooped off of the memory bus to
address the OPT directly and obtain a remote physical page
number. To implement an automatic update binding, the
OPT entries corresponding to the bound memory pages
are simply modified to point to the remote physical pages,
and enabled for automatic update. Any writes to pages
whose corresponding entries are not enabled for automatic
update are snooped, but ignored. The network interface
has a mechanism to combine consecutive automatic updates
within a single page or during a specified number of cycles
into a single packet.

Notifications To enable notifications, the interrupt bits are
set in the Incoming Page Table (IPT) entries corresponding
to the pages of an exported receive buffer. An arriving
packet causes an interrupt when an interrupt bit in the
packet’s header (controlled by the sender) is set, and the
interrupt bit in the destination page’s IPT entry (controlled
by the receiver) is also set. When an interrupt occurs, a
single system-level handler is invoked to decide where to
deliver the user-level notification. Note that the sender’s
interrupt request bit for an automatic update packet is stored
in the OPT, while deliberate update allows the bit to be
dynamically set as part of an explicit transfer initiation.

3 Applications and Experiments

We have implemented several high-level communication
APIs and systems on the SHRIMP multicomputer,
including the native VMMC library [21], an NX message-
passing library [2], a BSP message-passing library [3],
a Unix stream sockets compatible library [17], a Sun-
RPC compatible library [7], a specialized RPC library [7],
and Shared Virtual Memory (SVM) [25, 26]. Each
API implementation takes advantage of the low-overhead,
user-level communication mechanisms on the system and
supports a few applications.

In this paper we selected applications based on four
different APIs: VMMC, NX, Stream sockets, and SVM.
The primary selection criterion is whether there is a
noticeable amount of time spent on communication. Table 1
shows the selected applications and their characteristics.
Each of these applications has two versions: one using
automatic update and another using deliberate update.
We have selected small problem sizes for our evaluation
purposes. We use the following applications:

Comm Problem Seq Exec
Application API Size Time (sec)

Barnes-SVM SVM 16K bodies 121.3
Ocean-SVM SVM 130×130 12.8
Radix-SVM SVM 2M keys, 3 iters 14.3
Radix-VMMC VMMC 2M keys, 3 iters 10.9
Barnes-NX NX 4K bodies, 20 iters 149.9
Ocean-NX NX 514×514, 1×10−3 69.2
DFS-sockets Sockets 4 clients 6.9
Render-sockets Sockets 167×63×34 13.8

Table 1. Characteristics of the applications used
in our experiments. (Ocean-NX does not run on a
uniprocessor; two-node running time is given)

Barnes-SVM This application is from the SPLASH-2
benchmark suite [46]. It uses the Barnes-Hut hierarchical
N-body method to simulate the interactions among a system
of particles over time. The computational domain is
represented as an octree of space cells. The leaves of the
octree contain particles, and the particles and space cells
are distributed to processors based on their positions in
space. At each time step of the simulation, the octree is
rebuilt based on the current positions of the bodies and each
processor computes the forces for the particles which have
been assigned to it by partially traversing the tree.

Ocean-SVM This fluid dynamics application is also from
the SPLASH-2 suite. It simulates large-scale ocean
movements by solving partial differential equations at
each time-step. Work is assigned to processors by
statically splitting the grid and assigning a partition to
each processor. Nearest-neighbor communication occurs
between processors assigned to adjacent blocks of the
grid. The matrix is partitioned in blocks of n/p whole,
contiguous rows.

Radix-SVM This is another kernel from the SPLASH-
2 suite. It sorts a series of integer keys into ascending
order. The dominant phase of Radix is key permutation. In
Radix a processor reads its locally-allocated n/p contiguous
keys from a source array and writes them to a destination
array using a highly scattered and irregular permutation.
For a uniform distribution of key values, a processor writes
contiguous sets of n

r∗p keys in the destination array (where
r is the radix used); the r sets that a processor writes
are themselves separated by p − 1 other such sets, and
a processor’s writes to its different sets are temporally
interleaved in an unpredictable way. This write pattern
induces substantial false-sharing at page granularity.

Radix-VMMC A port of the SPLASH-2 integer radix
sort kernel to the VMMC API. The versions for automatic
update and deliberate update differ in the method by which
sorted keys are distributed. In the automatic update version,
each processor distributes its keys by placing them directly
into arrays on remote processors using automatic update
mappings. In the deliberate update version, the keys for
each remote processor are gathered into large message
transfers, and scattered by remote processors.

Ocean-NX A message-passing version of the algorithm
described in Ocean-SVM.

Barnes-NX A message-passing version of the algorithm
described in Barnes-SVM. Because this implementation
uses an octree data structure, running on more than eight
nodes introduces communication in what would otherwise
be a compute-only phase, limiting speedup. This is also
evident in the significant performance degradation caused
by interrupts on each send (see Table 2).

DFS-sockets This application is a distributed cluster file
system implemented on top of stream sockets. The file
system uses the disks of all nodes to store data, and the
memory of all nodes to cache data cooperatively. The file
system uses the VMMC sockets library, which includes
some non-standard extensions for block transfers. A
synthetic workload is created by running client threads on
half of the nodes; the client threads read large files. Caches
are “warmed up” before the experiment begins, and the
workload is chosen so that the working set of a client thread
is larger than the memory of a single node, but the collective
working sets of all clients will fit in the total memory of the
nodes. Thus there are many node-to-node block transfers
but no disk I/O in the experiments.

Render-sockets This is a Parallel Fault Tolerant Volume
Renderer [4] which does dynamic load-balancing and runs
in a distributed environment. Render-sockets is based on a
traditional ray-casting algorithm for rendering volumetric
data sets. It consists of a controller processor that
implements a centralized task queue and a set of worker
processors that remove tasks from the queue, process them
and send the results back to the controller processor. The
data set is replicated in all worker processors and is loaded
at connection establishment.

Figure 3 shows up to 16-processor speedups for several
applications we have run on the SHRIMP system. For each
application, we measured both the automatic update and
deliberate update implementations, and plotted the version
with the better speedup.

1 4 8 16

Processors

0

4

8

12

Sp
ee

du
p

Ocean-NX (AU)
Radix-VMMC (AU)
Barnes-NX (DU)
Radix-SVM (AU)
Ocean-SVM (AU)
Barnes-SVM (AU)

Figure 3. Speedup curves for a variety of
applications running on SHRIMP

4 Experience and Design Issues

This section describes some key design issues, and what
we have learned in building the SHRIMP network interface.
When feasible, we evaluate our decisions via experimental
evidence using the applications described in Section 3. In
order to do the evaluation, we altered the network interface
features by reprogramming its firmware and its low-level
software libraries, to approximate the behavior of alternate
designs.

4.1 Did It Make Sense to Build Hardware?

With nearly any major hardware project in a research
environment, a central question is invariably “did it make
sense to build hardware?”

In our case, the answer is “yes” for two main reasons.
The first reason is performance. Our communication has
better latency than several commercial network interfaces
such as Myrinet [13], even though our nodes are old
60 MHz, EISA-bus based Pentium PCs and our network
interface was designed in 1993. SHRIMP has a deliberate
update latency of 6 µs, while the best latency achieved
with 166 MHz, PCI-bus based Pentium PCs and Myrinet
network interfaces running our optimized firmware for the
same API [20] is slightly under 10 µs. Except for the
automatic update mechanism, both systems implement the
same VMMC API. The latency of SHRIMP is substantially
better than that of the Myrinet system, even though the

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Overhead

Lock

Barrier

Communication

Computation

H
LR

C
4.4

H
LR

C
-A

U

4.4

A
U

R
C

4.8

Barnes-SVM

H
LR

C

4.2

H
LR

C
-A

U

4.3

A
U

R
C

5.5

Ocean-SVM

H
LR

C

2.9

H
LR

C
-A

U

2.9

A
U

R
C

5.2

Radix-SVM

DU

2.7

AU

9.2

Radix-vmmc

DU

5.6

AU

5.8

Ocean-NX

DU

6.1

AU

5.4

Nbody-NX

0

20

40

60

80

100

120
N

orm
alized E

xecution T
im

e

Figure 4. Comparing automatic update with deliberate update in three cases on a 16-node SHRIMP system:
shared virtual memory, native VMMC, and NX message-passing library

nodes in the SHRIMP system are much slower than those
in the Myrinet system.

Another reason for building hardware is that it allowed
us to experiment with automatic update and compare it
with deliberate update. Our network interface is the only
one we know of that implements a virtual memory-mapped
automatic update mechanism. By having such a feature, we
could experiment on a real system with real applications to
understand whether it is a good idea, what the performance
implications are, and what design decisions make sense.

In short, we feel that building this system was useful,
since it allowed us to experiment and learn things that would
have remained unknown otherwise.

4.2 Was Automatic Update a Good Idea?

There are two principal advantages to automatic update
communication. First, it has extremely low latency.
The end-to-end latency is just 3.71 µs for a single-word
transfer between two user-level processes [9]. Second,
it can eliminate the need to gather and scatter data. In
particular, large data structures that are written sparsely
can be exported in their entirety, and mapped remotely for
automatic update.

We built three implementations to evaluate the impact of
using automatic update support to improve the performance
of shared virtual memory [34]. The first implements the
HLRC protocol [47] which uses only deliberate update
communication. The second is similar to the first except that
it uses automatic update to propagate the diffs transparently
as they are produced, instead of buffering them and
sending them explicitly using deliberate update messages.

We call this approach HLRC-AU. The third approach
implements the Automatic Update Release Consistency
(AURC) protocol [25]. This implementation eliminates
diffs entirely and uses automatic update mappings to
propagate updates eagerly to home pages.

The left-hand side of Figure 4 compares the three SVM
implementations using three different applications on the
16-node SHRIMP system. The number on top of each
bar indicates the speedup relative to a sequential run. The
benefit of omitting diffs and relying on the automatic update
mechanism (as in AURC) is quite large (9.1%, 30.2%, and
79.3%). AURC outperforms HLRC for applications that
exhibit a large degree of write-write false sharing. These
applications pay a significant amount of overhead on diffing
in the HLRC case, whereas the AURC implementation
does not have a noticeable increase in computation time
or network contention due to write-through mapping and
automatic update traffic. Moreover, by eliminating the diff
computation at synchronization events, the AURC approach
reduces the synchronization waiting time, compared to
HLRC. This overhead reduction further accounts for the
observed performance improvement. On the other hand,
using the automatic update mechanism to simply propagate
diffs in the HLRC-AU case has very little benefit compared
with HLRC. In fact, in some cases it it can slightly hurt the
performance.

Another case showing the benefit of the automatic
update mechanism is Radix-VMMC (radix sort using the
native VMMC API). As illustrated on the right-hand side
of Figure 4, the automatic update version improves the
speedup of deliberate update by a factor of 3.4.

Application System Call Cost

Barnes-SVM 23.2%
Ocean-SVM 17.7%
Radix-SVM 2.3%
Radix-VMMC 5.9%
Barnes-NX 52.2%
Ocean-NX 10.1%
Render-sockets 6.8%

Table 2. Execution time increase on 16 nodes due
to requiring a system call for every message sent

There are two principal drawbacks to our automatic
update implementation which limit its usefulness for
supporting higher-level APIs other than shared virtual
memory. First, the send and receive buffers must have
the same alignment with respect to page boundaries,
and second, the hardware does not guarantee consecutive
ordering when a deliberate update transfer initiation is
followed by an automatic update transfer. In this case,
ordering is determined by memory bus sharing between
the CPU and the network interface’s Deliberate Update
Engine (Figure 2).

Our experiences to date have shown that automatic
update is not so helpful for applications using high-level
message-passing libraries such as NX and stream sockets.
These applications tend to do large message sends in
which the latency of the data movement itself is much
more significant than the message initiation overhead. We
have written versions of these libraries that use automatic
update instead of deliberate update as the bulk data transfer
mechanism. Comparing the performance of these two
versions, we found that although automatic update delivers
lower latency, this effect is often overridden by the DMA
performance of deliberate update.

4.3 Was User-Level DMA Necessary?

Designing and building the User-Level DMA (UDMA)
mechanism was a major focus of the SHRIMP effort. The
primary goal of this was to reduce send-side overhead. We
were able to reduce the send overhead to less than 2 µs for
60 MHz Pentium PC nodes that use the EISA bus.

In this section, we evaluate the benefit of UDMA over
kernel-level approaches. To isolate the effects of kernel-
level vs. user-level implementations, we wrote a kernel-
level driver that simulates what the software would do in
a SHRIMP-like architecture that lacked UDMA. We then
modified the SHRIMP software library to call this kernel
driver before each message send. With this kernel-level
implementation, we measured application performance and

Application Notifications Total Messages %

Barnes-SVM 779,136 2,394,690 33%
Ocean-SVM 35,624 473,003 8%
Radix-SVM 161,627 386,671 42%
Radix-VMMC 0 2,160 0%
Barnes-NX 10,623 1,024,124 1%
Ocean-NX 11,380 1,007,342 1%
DFS-sockets 0 3,931,894 0%
Render-sockets 0 65,015 0%

Table 3. Per-application characterization of
notification, and notifications as a percentage of
total messages (16 nodes)

compared it to performance of the actual SHRIMP system.
Table 2 summarizes the results of this experiment. It

shows that the additional system call increases the execution
time by 2% to 52%, depending on the application.

4.4 How Important is Interrupt Avoidance?

Another major system design goal was to minimize
the number of receive-side interrupts. In many cases,
no interrupts are required. Some communication models,
however, rely on receive-side interrupts as part of every
message arrival, so interrupts cannot be eliminated. For
these cases, we provide the ability to attach an optional
“notification” to each message.

How often are notifications used? The SVM
implementation relies on the notification mechanism. As
a result, we see in Table 3, a significant fraction of the
messages invoke notifications. In contrast, the sockets and
VMMC applications do not use notifications at all. Instead,
they rely on polling to detect the arrival of data.

How much do we save by avoiding receive-side per-
message interrupts? To answer this next question, we
modified VMMC so that every arriving message causes an
interrupt, which triggers a null kernel-level handler. Table 4
gives the extra cost imposed by these extra interrupts.
The slowdown varies between roughly negligible and 25%,
depending on the application. Note that a real system
would exhibit higher overhead than this since it would have
to do some work in the interrupt handler. If interrupts
are necessary on each packet rather than each message,
overheads will be even higher in some cases.

Application Slowdown

Barnes-SVM 18.1%
Ocean-SVM 25.1%
Radix-SVM 1.1%
Radix-VMMC 0.3%
Barnes-NX 6.3%
Ocean-NX 15.7%
DFS-sockets 18.3%
Render-sockets 8.5%

Table 4. Execution time increase due to requiring
an interrupt for every message arrival. All data is
for 16 nodes except for Barnes-NX (8 nodes)

4.5 Other Design Issues

We saw above that some of the areas where we focused
our effort were fruitful, leading to very significant benefits
in practice. On the other hand, there were some issues on
which we spent considerable time that ended up having a
minimal impact on performance. This subsection considers
some of these issues.

4.5.1 Automatic Update Combining

As discussed in the previous section, the two main
advantages of automatic update are low latency and implicit
scatter/gather of data. In order to achieve the lowest latency,
the basic automatic update mechanism creates a packet for
every individual store, and launches it immediately. As
a result, large automatic update transfers suffer a loss of
bandwidth because each packet generates an individual bus
transaction at the receiver.

However, when automatic update is used to send a large
amount of data, the focus is not necessarily on achieving
the lowest possible latency. In this case, the network
interface hardware can automatically combine a sequence
of consecutive stores into a single packet to improve the
bandwidth. Although large packets have a higher latency,
they make efficient use of data streaming on the backplane
and burst DMA at the receiver.

Automatic update combining is specified on a per-page
basis in the outgoing page table when a binding is created.
The basic combining mechanism accumulates consecutive
stores into a single packet until either a non-consecutive
store is performed, a page boundary is crossed, a specified
sub-page boundary is crossed, or a timer expires.

We ran Radix-VMMC and several AURC SVM
applications using automatic update with and without
combining. In all cases, enabling combining had less than
a 1% effect on overall performance. This is because these
applications write sparsely, so very little combining takes

place. Additionally, the lazy character of the SVM protocol
makes combining even less effective.

In the absence of deliberate update, however, combining
is very helpful for applications that would otherwise use
deliberate update. These applications send large messages
to contiguous addresses—an ideal situation for combining.
For example, DFS-sockets runs about a factor of two slower
when forced to use automatic update without combining.

4.5.2 Outgoing FIFO Capacity

The Outgoing FIFO (Figure 2) was included in the design
of the network interface in order to provide flow control for
automatic update. The Xpress memory bus connector that
the network interface uses does not allow a memory write
to be stalled, so some sort of buffer for automatic update
packets is required. Furthermore, we need some mechanism
to keep this buffer from overflowing.

To prevent overflow, the network interface generates an
interrupt when the amount of data in the FIFO exceeds
a programmable threshold. The system software is then
responsible for de-scheduling all processes that perform
automatic update until the FIFO drains sufficiently.

The lower bound on Outgoing FIFO capacity is the
memory write bandwidth multiplied by the time it takes the
CPU to recognize the threshold interrupt. On our system,
the lower bound is roughly 1K bytes, so a large FIFO is not
required.

However, the software flow control is costly, so it is
desirable to choose a FIFO capacity that minimizes its
occurrence. The FIFO drains faster than it fills, so the only
way it can overflow is if it is unable to drain. There are
two ways this can happen. First, incoming packets have
top priority for access to the NIC, so the FIFO cannot drain
when an incoming packet is arriving. Second, the FIFO may
be unable to drain if there is network contention.

The first scenario is unlikely to occur on the
SHRIMP system because the memory bus cannot share
cycles between the CPU and the network interface.
Therefore, incoming packets effectively block the CPU
from performing automatic update writes to memory. The
second scenario is likely to occur under conditions of high
communication volume, especially when there is a many-
to-one communication pattern. In this case, there is a
tradeoff between FIFO capacity and threshold interrupt
frequency, and that tradeoff is application dependent.

When designing the SHRIMP network interface, we
decided to use 4K-byte-deep, 1-byte-wide FIFO chips
because they represented the knee in the price/capacity
curve at that time. The Outgoing FIFO is actually 8 bytes
wide in order to keep up with the memory bus burst
bandwidth, so its total capacity is 32K bytes.

We ran our applications with the FIFO size set artificially

to 1K bytes, and there was no detectable difference in
performance compared to the normal-sized FIFO. This
occurred because our applications have relatively low
communication requirements.

4.5.3 Deliberate Update Queueing

The SHRIMP deliberate update mechanism operates by
performing user-level DMA [10] transfers from main
memory to the network interface. Transfers of up to a
page (4K bytes) are specified with two user-level memory
references to proxy memory, which is mapped to the
network interface. Protection of local and remote memory
is provided through proxy memory mappings.

A significant drawback of this protection scheme is that
deliberate update transfers cannot cross local or remote
page boundaries, since protection is enforced by the ability
to reference proxy pages. Therefore, large data transfers
must be performed as multiple, individual deliberate update
transfers.

This drawback can be overcome by adding a queue on
the network interface to store deliberate update transfer
requests. This adds some complexity to the design, since it
requires an associative memory to allow the host operating
system to check whether a particular page is involved in
a transfer request. To avoid incorrect data transfers, the
operating system must avoid replacing any page that is
involved in a pending transfer request.

To evaluate queueing, we implemented a 2-deep queue
on the SHRIMP network interface. We tested several SVM
applications because we expected them to benefit the most
(due to their small transfer sizes). To expose the effect
of queueing we used asynchronous sends, i.e. the send
operation returned without waiting until the data was sent
to the network.

The impact of queueing on performance was very
small—within 1% of the total execution time. We suspect
this is because the memory bus in our PCs cannot be cycle-
shared between the CPU and I/O. As a result, even if
the CPU wants to initiate multiple message transfers with
queueing, it must compete for the memory bus with the
ongoing DMA.

5 Related Work

Spanning the areas of communications research, parallel
system design, and parallel software, the research in this
paper relates to several large bodies of prior work. Here we
discuss a selection of closely-related papers.

A key contribution of this paper is an empirical design
retrospective based on a working 16-node SHRIMP system.
In that sense, this paper can be categorized along with
previous design evaluations of research machines such

as the DASH multiprocessor [32], the Illinois Cedar
machine [31], the MIT Alewife multiprocessor [1], and
the J-machine multicomputer [37]. SHRIMP has leveraged
commodity components to a much greater degree than
J-machine, Cedar, Alewife or even DASH, thus this paper
focuses primarily on evaluating its custom hardware support
for communication.

In terms of networking fabric, the Intel Paragon
backplane used in SHRIMP is admittedly not “commodity”
hardware, but to first-order it resembles (both in design
and performance) current commodity networks such as
Tandem’s ServerNet [40] and Myrinet [13].

At the network interface, SHRIMP uses its automatic
and deliberate update mechanisms to support particular
parallel programming models and constructs. This work
relates to several prior efforts. Spector [39] proposed a
remote memory reference model to perform communication
over a local area network and the implementation is
programmed in a processor’s microcode. This model has
been revived by Thekkath et al. [41] using fast traps.
Druschel et al. [19] proposed the concept of application
device channels which provide protected user-level access
to a network interface. U-Net [5] uses a similar abstraction
to support high-level protocols such as TCP/IP.

The automatic update mechanism in SHRIMP is derived
from the Pipelined RAM network interface [35], but is
able to perform virtual memory-mapped communication
and map DRAM memory instead of dedicated memory on
the network interface board. SHRIMP’s automatic update is
also similar to MemoryChannel (developed independently
and concurrently at Digital), in which memory updates
are automatically reflected to other nodes [23]. Page-
based automatic-update approaches were also used in
Memnet [18], Merlin [36], SESAME [45], Plus [8] and
Galactica Net [29]. These prior systems did not, however,
provide for both automatic and deliberate update.

This paper also quantifies the relationship
between particular low-level hardware primitives and the
performance of the higher-level software they support. As
with active messages [44], SHRIMP’s mechanisms provide
low-level support for fast communication and for effective
overlap of communication with computation. The “sender-
based” communication in Hamlyn also supports user-level
message passing, but places more burden on application
programs by requiring them to construct their own message
headers [15].

Some previous machines have worked to streamline the
hardware-software interface by mapping network interface
FIFOs into processor registers [14, 24, 37]. Such
approaches go against SHRIMP’s goal of using commodity
CPUs. A slightly less integrated approach—mapping
FIFOs to memory rather than registers—was employed in
the CM-5 [42]. CM-5 implementation restrictions limited

the degree of multiprogramming, however, and applications
were still required to construct their own message headers.

Finally, at the applications level, our software
evaluations draw on prior work on several programming
models. The shared virtual memory used here relates to
a significant body of prior SVM research [16, 30, 33, 47].
We also leverage off of the NX model for message passing
programs [38].

6 Conclusions

We constructed a 16-node prototype SHRIMP system
and experimented with applications using various high-
level APIs. We found that the SHRIMP multicomputer
performs quite well for applications that do not perform
very well with traditional network interfaces.

Using applications built on four different communication
APIs, we evaluated several of our design choices. We
learned several lessons, many of which we would not have
learned without building the real system.

• The virtual memory-mapped communication model
allows applications to avoid taking receive-side
interrupts and to avoid using explicit receive calls.
This improves application performance significantly.

• Building custom hardware was difficult, but it allowed
us to achieve significantly better performance than was
possible with off-the-shelf hardware, and it allowed us
to evaluate issues like automatic update vs. deliberate
update, which would not have been possible otherwise.

• The automatic update mechanism is quite useful for
applications using the native VMMC API and for
shared virtual memory applications, but it does not
help message-passing applications, which perform
better when using a high-performance deliberate
update communication mechanism.

• The user-level DMA mechanism can significantly
reduce the overhead of sending a message, and
leads to significantly better performance than even
an aggressive kernel-based implementation. On the
other hand, many of our ideas about how to design
an aggressive kernel-based implementation came from
our study of SHRIMP.

• The automatic update combining mechanism can
significantly reduce the network traffic by combining
consecutive updates into a single packet. Combining
is most useful when the automatic update mechanism
is used to replace the deliberate update mechanism
for bulk data transfers. But combining provides little
performance benefit for SVM applications and our

Radix-sort application which uses the native VMMC
API. This result surprised us.

• We see no application performance improvements
with a hardware mechanism to queue multiple
asynchronous deliberate update requests because the
memory bus in our PCs cannot be cycle-shared
between the CPU and I/O.

• We learned that a small outgoing FIFO is adequate
for our network interface due to both the existence
of FIFOs in the network interface chip and the
constrained bus arbitration strategy of the PC nodes in
our system.

Although some of these results were what we expected,
others took us by surprise. Building and using the system
gave us a much better understanding of the design tradeoffs
in cluster architectures.

We look forward to greater insight as we continue to use
the SHRIMP system.

7 Acknowledgements

This project is sponsored in part by ARPA under grant
N00014-95-1-1144, by NSF under grant MIP-9420653,
and by Intel Corporation. Edward Felten is supported by
an NSF National Young Investigator Award and a Sloan
Fellowship. Margaret Martonosi is supported in part by an
NSF Career award.

We would like to thank Paul Close, George Cox and
Justin Rattner for helping us access the routing network
technology used in the Intel Paragon multicomputer,
David Dunning and Roger Traylor for patiently helping
us understand the details of the Intel iMRC and NIC,
and Konrad Lai and Wen-Hann Wang for helping us
understand the Pentium memory subsystem. Malena
Mesarina designed an experimental version of the network
interface, and David Oppenheimer contributed with system
programming and testing. We also would like to thank
David DeWitt, Richard Lipton, and Jeffrey Naughton for
their help to start the research project, and Michael Carey
for his contribution of the acronym SHRIMP.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson,
D. Kranz, J. Kubiatowicz, B. Lim, K. Machenzie, and
D. Yeung. The MIT Alewife Machine: Architecture and
Performance. In Proceedings of the 22nd Annual Symposium
on Computer Architecture, pages 2–13, May 1995.

[2] Richard Alpert, Cezary Dubnicki, Edward W. Felten, and
Kai Li. Design and Implementation of NX Message Passing
Using SHRIMP Virtual Memory-Mapped Communication.
In Proceedings of the International Conference on Parallel
Processing, August 1996.

[3] Richard Alpert and James Philbin. cBSP: Zero-Cost
Synchronization in a Modified BSP Model. Technical Report
97-054, NEC Research Institute, February 1997.

[4] J. Asplin and S. Mehus. On the Design and Performance
of the PARFUM Parallel Fault Tolerant Volume Renderer.
Technical Report 97-28, Univerity of Tromso, Norway,
January 1997.

[5] A. Basu, Buch V, Vogels W, and von Eicken T. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 15th Symposium on
Operating Systems Principles, pages 40–53, December
1995.

[6] BCPR Services Inc. EISA Specification, Version 3.12, 1992.

[7] Angelos Bilas and Edward W. Felten. Fast RPC on
the SHRIMP Virtual Memory Mapped Network Interface.
IEEE Transactions on Parallel and Distributed Computing,
February 1997.

[8] R. Bisiani and M. Ravishankar. PLUS: A Distributed
Shared-Memory System. In Proceedings of the 17th Annual
Symposium on Computer Architecture, pages 115–124, May
1990.

[9] Matthias A. Blumrich. Network Interface for Protected,
User-Level Communication. PhD thesis, Department
of Computer Science, Princeton University, June 1996.
Available as Technical Report TR-522-96.

[10] Matthias A. Blumrich, Cezary Dubnick, Edward W. Felten,
and Kai Li. Protected, User-Level DMA for the SHRIMP
Network Interface. In IEEE 2nd International Symposium on
High-Performance Computer Architecture, pages 154–165,
February 1996.

[11] Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten,
Kai Li, and Malena Mesarina. Virtual-Memory-Mapped
Network Interfaces. IEEE MICRO, 15(1):21–28, February
1995.

[12] Matthias A. Blumrich, Kai Li, Richard D. Alpert, Cezary
Dubnicki, Edward W. Felten, and Jonathan S. Sandberg.
Virtual Memory Mapped Network Interface for the Shrimp
Multicomputer. In Proceedings of the 21st Annual
Symposium on Computer Architecture, pages 142–153, April
1994.

[13] Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and
Wen-King Su. Myrinet: A Gigabig-per-Second Local Area
Network. IEEE MICRO, 15(1):29–36, February 1995.

[14] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T.
Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin,
P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: An
Integrated Solution to High-Speed Parallel Computing. In
Proceedings of Supercomputing ’88, pages 330–339, 1988.

[15] Greg Buzzard, David Jacobson, Milon Mackey, Scott
Marovich, and John Wilkes. An Implementation of
the Hamlyn Sender-Managed Interface Architecture. In
Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 245–260, October 1996.

[16] John B. Carter, John K. Bennett, and Willy Zwaenepoel.
Implementation and Performance of Munin. In Proceedings
of the 13th Symposium on Operating Systems Principles,
pages 152–164, October 1991.

[17] Stefanos N. Damianakis, Cezary Dubnicki, and Edward W.
Felten. Stream Sockets on SHRIMP. In Proc. of 1st Intl.
Workshop on Communication and Architectural Support for
Network-Based Parallel Computing (Proceedings available
as Lecture Notes in Computer Science 1199), February 1997.

[18] G. S. Delp, D. J. Farber, R. G. Minnich, J. M. Smith, and
M. C. Tam. Memory as a Network Abstraction. IEEE
Network, 5(4):34–41, July 1991.

[19] P. Druschel, B. S. Davie, and L. L. Peterson. Experiences
with a High-Speed Network Adapter: A Software
Perspective. In Proceedings of SIGCOMM ’94, pages 2–13,
September 1994.

[20] Cezary Dubnicki, Angelos Bilas, Kai Li, and James Philbin.
Design and Implementation of Virtual Memory-Mapped
Communication on Myrinet. In Proceedings of the IEEE
11th International Parallel Processing Symposium, April
1997.

[21] Cezary Dubnicki, Liviu Iftode, Edward W. Felten, and
Kai Li. Software Support for Virtual Memory-Mapped
Communication. In Proceedings of the IEEE 8th
International Parallel Processing Symposium, April 1996.

[22] Edward W. Felten, Richard Alpert, Angelos Bilas,
Matthias A. Blumrich, Douglas W. Clark, Stefanos N.
Damianakis, Cezary Dubnicki, Liviu Iftode, and Kai Li.
Early Experience with Message-Passing on the Shrimp
Multicomputer. In Proceedings of the 23nd Annual
Symposium on Computer Architecture, pages 296–307, May
1996.

[23] Richard B. Gillett. Memory Channel Network for PCI. IEEE
Micro, 16(1):12–18, February 1996.

[24] Dana S. Henry and Christopher F. Joerg. A Tightly-
Coupled Processor-Network Interface. In Proceedings of
5th International Conference on Architectur al Support for
Programming Languages and Operating Systems, pages
111–122, October 1992.

[25] Liviu Iftode, Cezary Dubnicki, Edward Felten, and Kai
Li. Improving Release-Consistent Shared Virtual Memory
using Automatic Update. In Proceedings of IEEE 2nd
International Symposium on High-Performance Computer
Architecture, February 1996.

[26] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope
Consistency: A Bridge between Release Consistency and
Entry Consistency. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures, June
1996.

[27] Intel Corporation. Paragon XP/S Product Overview, 1991.

[28] Intel Corporation. Express Platforms Technical Product
Summary: System Overview, April 1993.

[29] Andrew W. Wilson Jr. Richard P. LaRowe Jr. and Marc J.
Teller. Hardware Assist for Distributed Shared Memory. In
Proceedings of 13th International Conference on Distributed
Computing Systems, pages 246–255, May 1993.

[30] P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Consistency
for Software Distributed Shared Memory. In Proceedings
of the 19th Annual Symposium on Computer Architecture,
pages 13–21, May 1992.

[31] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.-Q Zhu,
A. Veidenbaum, J. Konicek, P. Yew, K. Gallivan, W. Jalby,
H. Wijshoff, R. Bramley, U.M. Yang, P. Emrath, D. Padua,
R. Eigenmann, J. Hoefinger, G. Jaxon, Z. Li, T. Murphy,
J. Andrewes, and S. Turner. The Cedar System and an
Initial Performance Study. In Proceedings of the 20th Annual
Symposium on Computer Architecture, pages 213–223, May
1993.

[32] Daniel Lenoski, James Laudon, Truman Joe, David
Nakahira, Luis Stevens, Anoop Gupta, and John Hennessy.
The Stanford DASH Prototype: Logic Overhead and
Performance. IEEE Transactions on Parallel and Distributed
Systems, 4(1):41–61, January 1993.

[33] Kai Li. IVY: A Shared Virtual Memory System for Parallel
Computing. In Proceedings of the 1988 International
Conference on Parallel Processing, volume II Software,
pages 94–101, August 1988.

[34] Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. In Proceedings of the 5th Annual
ACM Symposium on Principles of Distributed Computing,
pages 229–239, August 1986. A revised version appeared
in ACM Transactions on Computer Systems, 7(4):321–359,
November 1989.

[35] Richard Lipton and Jonathan Sandberg. PRAM: A Scalable
Shared Memory. Technical Report CS-TR-180-88, Princeton
University, September 1988.

[36] Creve Maples. A High-Performance, Memory-Based
Interconnection System For Multicomputer Environments.
In Proceedings of Supercomputing ’90, pages 295–304,
November 1990.

[37] Michael D. Noakes, Deborah A. Wallach, and William J.
Dally. The J-Machine Multicomputer: An Architectural

Evaluation”. In Proceedings of the 20th Annual Symposium
on Computer Architecture, pages 224–235, May 1993.

[38] Paul Pierce. The NX Message Passing Interface. Parallel
Computing, 20(4), April 1994.

[39] Alfred Z. Spector. Performing Remote Operations
Efficiently on a Local Computer Network. Communications
of the ACM, 25(4):260–273, April 1982.

[40] ServerNet Interconnect Technology.
http://www.tandem.fi/product/snet1.htm, 1997.

[41] Chandramohan A. Thekkath, Henry M. Levy, and Edward D.
Lazowska. Separating Data and Control Transfer in
Distributed Operating Systems. In Proceedings of the
4th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 2–
11, November 1994.

[42] Thinking Machines Corporation. Connection Machine CM-5
Technical Summary, November 1992.

[43] Roger Traylor and Dave Dunning. Routing Chip Set for
Intel Paragon Parallel Supercomputer. In Proceedings of Hot
Chips ’92 Symposium, August 1992.

[44] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. In Proceedings of the
19th Annual Symposium on Computer Architecture, pages
256–266, May 1992.

[45] Larry D. Wittie, Gudjon Hermannsson, and Ai Li. Eager
Sharing for Efficient Massive Parallelism. In Proceedings of
the 1992 International Conference on Parallel Processing,
pages 251–255, August 1992.

[46] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. In
Proceedings of the 20th Annual Symposium on Computer
Architecture, pages 24–37, Santa Margherita Ligure, Italy,
June 1995.

[47] Yuanyuan Zhou, Liviu Iftode, and Kai Li. Performance
Evaluation of Two Home-Based Lazy Release Consistency
Protocols for Shared Virtual Memory Systems. In
Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 75–88, October 1996.

