
Appears inProceedings of the 4th Int’l Symposium on High Performance Computer Architecture, Las Vegas, NV, Feb 1-4, 1998.

The Sensitivity of Communication Mechanisms
to Bandwidth and Latency

Frederic T. Chongy, Rajeev Barua?, Fredrik Dahlgrenz, John D. Kubiatowicz�, and Anant Agarwal?
?Massachusetts Institute of Technology

yUniversity of California at Davis
zChalmers University of Technology
�University of California at Berkeley

Abstract

The goal of this paper is to gain insight into the relative performance
of communication mechanisms as bisection bandwidth and network
latency vary. We compare shared memory with and without prefetch-
ing, message passing with interrupts and with polling, and bulk trans-
fer via DMA. We present two sets of experiments involving four ir-
regular applications on the MIT Alewife multiprocessor. First, we
introduce I/O cross-traffic to vary bisection bandwidth. Second, we
change processor clock speeds to vary relative network latency.

We establish a framework from which to understand a range of re-
sults. On Alewife, shared memory provides good performance, even
on producer-consumer applications with little data-reuse. On ma-
chines with lower bisection bandwidth and higher network latency,
however, message-passing mechanisms become important. In partic-
ular, the high communication volume of shared memory threatens to
become difficult to support on future machines without expensive,
high-dimensional networks. Furthermore, the round-trip nature of
shared memory may not be able to tolerate the latencies of future
networks.

1 Introduction

Shared memory and message passing offer two different mechanisms
for communication on distributed memory multiprocessors. Each
mechanism has further variants such as shared memory with prefetch-
ing, message passing using polling, interrupts, and bulk data trans-
fer. Because the effectiveness of communication mechanisms and
their use by parallel applications has a first-order effect on the perfor-
mance of parallel applications, much research in the past decade has
focused on their implementation and evaluation. We now understand
to a much greater extent than before the implementation tradeoffs.
Many research and commercial machines also sport various combi-
nations of mechanisms. For example, machines such as the BBN
Butterfly have long supported shared memory and bulk transfer, the
Cray T3E [27] supports both shared memory and messaging styles
of communication, the Stanford Dash [18] supports shared memory
and prefetching, MIT Alewife [1], Fugu [20], and the Wisconsin Ty-
phoon [25] support several variants of shared memory and messaging
styles.

The availability of machines with multiple mechanisms has led
to an increasing amount of insight on the effectiveness of the vari-
ous mechanisms for different applications [6] [11] [28] [30] [15] [8].
Message passing mechanisms, usually in the form of user-level ac-

This work was done while the authors were at MIT and was funded in part by NSF grant #
MIP-9504399, in part by ARPA contract # N00014-94-1-0985, and in part by a NSF Pres-
idential Young Investigator Award to Anant Agarwal. Contact:chong@cs.ucdavis.edu.

tive messages and efficient bulk-transfer of data, offer good perfor-
mance on programs with known communication patterns since data
can be communicated when produced rather than when requested by
the program, thereby allowing the program to hide communication
latency with useful computation. Messaging also allows combin-
ing synchronization with data transfer, and provides support for fast
message-passing based synchronization libraries. However, it suffers
from higher overhead for fine-grained data transfers. Bulk transfers,
in turn, often requires expensive copying to and from buffers when
transfer data is not consecutive. Cache-coherent shared memory pro-
vides efficient fine-grained (cache-line sized) data transfer and re-use
of remote data using automatic caching, but suffers significant over-
head when shared data is frequently modified on different processors,
rendering caching ineffective, and causing a large amount of cache-
coherency related invalidations and updates.

Most of the available insight on the relative performance of com-
munication mechanisms, however, is specific to a given machine or
a given application. Furthermore, because of the difficulty of port-
ing applications and building machines, simulators, or emulators with
many mechanisms, relative comparisons are often available only for a
subset of the mechanisms. Because the relative effectiveness of com-
munication mechanisms is also tied to basic machine parameters such
as available bandwidth and latency, not surprisingly, various studies
offer differing conclusions on the relative effectiveness of the mecha-
nisms on the same application. For example, the simulation study of
Chandra, Rogers, and Larus [6] using a basic machine model similar
to the CM5 found that message passing EM3D performed roughly a
factor of two better than the shared memory version. The two mech-
anisms were more or less indistinguishable on Alewife for the same
application. Consequently, more general insights on the relative mer-
its of the mechanisms have been elusive.

1.1 Objective

The goal of this paper is to provide insight into the relative effec-
tiveness of various communication mechanisms for several applica-
tions over a modest range of communication latencies and bandwidth.
The results are obtained with real applications on a real machine,
whose parameters are varied through carefully designed scaling ex-
periments. In a sense, we are using the machine as an emulator for
other hypothetical machines. In particular, we analyze the impact
of communication mechanisms on performance by evaluating four
programs that are written using a variety of programming techniques
on the MIT Alewife machine with 32 processors. The programming
styles include shared memory with and without prefetching, message
passing with interrupts, with polling, and with bulk transfer via DMA.
To help explain the relative performance of various mechanisms, we
also present the breakdowns of the relevant constituent components

for each communication mechanism.
Our sensitivity experiments attempt to capture the communica-

tion performance of applications on machines with different design
points, such as machines with different processor speeds, network la-
tencies, and network bandwidth. We change processor clock speeds
keeping the network latency constant to understand the effect of net-
work latency. We also use context-switching and delay loops to study
the relative effect of varying communication latency even further. We
emulate machines with different bisection bandwidth by introducing
cross-traffic from IO nodes to vary bisection bandwidth. This exper-
iment also provides insights on how applications behave in multipro-
grammed systems with background traffic from other applications.

Although several of these mechanisms have been studied in iso-
lation, such as a comparison of shared memory and message pass-
ing barriers in terms of speeds of the barriers themselves, and a
simulation-based study on the impact of integrating bulk transfer in
cache-coherent multiprocessors (see Section 6 for details), this paper
is the first to study real, hardware-based, efficient implementations of
all these communication mechanisms on real applications in exactly
the same framework. The sensitivity study in this paper also helps
relate previous results presented by other researchers for specific de-
sign points, and also provides insights into the relative performance
of communication mechanisms for other machine design points.

1.2 Preview

Our results confirm that the relative performance of several parallel
communication mechanisms can be highly dependent upon machine
parameters. For example, we find that shared memory performance
is sensitive to the ratio of network bisection bandwidth and proces-
sor speed, while message passing performance is largely insensitive.
This result is important because this sensitivity occurs in the range of
ratios of network bisection and processor speeds exhibited by several
extant research and commercial machines. ForEM3D, this sensitivity
results in the performance of shared memory varying by about 30 per-
cent; for high ratios both shared memory and message passing have
roughly equal performance, while that of shared memory degrades by
30 percent when the ratio is reduced by 60 percent.

In general, we find that shared memory offers better or compa-
rable performance to message passing for machine parameters in the
range of contemporary machines. The performance of message pass-
ing, on the other hand, is more robust to variations in the ratios of
processor to network latencies and bandwidth. Although preference
of programming styles might be the ultimate factor, messaging works
well even on machines with lower bisections and higher latencies, and
thus might be the mechanism of choice for low-cost machines.

The rest of the paper is as follows. Section 2 begins with some
intuition about how we expect communication mechanisms to be af-
fected by bandwidth and latency. Section 3 describes the hardware
platform used in this study and the parallel communication mecha-
nisms studied. While Section 4 discusses the four applications and
the results obtained on them on the unaffected MIT Alewife mul-
tiprocessor, Section 5 makes a parametric comparison which varies
bandwidth and latency. Section 6 relates our results to previous work,
while section 7 concludes.

2 Performance Impact of Programming Models

We would like to begin this study by developing an intuition about
how various communication mechanisms (and their concomitant pro-
gramming models) are affected by variations in network bandwidth
and latency. In the next section, we will spend time discussing the
experimental platform and communication mechanisms explored for
this study. For now, however, we considershared memoryandmes-
sage passingin general terms.

In this paper, “shared memory” refers to the presence of hardware
which automatically translates load or store instructions to shared
data into messages which fetch this data. As an artifact of the commu-
nication model, shared-memory references typically incur round-trips
latencies in the network.Prefetchingprovides one standard technique
for tolerating network latency: it increases performance by requesting
data before it is needed, thereby overlapping computation and com-
munication. Another technique for tolerating network latency is to
use a relaxed memory consistency model such as release consistency,
which allows a node to have multiple pending memory accesses and
to overlap the memory accesses with computation. That is gener-
ally not allowed by sequential consistency, which is the most intu-
itive memory model for the programmer. Many shared-memory im-
plementations also permitcachingof shared data; this has the effect
of depressing the overall volume of communication for applications
which exhibit sufficient locality.

“Message passing” refers to communication which isasyn-
chronousandunacknowledged. Message-passing applications com-
municate by interactions with the network interface (or operating sys-
tem). To send a message, these applications must first construct, then
launch the message. At the receiver, messages are extracted from the
network interface either by a polling thread or an interrupt handler.
Note that, in contrast to shared memory, message-passing commu-
nication requires only a single pass through the network. Also, in
contrast to shared memory, message passing exhibits higher commu-
nication overhead, since messages must be constructed explicitly in
software.

2.1 Variations of Bisection Bandwidth

Figure 1 illustrates how we expect the performance of communica-
tion mechanisms to scale on our applications as bisection bandwidth
varies with respect to processor speed. TheShared Memorycurve
is indicative of performance for applications either with or without
prefetching. TheMessage Passingcurve is indicative of applications
using interrupts, polling, or bulk transfer. Because shared memory
consumes more bandwidth than message passing, we expect its per-
formance to degrade more quickly. We see three possible regions of
performance:

Latency Hiding: In this region, decreases in bisection bandwidth
are hidden by low communication volume or parallelslacknessin the
computation. That is, the application always does useful computa-
tion while waiting for communication to travel through the network.
Consequently, application performance is unaffected by increasing
network latencies in this region.

Latency Dominated: In this region, decreases in bisection band-
width results in higher communication latency which can not be hid-
den with useful computation. In message-passing communication,
this may happen because there is too much latency and not enough
parallel work. In shared-memory based on sequential consistency, la-
tency can often not be hidden because the processor is stalled upon a
reference to data that is not in the cache. In an invalidation protocol,
the processor must wait for at least one roundtrip set of messages for
any reference.

Congestion Dominated: In this region, congestion in the net-
work accounts for more of the degradation in performance than the
linear decrease in bisection bandwidth on the X-axis. As bandwidth
decreases, messages stay in the network longer and congestion in-
creases non-linearly. We expect the Congestion Dominated region to
occur earlier in shared memory because, as we shall see in the next
section, it requires up tosix times as much communication volume as
message-passing on the same application.

2

Congestion
Dominated

Latency
Dominated

Shared
Memory

Bisection Bandwidth

A
pp

lic
at

io
n

R
un

tim
e

Latency
Hiding

Latency
Dominated

Congestion
Dominated

Message
Passing

Latency
Hiding

Figure 1: Regions of performance in processor cycles
as bisection bandwidth varies

Latency
Dominated

Shared
Memory

Network Latency

A
pp

lic
at

io
n

R
un

tim
e

Latency
Hiding

Latency
Dominated

Message
Passing

Latency
Hiding

Shared
Memory
w/ Prefetch

Figure 2: Regions of performance in processor cycles
as network latency varies

2.2 Variations in Latency

We also expect our mechanisms to tolerate network latency differ-
ently. This is illustrated in Figure 2. Once again, we see regions
where latency is hidden and where it is not. The one-way nature of
message passing allows for the best latency hiding. Latency only be-
comes an issue when lack of parallelism in the application causes
waiting for message results. Under sequential consistency, shared
memory does not hide latency without prefetching. Furthermore,
prefetching hides latency less well than message passing, depending
upon the user or compiler to predict future references. Because mes-
sage passing and prefetching can have some number of outstanding
requests, the slope of their performance degradation is shallower than
that for shared memory without prefetching.

3 Experimental Platform

In this study, we made use of the MIT Alewife machine[1]. Alewife
provides a unique opportunity to explore the behavior of a number of
different communication mechanisms in a single hardware environ-
ment. In the following, we first discuss the Alewife architecture, then
proceed to describe the communication mechanisms that we used in
the rest of the paper.

3.1 The Alewife Multiprocessor

Figure 3 shows an overview of the architecture. The nodes in an
Alewife machine can communicate via either shared memory or mes-
sage passing. Each node consists of a Sparcle processor (a modified
SPARC), a floating point unit, 64K bytes of direct-mapped cache with
a line size of 16 bytes, 8M bytes of DRAM, an Elko-series 2D-mesh
routing chip (EMRC) from Caltech, and a custom-designed Commu-
nication and Memory Management Unit (CMMU). This paper uses a
32-node version of the Alewife machine with a 20MHz Sparcle pro-
cessor and EMRC network routers operating with a per-link band-
width of 40M bytes/second.

As shown in Figure 3, the single-chip CMMU is the heart of an
Alewife node. It is responsible for coordinating message passing and
shared memory communication as well as handling more mundane
tasks such as DRAM refresh and control. It implements Alewife’s
scalable LimitLESS cache coherence protocol under sequential con-
sistency, and provides Sparcle with a low-latency interface to the net-
work. To communicate via shared-memory, users simply read/write
from the shared address space; the CMMU takes care of the details of

acquiring remote data and caching the results locally. Similarly, users
send and receive messages by accessing hardware network queues
directly through the CMMU.

To aid experiments, the CMMU contains hardware statistics coun-
ters that allow non-intrusive monitoring of a wide-array of machine
parameters and application performance characteristics. Sample
statistics include parameters such as network bandwidth consump-
tion, cache hit ratios, memory wait time, and breakdowns of network
packet types. Also supported are profiling statistics such as number of
cycles spent synchronizing. Access to statistics is provided through
simple, command-line facilities which are integrated with the normal
Alewife execution environment.

3.2 Communication Mechanisms

Alewife provides an integration of both shared-memory and message-
passing communication mechanisms. In this study, we employ the
following communication mechanisms: message passing with inter-
rupts and polling, bulk transfer via DMA, and shared memory with
and without prefetching. We will briefly describe how each of these
operates on the Alewife machine.

Message passing with interrupts:For message passing, Alewife
supports active messages [10] of the form:

sendam(proc, handler, args...)

which causes a message to be sent to processorproc, interrupt the
processor, and invokehandlerwith args. An active message with a
null handler, no body and no arguments, only takes 102 cycles plus
.8 cycles per hop. The Alewife network interface (within the CMMU
memory controller) can hold up to fourteen 32-bit arguments for an
active message.

When a message arrives, the receiving processor is interrupted
and it runs the handler associated with the message. This interrupt-
driven approach is the most intuitive notion of active messages, but
processor interrupts can be very expensive.

Message passing with polling:Active messages come in two fla-
vors, those received via interrupt and those received via polling. In
fact, on systems such as the Thinking Machines CM5 [29], the ex-
pense of interrupts led to the predominant use of polling. For active-
message reception via polling, the receiving processor is computing
along its main thread of computation, and if messages arrive they
are deferred until the computation reaches a point where the user or
compiler has explicitly inserted a polling call in the code. We use the

3

Directory

Distributed

Private

Memory

Cache

FPU

Network
Router

Alewife node

CMMU

Sparcle

Shared

Distributed

Memory

HOST

VME
Host Interface

SCSI Disk Array

Miss Home # Inv. hw/ Miss Penalty
Type Location Msgs sw Cycles �sec

local 0 hw 11 0.55
remote 0 hw 38 1.90

Load remote (2-party) 1 hw 42 2.10
remote (3-party) 1 hw 63 3.15

remote – swy 425 21.25
local 0 hw 12 0.60
local 1 hw 40 2.00

remote 0 hw 38 1.90
Store remote (2-party) 1 hw 43 2.15

remote (3-party) 1 hw 66 3.30
remote 5 hw 84 4.20
remote 6 sw 707 35.35

y This sw read time represents the throughput seen by a single node
that invokes LimitLESS handling at a sw-limited rate.

Typical shared memory miss penalties

Figure 3: The MIT Alewife multiprocessor

Remote Queues abstraction [4], which supports polling with selective
interrupts for system messages.

Bulk transfer: Bulk transfer is accomplished in Alewife by
adding(address, length)pairs that describe blocks of data to the end
of an active message. The CMMU uses a DMA mechanism to append
this data to the outgoing message, after the handler arguments. On the
receive side, the handler is invoked with its arguments and may either
direct the CMMU to store the data to memory via DMA or consume
the data directly from the network interface.

Shared Memory: Alewife provides sequentially-consistent
shared memory using the LimitLESS cache-coherence protocol. The
LimitLESS hardware directly tracks up to five copies of data, trap-
ping into software for data items that are more widely shared. A
shared-memory read miss handled in hardware takes 42 or 63 proces-
sor cycles depending on whether the block is dirty or clean, plus 1.6
cycles per hop in the network to the processor where the data resides.
The table in Figure 3 summarizes shared memory costs on Alewife.

Shared Memory with Prefetching: As a means to tolerate mem-
ory latency, Alewife supports non-binding software prefetch of both
read-shared and read-exclusive data through special prefetch instruc-
tions. These instructions take an address and check to see if data for
this address is present on the local node; if not, theyinitiate a trans-
action to fetch this data into a local prefetch buffer but do not wait
for data to return. Later references to the data will transfer it from the
prefetch buffer into the cache.

4 Alewife-Specific Results

In this section, we describe our applications and their performance
on Alewife. This will give us a starting point from which to vary
bandwidth and latency in Section 5. Figure 4 summarizes the per-
formance of each communication mechanism on each of our four
applications. Execution time is broken down into four components
(from bottom); (i)computetime including cache hits, (ii)memory +
NI wait time which includes all time the processor is stalled wait-
ing for cache misses and network interface resources, (iii)message
overhead, which is the processor overhead to send and receive mes-
sages, or the gather-scatter copying time at bulk transfers, and finally
(iv) synchronizationtime, including barriers, locks, and spinning on
synchronization variables.

Overall, we see that shared memory mechanisms performed well,

even though our irregular computations have little data re-use and are
data-driven. This is primarily because of the low remote-miss penalty
on Alewife, which makes shared memory a data-transfer mechanism
competitive with message passing.

The impact of prefetching depends heavily on the computation
to communication ratio, and while it is low inEM3D leading to a
significant performance boost, it is much higher for the other applica-
tions. In the case ofICCG, the low ratio of remote data causes most
prefetches to be useless, and add overhead, thus slowing down the
prefetching version.

Bulk transfer fails to achieve a significant advantage on any appli-
cation. The irregularity of the applications makes gather-scatter copy-
ing costs and idle time a significant factor. Gather-scatter costs can
be as high as 60 cycles per 16-byte cache line of data. With shared-
memory and message-passing overheads as low as 100 cycles, bulk
transfer shows little gain on Alewife.

On applications with high messaging overhead, polling worked
well versus message-passing with interrupts. OnICCG, in particular,
frequent asynchronous message interrupts produced uneven proces-
sor progress and high synchronization times. We also observe this
effect, to a lesser degree, onEM3D andUNSTRUC.

The remainder of this section provides brief application descrip-
tions and more detail on performance results.

4.1 EM3D

EM3D from Berkeley models the propagation of electromagnetic
waves through three-dimensional objects [21]. It uses an implicit red-
black computation on an irregular bipartite graph.EM3D is iterative,
and is barrier-synchronized between two phases. Communication is
taking place because of data being updated within one phase that will
be used by other nodes in the subsequent phase.

Our versions are based on the code from the University of Wis-
consin [6]. Program parameters are 10000 nodes, degree 10, 20 per-
cent non-local edges, span of 3, and 50 iterations.

EM3D with Message Passing
Our message passing implementations perform a communication

step in each phase, making sure that all non-local data needed in the
phase is available before any computation starts.

4

int-mp poll-mp bulk sm pre-sm

EM3D

0

5

10

15

M
C

yc
le

s

synch
message overhead
memory + NI wait
compute

int-mp poll-mp bulk sm pre-sm

UNSTRUC

0

200

400

600

800

1000

M
C

yc
le

s

int-mp poll-mp bulk sm pre-sm

ICCG

0

2

4

6

8

M
C

yc
le

s

int-mp poll-mp bulk sm pre-sm

MOLDYN

0

500

1000

1500

M
C

yc
le

s

Figure 4: Summary of performance on Alewife

Our fine-grained message-passing implementations communicate
five double-words at a time with an active message.

Our bulk-transfer implementation explicitly gathers communi-
cation data into a contiguous buffer for subsequent DMA transfer.
EM3D allows for large enough DMA transfers to cover for the gather-
ing overhead. Once the data arrives, preprocessing of the data struc-
tures allows it to be used in-place. This preprocessing code, however,
is extremely complex and represents high coding effort.

EM3D with Shared Memory
The shared memory implementation ofEM3D is much simpler

because neither preprocessing code nor any pre-communication step
are required. Barriers provide synchronization between phases and
iterations.

Prefetching was inserted as follows. A write-prefetch is issued
to get write-ownership of data structures before the computation for
that data begins. In addition, read prefetches were used to fetch two
values two computations ahead of use. Inserting these prefetches was
straightforward, requiring only 3 lines of code.

EM3D Performance
For EM3D, the results in figure 4 show that for Alewife, shared-

memory performs competitively to message-passing. Bulk-transfer
gains from lower overheads of DMA transfer, but pays the costs of
message aggregation and software caching. The fine grained versions
suffer from higher message overhead, which offset the benefits from
avoiding copying for message aggregation.

EM3D is our only application which benefits significantly from
prefetching. As explained earlier in this section, this stems from its
low ratio of computation to communication, making gains in commu-
nication time more significant.

4.2 UNSTRUC

UNSTRUCsimulates fluid flows over three-dimensional physical ob-
jects, represented by an unstructured mesh [24]. The code operates
uponnodes, edgesbetween nodes, andfacesthat connect three or four
nodes. We usedMESH2K as an input dataset, a 2000 node irregular
mesh provided with the code.

The shared-memory versions obtained were optimized for data
distribution and privatization. The message-passing versions were
developed from the shared-memory versions.

Every edge of the graph results in 75 single-precision FLOPs of
computation, with 3 single-precision results for each node. The high
computation-to-communication ratio, which is significantly higher
than bothEM3D andICCG, makes good performance likely.

UNSTRUCwith Message Passing
The fine-grained message-passing implementation uses active

messages to both read and write remote values while computing val-
ues for an edge. Remote reads are done prior to the computation
phase rather than on request, thus avoiding round trips needed for a
read-on-request model. Remote writes are used to write the results
back to remote nodes as soon as produced.

In the bulk transfer implementation ofUNSTRUC, gather and scat-
ter steps are necessary to copy node values into the contiguous arrays
used for bulk transfer. Active messages are used, and an entire array
of values is transferred via DMA. The values are used in-place once
the data arrives at its destination buffer.

UNSTRUCwith Shared Memory
The shared-memory implementation is similar to the fine-grained

message-passing implementation, but without the code for buffering
the receive message data. This results in savings in buffer manage-
ment code and memory usage.

5

Our prefetching implementation inserts two write prefetches, two
edge-computations ahead, to get write ownership of upcoming node
values. Prefetching required only minor code modifications.

UNSTRUCPerformance
We note that the shared memory implementations do not perform

better than message-passing despite their avoidance of message ag-
gregation and extra buffering. This is primarily because they incur
locking overhead while protecting updates to shared node data. Mes-
sage passing avoids locking as the non-interruptible nature of han-
dlers automatically provides mutual exclusion of writes.

Compared to bulk-transfer, the fine-grained versions avoid mes-
sage aggregation overhead, but have higher message handling over-
heads. The lower per-message overhead of the polling version allows
it to outperform the interrupt based version.

4.3 ICCG

ICCG is a general iterative sparse matrix solver using conjugate gra-
dient preconditioned with an incomplete Cholesky factorization. It
performs a graph computation, where each node of the graph repre-
sents the solution (by substitution) for an unknown in a sparse linear
system. Each graph node must wait for all of its incoming edges to
be communicated, perform a 2 FLOP computation for each edge, and
then communicate data along its outgoing edges.

We measure the performance of theICCG sparse triangular solve
kernel running on a large structural finite-element matrix, theBC-
SSTK32 2-million element automobile chassis, obtained from the
Harwell-Boeing benchmark suite [9].

We started from existing parallelICCG algorithms [14] [26]. Im-
plementation details are available in [7].

ICCG with Message Passing
The ICCG computation graph is essentially a dataflow computa-

tion [2] and is easily implemented via active messages. For each
node in its local memory, a processor keeps track of when all incom-
ing edges have been satisfied, whereafter the outgoing edges can be
processed.

Bulk transfer is also straightforward. We buffer up multiple non-
local edges into buffers in memory, one buffer for each processor that
edges are destined for. Unfortunately, this buffering incurs significant
cost in memory operations and idle time.

ICCG with Shared Memory
In the shared-memory model, the program must be extended with

synchronizations to coordinate multiple processors providing updated
edges to the same node. We use aproducer-computesmodel, in which
the producer of the edge value also makes the corresponding updates
to the node value using shared memory. We use a spin-lock per node
to enforce atomicity. In our implementation, up to four messages
are required for every non-local edge and additional messages may
also be required to successfully acquire the spin lock. On Alewife,
the lock request can be piggy-backed on the write ownership request.
For prefetching, two write prefetches were inserted two nodes ahead
of our computation loop.

ICCG Performance
ICCG shows the largest improvement from interrupts to polling

for message passing. The low computation-to-communication ratio
of ICCG results in a large number of messages, which makes interrupt
overhead significant. Polling cuts this overhead by about 35 percent.
More importantly, interrupts cause dramatically more synchroniza-
tion time than polling, because of the large load imbalance caused by
asynchronous interrupts [5]. Polling provides greater control of mes-
sage reception, which allows for a more balanced computation [4].

The other mechanisms also avoid load imbalance. Shared memory
mechanisms do not use interrupts and are similar to polling. Bulk
transfer uses fewer messages than finer-grained message-passing and
thus few interrupts.

4.4 MOLDYN

MOLDYN is a molecular dynamics application developed by the
University of Maryland and the University of Wisconsin [24]. A
molecule’s position is determined by its own velocity and the force
employed by other molecules within a certain cut-off radius. The
molecules are distributed between the processing nodes using the
RCB algorithm [3], minimizing the communication.

The force of a molecule is affected by all its interactions with
other molecules, and can therefore be updated by both local and re-
mote processors, while the coordinates are written by one processor
but potentially read by many.

MOLDYN with Message Passing
The bulk-transfer implementation sends the coordinates of local

molecules to a remote node that calculates all interactions between
molecules from the two nodes. The remote node collects force-deltas
to each molecule, and then returns them in a bulk transfer.

In the fine-grained implementation, we tried a version which in-
terleaves communication and computation, but we found that the
message handlers tied up network resources for too long and caused
network congestion. Instead, we implemented a communication
phase similar to bulk transfer, attempting to overlap sending and re-
ceiving of messages.

MOLDYN with Shared Memory
The shared-memory version is a straight-forward implementation,

where each node reads all interacting molecules’ coordinations, cal-
culates force-deltas in one phase, and in another phase updates the
forces of its own molecules based on force-deltas from other nodes.

Prefetching was inserted as follows. For writes to remote force-
delta locations, those locations were write-prefetched to gain exclu-
sive write ownership, one iteration prior to when they were actually
written. Remote coordinates were similarly read-prefetched one iter-
ation prior to use.

MOLDYN Performance
The high computation-to-communication ratio ofMOLDYN tends

to mask differences in our implementations. On Alewife, however,
interrupts had trouble receiving messages quickly enough to avoid
network congestion. Although polling often worked well, bursty traf-
fic forces us to be conservative when inserting polling calls.

The shared-memory versions used locks to protect writes to
shared data, which worked well because of low lock-contention.
Because computation is dominant, the prefetching version did only
about one percent better despite static knowledge of remote data.

5 Parametric Experiments

The previous section presented detailed comparisons of communica-
tion mechanisms on the Alewife multiprocessor. To the extent that
Alewife is a “balanced” architecture indicative of future trends, our
comparisons are interesting. In general, however, the relative perfor-
mance of shared memory and message passing are dependent upon
the relative speeds of processors, memory systems, network inter-
faces, and network switches in a particular multiprocessor design. In
Section 2, we developed an intuition about how multiprocessor com-
munication mechanism scale with network bandwidth and latency.
This intuition focused upon Figures 1 and 2. In this section, we would
like to explore the space of these figures by measuring the variation

6

Machine Proc Network Bisection Bandwidth Network Remote Local
Type clock Interconect Mbytes/ bytes/ Latency Miss Miss

(32 Processors) (MHz) Topology second cycle (cycles) Penalty Penalty

MIT Alewife 20.0 4� 8 Mesh 360 18.0 15 50 11
TMC CM5 33.0 4-ary Fat-Tree 640 19.4 50 N/A 16
KSR-2 20.0 Ring 1000 50.0 ? 126 18
MIT J-Machine 12.5 4� 4� 2 Mesh 3200 256.0 7 N/A 7
MIT M-Machine #100.0 4� 4� 2 Mesh 12800 128.0 10 154 21
Intel Delta 40.0 4� 8 Mesh 216 5.4 15 N/A 10
Intel Paragon 50.0 4� 8 Mesh 2800 56.0 12 N/A 10
Stanford DASH 33.0 2� 4 480 14.5 31 120 30

4-proc clusters
Stanford FLASH *200.0 4� 8 Mesh 3200 16.0 62 352 40
Wisconsin T0 #200.0 none simulated N/A N/A 200 1461 40
sWisconsin T1 #200.0 none simulated N/A N/A 200 401 40
Cray T3D 150.0 4� 2� 2 Torus 4800 32.0 15 100 23

2-proc clusters
Cray T3E 300.0 4� 4� 2 Torus 19200 64.0 110 300-600 80
SGI Origin 200.0 Hypercube 10800 54.0 60 150 61

4-proc clusters

* projected, # simulated, latencies given in processor cycles.

Network Latencyis for one-way network transit time of a 24-byte packet.Remote Miss Penaltyis an average of best- and
worst-case write misses. Full references can be found in MIT technical memo MIT-LCS-TM-562.

Table 1: Parameter estimates for various 32-processor multiprocessors

in performance for different versions of our applications as a function
of network parameters.

We present three sets of experiments on the Alewife machine to
investigate scaling of communication performance. First, we examine
the variations incommunication volumeproduced by different com-
munication mechanisms. Second, we varynetwork bandwidthby in-
troducing cross traffic to simulate reduced network bandwidth and
increased congestion. Finally, we varynetwork latencyby altering
the clock speed of the processing nodes to change the relative latency
of the network.

Before we begin, however, we might ask the following question:
Why do different research studies report contradictory results when
comparing communication mechanisms? As shown in Table 1, the
answer is that machines have widely differing parameters, thereby in-
habiting vastly different regions of the communications performance
space.

5.1 Communication Volume

As a first step toward exploring the performance space, we measure a
key statistic: communication volume. Communication volume is the
amount of data injected into the network over the course of an exe-
cution. Figure 5 shows the average communication volume for each
version of each of our applications. Although shared memory pro-
vides the most performance for the coding effort, it also causes a sig-
nificantly higher strain on network bandwidth than message passing
or bulk transfer. That increase in communication volume, however,
would be lower for systems with a larger cache line size for most ap-
plications. Figure 5 further breaks the communication volume into
the following four components:

1. Invalidates – all traffic associated with invalidating cached
copies of remote data.

2. Requests– read, write, and modify requests.

3. Headers (for data)– all message headers for message passing;
message headers for cache-line transfers for shared memory.

4. Data – message-passing payload and shared-memory cache
lines.

Message interrupts and polling produce the same message vol-
ume, since they send the same messages, but only receive them dif-
ferently. Bulk transfer saves on message headers. Note, however, that
bulk transfer forICCG loses the saving in header traffic to padding
in the payload. DMA on Alewife requires double-word alignment,
which ends up producing a significant effect onICCG’s small bulk
transfers.

Where message passing uses a single message to communicate a
value along each edge of a graph problem, shared memory (using an
invalidation protocol) must use at least four: the writer must inval-
idate the reader’s copy, the reader acknowledges the invalidate, the
reader later requests a valid copy, and the write responds with valid
copy. Additional messages may be required if the writer must in-
validate cached copies on more than one reader. Additional traffic
is generated when spin-locks are necessary to enforce atomic read-
modify-writes.

Interestingly, this increased volume does not impact performance
on Alewife. Even when message-passing traffic causes enough net-
work congestion to cause message queue overflows, the correspond-
ing shared memory traffic does not cause congestion. The key factor
is occupancyat the endpoints. Shared memory pulls messages out of
the network much faster than message passing, resulting in a clearer
network even at higher volume. As we shall see in the next section,
however, the effect of low occupancy can only compensate for net-
work bandwidth up to a point.

5.2 Bisection Bandwidth Emulation

In this section, we show that decreasing bisection bandwidth causes
shared-memory performance to degrade more quickly than message-
passing performance, resulting in a cross-over point when other
Alewife parameters are held constant.

Using background cross-traffic, we emulate the performance of
systems with lower bisection bandwidth (per processor cycle) than
Alewife. In addition to compute nodes, Alewife has I/O nodes which
can be added in columns at either side of the 2-dimensional mesh.
We use these I/O nodes to send messages from the edges of the 2D
mesh across the bisection in both directions (see Figure 6). On a
32-node machine, the network has 8 nodes in the X-direction and 4

7

int-mp poll-mp bulk sm pre-sm

EM3D

0

1

2

M
B

yt
es

invalidates
requests
headers (for data)
data

int-mp poll-mp bulk sm pre-sm

UNSTRUC

0

10

20

30

40

50

M
B

yt
es

int-mp poll-mp bulk sm pre-sm

ICCG

0

200

400

600

K
B

yt
es

int-mp poll-mp bulk sm pre-sm

MOLDYN

0

5

10

15

20

M
B

yt
es

Figure 5: Communication volume for each mechanism

I/O NodesCompute Nodes

I/O

Bisection Bandwidth

I/O Nodes

Traffic
I/O

Traffic

Figure 6: I/O cross-traffic experiment

5 10 15 20
Bisection (bytes/Pcycle)

15

16

17

18

19

20

M
C

yc
le

s

EM3D

int-mp 8
int-mp 16
int-mp 32
int-mp 64
pre-sm 8
pre-sm 16
pre-sm 32
pre-sm 64

Figure 7: Sensitivity to IO-traffic message length.

5 10 15 20
Bisection (bytes/Pcycle)

16

18

20

22

24

M
C

yc
le

s

EM3D

int-mp
poll-mp
bulk-mp
sm
pre-sm

5 10 15 20
Bisection (bytes/Pcycle)

4

6

8

10
M

C
yc

le
s

ICCG

int-mp
poll-mp
bulk-mp
sm
pre-sm

Figure 8: Execution time (in cycles) versus bisection bandwidth.
Alewife bisection is 18 bytes/processor-cycle (See Table 1).

nodes in the Y-direction. We use 4 I/O nodes on each edge to send
messages off the opposite edge of the mesh. The messages travel off
the edge of the network without disturbing our applications on any of
the compute nodes.

The bisection of the emulated system is calculated by taking
Alewife’s bisection (18 bytes/processor-cycle) and subtracting the
amount of cross traffic sent. The smaller the cross-traffic messages
used, the more accurate our emulation. Small messages, however,
limit the rate at which the I/O nodes can send cross-traffic, preventing
the emulation of systems with lower bisection. Figure 7 shows the
sensitivity of our experiments to cross-traffic message length. For the
remainder of our experiments, we chose 64-byte cross-traffic mes-
sages, a relatively small size which still allows a wide range of bisec-
tion emulation.

Figure 8 plots application performance as the amount of I/O
cross-traffic varies. The X-axis plots bisection bandwidth in bytes
per processor cycle. The Y-axis plots application runtime in pro-
cessor cycles. We can see that the high communication volume of
shared-memory mechanisms cause application performance to de-
grade dramatically faster than message-passing mechanisms as bi-
section bandwidth decreases. While our results have shown that
shared-memory mechanisms perform very well when adequate net-
work performance is available, we can see a performance crossover

8

10 12 14 16 18
 Network Latency

14

16

18

20

M
C

yc
le

s

EM3D

int-mp
poll-mp
bulk-mp
sm
pre-sm

10 12 14 16 18
 Network Latency

5

6

7

8

9

10

M
C

yc
le

s

ICCG

int-mp
poll-mp
bulk-mp
sm
pre-sm

Figure 9: Network latencies emulated by varying node clock. The
latency gives 1-way delivery of 24 bytes (see Table 1). The Alewife
machine is at 15 processor-cycles.

with message-passing mechanisms as bisection bandwidth decreases.
Referring back to Table 1, we see that most machines have much
higher bisection bandwidth per processor cycle than our cross-over
point. However, we notice that low-dimensional mesh architectures
such as DASH and FLASH1 approach the cross-over points. As pro-
cessor speed increase, providing adequate bisection bandwidth will
become increasingly expensive.

5.3 Network Latency Emulation

We also perform an experiment which demonstrates that shared mem-
ory is less tolerant of network latency than message passing. The
Alewife machine has a programmable clock generator which can vary
the clock speed of the processing nodes from 14 MHz to 20 MHz.
The Alewife network is asynchronous and communication latency
through the network is unaffected by the change in processor clock.
Consequently, we can incrementally slow down the Alewife process-
ing nodes from their normal 20 MHz to 14 MHz, giving the nodes
the appearance of a faster and faster network. If we plot application
performance in processor cycles, we can see the performance trend as
relative network latency varies.

Figure 9 gives such a plot. The X-axis plots network latency (in
processor cycles) to deliver a 24-byte message, as used in Table 1.
The Y-axis plots application runtime in processor cycles. The points
were obtained by varying processor clock speed as just described.
We can see that both shared memory implementations are more sus-
ceptible to increased network latency than message passing imple-
mentations. This is because network latency shows up as processor
stall time when the processor blocks on a shared memory operation.
Prefetching hides this latency somewhat, but not as well as message
passing.

To emulate higher network latencies, we use Alewife’s fast
context-switching mechanism. On every remote miss, we perform
a context switch to a thread running a delay loop. The resulting ex-
ecution emulates an ideal network with uniform access times and in-
finite bandwidth. Figure 10 shows our results. Note that prefetching
is not precisely modeled, since the success of a prefetch is depen-
dent upon Alewife’s original network latency rather than the emu-
lated latency. The message-passing and bulk transfer curves are plot-

1Note that FLASH has been redesigned to use the Origin network since [13].

50 100 150
 Network Latency

15

20

25

30

35

40

M
C

yc
le

s

EM3D

int-mp
poll-mp
bulk-mp
sm
pre-sm

Figure 10: Network latencies emulated with context-switching.

ted for reference only. Their network latencies are not varied and are
based upon Alewife network latencies. However, since our message-
passing applications use asynchronous, unacknowledged communi-
cation, we expect that message-passing performance will remain rel-
atively constant. Other studies [22] have found that asynchronous im-
plementations of applications such asEM3D are relatively insensitive
to microsecond-latencies on networks of workstations.

Referring back to Table 1, we see that network latency is a se-
rious issue for shared memory that will worsen as processor speeds
increase. All modern machines have considerably higher network la-
tencies than Alewife.

6 Related Work

Not only has our work has been strongly influenced by studies from
Wisconsin, Stanford, and Maryland, but these previous results help
confirm the general context established by our emulations. Our com-
parison of communication mechanisms is similar to Chandra, Larus
and Rogers [6], but we have available a larger set of mechanisms and
we generalize to a range of system parameters. This generalization
is similar to the study of latency, occupancy, and bandwidth by Holt
et. al [15], which focuses exclusively upon shared-memory mecha-
nisms. Although the Alewife machine provides an excellent starting
point for the comparison of a large number of communication mech-
anisms, our results are greatly enhanced by our use of emulation, an
approach inspired by the work at Wisconsin [25].

Chandra, Larus and Rogers compare four applications on a sim-
ulation of a message-passing machine similar to a CM-5 multipro-
cessor against a simulation of a hypothetical machine also similar
to a CM-5, but extended by shared-memory hardware. Their results
are a good point of comparison for our emulation results, since both
Alewife and the CM-5 are SPARC-based architectures with very sim-
ilar parameters. They found that message passing performed approx-
imately a factor of two better than shared memory while simulating a
network latency of 100 cycles. Referring back to Figure 10, assuming
that message-passing continues to hide latency, our network latency
emulation shows the same result.

Our results also agree well with studies from Stanford. Holt et
al. found latency to be critical to shared-memory performance, as
we did. They also found that node-to-network bandwidth was not
critical in modern multiprocessors. Our study shows, however, that
bandwidth across thebisectionof the machine may become a critical
cost in supporting shared memory on modern machines. Such costs
will make message passing and specialized user-level protocols [11]
increasingly important as processor speeds increase.

Woo et al. [30] compared bulk transfer with shared memory on
simulations of the FLASH multiprocessor [13] running the SPLASH
[12] suite. They found bulk transfer performance to be disappointing
due to the high cost of initiating transfer and the difficulty in finding
computation to overlap with the transfer. Although, Alewife’s DMA
mechanism is cheaper to initiate than theirs, we also found bulk trans-
fer to have performance problems. Our problems arose from the ir-

9

regularity of our application suite, which caused high scatter/gather
copying costs and limited data transfer size.

Concurrent work at Berkeley [22] explores the effect of message-
passing latency, overhead and bandwidth on networks of worksta-
tions. They measured performance of several programs written in
Split-C and compared their results with predictions from the LogP
model. The effects of overhead and gap on applications were pre-
dicted well by LogP. The effects of latency and bandwidth, however,
were too complex for a simple model. Our study focuses on these
more complex effects and how they differ for a variety of commu-
nication mechanisms. As we have seen, their empirical results on
latency are consistent with ours.

Several of our applications were borrowed from a Maryland-
Wisconsin study, Mukherjee et. al.[24]. We extended their codes by
developing optimized implementations for each of our communica-
tion mechanisms. They studied a different problem, in that results
on a software shared-memory interface run on a message-passing
machine were compared to those directly obtained on the message-
passing machine.

Another group of studies simulated message passing on a shared
memory machine, and compared the performance of message pass-
ing programs using this simulation, against programs using shared
memory directly. This class includes papers by Lin and Snyder [19],
Martonosi and Gupta [23], and LeBlanc and Markatos [17]. These
studies however do not compare machine implementations, as all pro-
grams ultimately used shared memory only.

Klaiber and Levy [16] study the performance of programs which
accesses shared memory or message passing runtime libraries. These
libraries generated traces for shared memory and message passing
simulators, to generate statistics on message traffic. However, their
programs were not fined tuned for any particular architecture, and
hence not fair to either. Our programs are highly optimized for the
mechanisms and performance parameters of a machine supporting
both communication methods. Further, their machine independant
libraries tend to introduce unnecessary overheads for both methods,
leading to additional loss of comparison accuracy. Finally they report
only message traffic, not execution time numbers. They do not show
how message traffic impacts runtime.

7 Conclusion

Our results provide a framework from which to evaluate mechanisms
on systems with differing bisection bandwidth and network latency.
We find that shared memory provides good general performance with
minimal coding effort. Our experiments, however, each show perfor-
mance cross-overs between shared memory and message passing as
system parameters change. We evaluate these crossover points with
respect to real systems. Although most existing multiprocessors pro-
vide adequate bisection bandwidth to support shared memory, pro-
viding this bandwidth in future systems will be at least as important.
Network latency is an even more severe problem, but depends heavily
upon whether an application is compute- or memory-limited.

References

[1] Anant Agarwal et al. The MIT Alewife machine: Architecture and per-
formance. InISCA ‘22, 1995.

[2] Arvind, David E. Culler, and Gino K. Maa. Assessing the benefits of
fine-grained parallelism in dataflow programs. InSupercomputing ‘88.
IEEE, 1988.

[3] M. J. Berger and S. H. Bokhari. A partitioning strategy for PDEs across
multiprocessors. InICPP, 1985.

[4] Eric A. Brewer et al. Remote queues: Exposing message queues for
optimization and atomicity. InSPAA ‘95, 1995.

[5] Eric A. Brewer and Bradley C. Kuszmaul. How to get good performance
from the CM-5 data network. InIPPS, 1994.

[6] Satish Chandra, James R. Larus, and Anne Rogers. Where is time spent
in message-passing and shared-memory programs. InASPLOS VI, pages
61–73, 1994.

[7] Frederic T. Chong and Anant Agarwal. Shared memory versus message
passing for iterative solution of sparse, irregular problems. Tech rpt,
mit-lcs-tr-697, MIT Lab for Comp Sci, Cambridge, MA, 1996.

[8] Frederic T. Chong et al. Application performance on the mit alewife
multiprocessor.IEEE Computer, Dec 1996.

[9] Ian S. Duff, Roger G. Grimes, and John G. Lewis. User’s guide for
the Harwell-Boeing sparse matrix collection. Tech Rpt TR/PA/92/86,
CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France, 1992.

[10] Thorsten von Eicken et al. Active messages: a mechanism for integrated
communication and computation. InISCA ‘19, 1992.

[11] Babak Falsafi et al. Application-specific protocols for user-level shared
memory. InSupercomputing 94, 1994.

[12] Maya Gokhale et al. Building and using a highly parallel programmable
logic array.Computer, 24(1), January 1991.

[13] Mark Heinrich et al. The performance impact of flexibility in the Stan-
ford FLASH multiprocessor. InASPLOS VI, pages 274–285, 1994.

[14] Bruce Hendrickson and Robert Leland. The Chaco user’s guide. Tech
Rpt SAND94-2692, Sandia National Labs, 1995.

[15] C. Holt et al. The effects of latency, occupancy and bandwidth on the
performance of cache-coherent multprocessors. Tech rpt, Stanford Univ,
Stanford, CA, Jan 1995.

[16] A. Klaiber and H. Levy. A comparison of message passing and shared
memory for data-parallel programs. InISCA ‘21, 1994.

[17] T. LeBlanc and E. Markatos. Shared memory vs. message passing in
shared-memory multiprocesors. In4th SPDP, 1992.

[18] Daniel Lenoski and others. The Stanford Dash multiprocessor.Com-
puter, 25(3):63–80, 1992.

[19] C. Lin and L. Snyder. A comparison of programming models for shared-
memory multiprocessors. InICPP, 1990.

[20] K. Mackenzie et al. Exploiting two-case delivery for fast protected mes-
saging. InHPCA-4, 1998.

[21] N. K. Madsen. Divergence preserving discrete surface integral methods
for Maxwell’s curl equations using non-orthogonal unstructured grids.
Tech Rpt 92.04, RIACS, 1992.

[22] Richard P. Martin et al. Effects of communication latency, overhead, and
bandwidth in a cluster architecture. InISCA ‘24, pages 85–97, 1997.

[23] M. Martonosi and A. Gupta. Tradeoffs in message passing and shared
memory implementations of a standard cell router. InICPP, 1989.

[24] Shubhendu S. Mukherjee et al. Efficient support for irregular appli-
cations on distributed-memory machines. InPPoPP’95, pages 68–79,
1995.

[25] S. K. Reinhart, J. R. Larus, and D. A. Wood. Tempest and Typhoon:
User-level shared memory. InISCA ‘21, 1994.

[26] R. Schreiber and W. Tang. Vectorizing the conjugate gradient method.
In Proceedings Symposium CYBER 205 Applications, 1982.

[27] Steven L. Scott. Synchronization and communication in the T3E multi-
processor. InASPLOS VII, 1996.

[28] Jaswinder Pal Singh, Chris Holt, and John Hennessy. Load balancing
and data locality in adaptive hierarchical N-body methods: Barnes-hut,
fast multipole, and radiosity.JPDC, 27(2), 1995.

[29] Thinking Machines Corporation, Cambridge, MA.CM-5 Technical
Summary, November 1993.

[30] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy.
The performance advantages of integrating block data transfer in cache-
coherent multiprocessors. InAsplos VI, pages 219–229, 1994.

10

