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consist of measurements of a particular implementation

We evaluate the effect of processor speed, network char-

acteristics, and software overhead on the performance

of release-consistent software distributed shared mem-

ory. We examine five different protocols for implement-

ing release consistency: eager update, eager invalidate,

lazy update, lazy invalidate, and a new protocol called

lazy hybrid. This lazy hybrid protocol combines the

benefits of both lazy update and lazy invalidate.

Our simulations indicate that with the processors and

networks that are becoming available, coarse-grained

applications such as Jacobi and TSP perform well, more

or less independent of the protocol used. Medium-

grained applications, such as Water, can achieve good

performance, but the choice of protocol is critical. For

sixteen processors, the best protocol, lazy hybrid, per-

formed more than three times better than the worst,

the eager update. Fine-grained applications such as

Cholesky achieve little speedup regardless of the pro-

tocol used because of the frequency of synchronization

operations and the high latency involved.

While the use of relaxed memory models, lazy imple-
mentations, and multiple-writer protocols has reduced

the impact of false sharing, synchronization latency re-

mains a serious problem for software distributed shared

memory systems. These results suggest that future

work on software DSMS should concentrate on reducing

the amount of synchronization or its effect.

1 Introduction

Although several models and algorithms for software

distributed shared memory (DSM) have been pub-

lished, performance reports have been relatively rare.
The few performance results that have been published
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in a particular hardware an~ software environment [3,

5, 6, 13]. Since the cost of communication is very im-

portant to the performance of a DSM, these results are

highly sensitive to the implementation of the commu-

nication software. Furthermore, the hardware environ-

ments of many of these implementations are by now ob-

solete. Much faster processors are commonplace, and

much faster networks are becoming available.

We are focusing on DSMS that support release consis-

tency [9], i.e., where memory is guaranteed to be consis-

tent only following certain synchronization operations.

The goals of this paper are two-fold: (1) to gain an

understanding of how the performance of release con-

sistent software DSM depends on processor speed, net-

work characteristics, and software overhead, and (2) to

compare the performance of several protocols for sup-

porting release consistency in a software DSM.

The evaluation is done by execution-driven simula-

tion [7]. The application programs we use have been

written for (hardware) shared memory multiproces-

sors. Our results may therefore be viewed as an in-

dication of the possibility of “porting” shared memory

programs to software DSMS, but it should be recog-
nized that better results may be obtained by tuning

the programs to a DSM environment. The applica-

tion programs are Jacobi, Traveling Salesman Prob-

lem (TSP), and Water and Cholesky from the SPLASH

benchmark suite [14]. Jacobi and TSP exhibit coarse-

grained parallelism, with little synchronization relative
to the amount of computation, whereas Water may be

characterized as medium-grained, and Cholesky as fine-

grained.

We find that, with current processors, the bandwidth

of the 10-megabit Ethernet becomes a bottleneck, lim-

iting the speedups even for a coarse-grained application

such as Jacobi to about 5 on 16 processors. With a 100-

megabit point-to-point network, represent ative of the

ATM LANs now appearing on the market, we get good

speedups even for small sizes of c.oarse-grained prob-
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lems such as Jacobi and TSP, moderate speedups for

Water, and very little speedup for Cholesky. Regard-

less of the considerable bandwidth available on these

networks, Cholesky ’s performance is constrained by the

very high number of synchronization operations.

Among the protocols for implementing software re-

lease consistency, we distinguish between eager and lazy

protocols. Eager protocols push modifications to all

cachers at synchronization variable releases [5]. In con-

trast, lazy protocols [11] pull the modifications at syn-

chronization variable acquires, and communicate only

with the acquirer. Both eager and lazy release con-

sistency can be implemented using either invalidate or

update protocols. We present a new lazy hybrid proto-

col that combines the benefits of update and invalidate:

few access misses, low data and message counts, and low

lock acquisition latency.

Our simulations indicate that the lazy algorithm

and the hybrid protocol significantly improve the per-

formance of medium-grained programs, those on the

boundary of what can be supported efficiently by a

software DSM. Communication in coarse-grained pro-

grams is sufficiently rare that the choice of protocols

becomes less important. The eager algorithms perform

slightly better for TSP because the branch-and-bound

algorithm benefits from the early updates in the eager

protocols (see Section 6.2). For the fine-grained pro-

grams, lazy release consistency and the hybrid proto-

col reduce the number of messages and the amount of

data drastically, but the communication requirements

are still beyond what can be supported efficiently on

a software DSM. For these kinds of applications, tech-

niques such as multithreading and code restructuring

may prove useful.

The outline of the rest of this paper is as follows.

Section 2 briefly reviews release consistency, and the

eager and lazy implementation algorithms. Section 3

describes the hybrid protocol. Section 4 details the im-

plementation of the protocols we simulated. Section 5

discusses our simulation methodology, and Section 6

presents the simulation results. We briefly survey re-

lated work in Section 7 and conclude in Section 8.

2 Release Consistency

For completeness, we reiterate in this section the main

concepts behind release consistency (RC) [9], eager re-

lease consistency (ERC) [5], and lazy release consis-

tency (LRC) [1 1].

R(3 [9] is a form of relaxed memory consistency that

allows the effects of shared memory accesses to be

delayed until selected synchronization accesses occur.

Simplifying matters somewhat, shared memory accesses

are labeled either as ordinary or as synchronization a,c-

cesses, with the latter category further divided into ac-

quire and release accesses. Acquires and releases may

be thought of as conventional synchronization opera-

tions on a lock, but other synchronization mechanisms

can be mapped on to this model as well. Essentially,

RC requires ordinary shared memory ac.c.esses to be per-

formed only when a subsequent release by the same pro-

cessor is performed. R(I implementations can delay the

effects of shared memory accesses aa long as they meet

this constraint.

For instance, the DASH [12] implementation of FLC

buffers and pipelines writes without blocking the pro-

cessor. A subsequent release is not allowed to per-

form (i.e., the corresponding lock cannot be granted

to another processor) until acknowledgments have been

received for all outstanding invalidations. While this

strategy masks latency, in a software implementation

it is also important to reduce the number of messages

sent because of the high per message cost.

In an eager software implementation of RC such as

Munin’s multiple-writer protocol [5], a processor delays

propagating its modifications of shared data until it ex-

ecutes a release (see Figures 1 and 2). Lazy implemen-

tations of RC further delay the propagation of modific-

ations until the acquire. At that time, the last releaser

piggybacks a set of write notices on the lock grant mes-

sage sent to the acquirer. These write notices describe

the shared data modifications that precede the acquire

according to the happen ed-before-1 partial order [1].

The happened- before-l partial order is essentially the

union of the total processor order of the memory ac-

cesses on each individual processor and the partial order

of release-acquire pairs. The happened- before-l partial
order can be represented efficiently by tagging write

notices with vector timestamps [1 1]. At acquire time,

the acquiring processor determines the pages for which

the incoming write notices contain vector timestamps

larger than the timestamp of its copy of that page in

memory. For those pages, the shared data modifica-

tions described in the write notices must be reflected

in the acquirer’s copy either by invalidating or by up-

dating that copy. The tradeoffs between invalidate and

update and a new hybrid protocol are discussed in the
next section.

3 A Hybrid Protocol for LRC

A lazy invalidate protocol invalidates the local copy clf a

page for which a write notice with a larger timestamp is

received (see Figure 3). The lazy update protocol never

invalidates pages to maintain consistency. Instead, ac-

quiring processes retrieve all modifications named by
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incoming write notices for any page that is cached lo-

cally (see Figure 4). As an optimization, the releaser
piggybacks the modifications it has available locally on

the lock grant message.

In the lazy hybrid protocol, as in the lazy update

protocol, the releaser piggybacks on the lock grant mes-

sage, in addition to write notices, the modifications to

those pages that it believes the acquirer has a copy of

in its memory. However, unlike in the lazy update pro-

tocol, the acquirer does not make any attempt to ob-

tain any other modifications. Instead, it invalidates the

pages for which it received write notices but for which

no modifications were included in the lock grant mes-

sage.

Previous simulations [11] indicate that (1) the lazy

protocols send fewer messages and less data than the

eager protocols, and (2) the lazy update protocol send

fewer messages in most cases than the lazy invalidate

protocol, while the lazy invalidate protocol sends less

data than the lazy update protocol. The reduction in

the number of access misses outweighs the extra mes-

sages exchanged at the time of synchronization. Also,

the reduced access misses result in reduced latency, thus

favoring the update protocol.

However, the choice of a lazy or an eager algorithm,

and furthermore the choice between an update or an

invalidate protocol also affects the lock acquisition la-

tency. We distinguish two cases.

1.

2.

The lock request is pending at the time of the re-

lease. The lazy invalidate protocol haa the short-

est lock acquisition latency, since a single message

from the releaser to the acquirer suffices, followed

by the invalidations at the acquirer, a purely local

operation. In contraat, the eager algorithms must

update or invalidate all other cachers of pages that

have been modified at the releaser, and the lazy

update protocol must retrieve all the modifications

that precede the acquire, again potentially a multi-

host operation.

The lock request is not yet pending at the time of

the release. The eager algorithm; have the low-

est lock acquisition latency, followed closely by the

lazy invalidate protocol. All require a single mes-

sage exchange between the releaser and the ac-

quirer, but the lazy invalidate protocol also needs

to invalidate any local pages that have been modi-

fied. The lazy update protocol potentially requires

a multi-host operation, resulting in higher lock ac-

quisition latency.

The lazy hybrid protocol combines the advantages of

lazy update and lazy invalidate protocols. First, like

the invalidate protocol, the hybrid only exchanges a

single pair of messages between the acquiring and the

releasing processor. As a result, lock acquisition la-
tency for the lazy hybrid protocol is close to that of the

lazy invalidate protocol. The only additional overhead

comes from the need to send and process the modifica-

tions piggybacked on the lock grant message. Second,



the amount of data exchanged is smaller than for the

update protocol. Finally, the hybrid sends updates for

recently modified pages cached by the acquirer. It is

likely that these pages will be accessed by the acquirer,

thus reducing the number of access misses, and, as a

result, reducing the

messages.

4 Protocol

latency and the number of miss

Implemental ions

In this section we describe the details of the five pro-

tocols that we simulated: lazy hybrid (LH), lazy invali-

date (LI), lazy update (L U), eager invalidate (EI), and

eager update (E(J).

All five are n]ultiple-writer protocols. Multiple pro-

cessors can concurrently write to their own copy of a

page with their separate modifications being merged

at a subsequent release, in accordance with the RC

model. This contrasts with the exclusive-writer proto-

col used, for instance, in DASH [9], where a processor

must obtain exclusive access to a cache line before it

can be modified. Experience with Munin [5] indicates

that multiple-writer protocols perform well in software

DSMS, because they can handle false sharing without

generating large amounts of message traffic between

synchronization points.

All of the protocols support the use of exclusive locks

and global barriers to synchronize access to shared

memory. Processors acquire locks by sending a request

to the statically assigned owner, who forwards the re-

quest on to the current holder of the lock. “Locks” and

“unlocks” are mapped onto acquires and releases in a

straightforward manner. Barriers are implemented us-

ing a barrier muster that collects arrival messages and

distributes departure messages. In terms of consistency

information, a barrier arrival is modeled as a release,

while a departure is modeled aa an acquire on each of

the other processors.

Processes exchange three types of information at

locks and barriers: synchronization information, consis-

tency information, and data. The consistency informa-

tion is a collection of write notices, each of which con-

tains the processor identification and the vector times-

tamp of the modification. Consistency information can

be piggybacked on synchronization messages, but often

the data comprising the modifications to shared mem-

ory can not. Most shared data exchanged in the proto-

cols is in the form of difls, which are runlength encod-

ings of the modified data of a single page. Sending cliffs

instead of entire pages greatly reduces data traffic, and
allows multiple concurrent modifications to be merged

into a single version.

Each shared page has a unique, statically assigned

owner. Each processor keeps an approximate copyset

for every shared memory page. The copyset is initiali-

zed to the owner’s cop yset when a page is initially re-

ceived, and updated according to subsequent write no-

tices and cliff requests. The copysets are used in the

eager protocols to flush invalidations or updates to adl

other processors at releases. Since the copyset is only

approximate, multiple rounds are sometimes needed to

ensure that the consistency information reaches every

cacher of the modified pages. The copysets are used by

LH to determine which write notices should be acconn-

panied by cliffs.

Table 1 summarizes the message counts for locks, bar-

riers, and access misses for each of the protocols. In this

table, the concurrent last modijiers for a page are the

processors that created modifications that do not pre-
cede, according to happened-before-1, any other known

modifications to that page.

4.1 The Eager Protocols

4.1.1 Locks

We base our eager R(I algorithms on Munin’s multiple-

writer protocol [5]. A processor delays propagating its

modifications of shared data until it comes to a release.

At that time, write notices, together with cliffs in the

El] protocol, are sent to all other processors that cache

the modified pages, possibly taking multiple rounds if

the local copysets are not up to date.

A lock release is delayed until all modifications have

been acknowledged by the remote c.achers. An acquire

consists solely of locating the processor that executed

the corresponding release and transferring the synchro-

nization variable. No consistency-related operations olc-

cur at lock acquires.

4.1.2 Barriers

At barrier arrivals, the EI protocol sends synchroniza-

tion and consistency information to the master in a sin-

gle message. However, the EI barrier protocol has a

slight complication in that multiple processors may in-

validate the same page at a barrier. In order to prevent

all copies of a page from being invalidated, the mas-

ter designates one processor as the “winner” for each

page. Only the winner retains a valid copy for a given

concurrently modified page. The losers forward their

modifications to the winner and invalidate their local

copies.

In the EU protocol, each processor flushes modifica-
tions to all other cachers of locally modified pages be-

fore sending a synchronization message to the barrier

master.
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4.1.3 Access Misses

Access misses are treated identically for both proto-

cols. A message is sent to the owner of the page. The

owner forwards the request to a processor that has a

valid copy. This processor then sends the page to the

processor that incurred the access miss.

4.2 The Lazy Protocols

4.2.1 Locks

At an acquire, the protocol locates the processor that

last executed a release on the same variable. The re-

leaser sends both synchronization and consistency in-

formation to the acquirer in a single message. The

consistency information consists of write notices for all

modifications that have been performed at the releaser

but not the acquirer. While LI moves data only in re-

sponse to access misses, both the LH and LU protocols

send cliffs along with the synchronization and consis-

tency information. However, LH moves cliffs only from

the releaser to the acquirer, and hence can append them

to an already existing message. The releaser sends all

cliffs that correspond to modifications being performed

at the acquire for the first time, such that for each cliff

the acquirer is in the releaser’s copyset for the page

named by the cliff. Pages named by write notices that

arrive without cliffs are invalidated.

The LU protocol never invalidates pages. An acquire

does not succeed until all of the cliffs described by the

new write notices have been obtained. In general, the

acquirer must talk to other processors in order to pick

up all of the ,required cliffs. However, the number of pro-

cessors with which the acquirer needs to communicate

can be reduced because of the following observation. If

processor p modifies a page at time t, then all cliffs of

that page that precede the modification according to

happened-before- 1 can be obtained from processor p.

4.2.2 Barriers

At barrier arrivals, the LI protocol sends synchroniza-

tion information and write notices to the master in a

single message. When all processors have arrived, the

barrier master sends a single message to each proces-
sors that contains the barrier release as well as all the

write notices that it has collected.

LH and LIT barrier arrivals are handled similarly. In

both cases, each processor pushes updates to all proces-
sors that cache pages that have been modified locally,

before sending a barrier arrival message to the master.

The only difference is that in LU, the processes must

wait on the arrival of the data before departing from

the barrier.

4.2.3 Access Misses

Access misses are handled identically by LH, LI, and

LU. At a miss, a copy of the page and a number of cliffs

may have to be retrieved. The number of sites that

need to be queried for cliffs can be reduced through the

same logic as in Section 4.2.1. The new cliffs are then

merged into the page and the processor is allowed to

proceed. The lazy protocols determine the location of

a page or updates to the page entirely on the basis of

local information. No additional messages are required,

unlike in other DSM systems [13].

5 Methodology

5.1 Application Suite

We simulated four programs, from three different

classes of applications. Jacobi and TSP are coarse-

grained programs with a large amount of computa-

tion relative to synchronization (323,840 and 18,092,000

cycles per processor between off-node synchronization

operations, respectively, at 16 processors). our Ja-

cobi program is a simple Successive Over-Relaxation

program that works on grids of 512 by 512 elements.

TSP solves the traveling salesman problem for 18-city

tours. Water, from the SPLASH suite[14], is a medium

grained molecular dynamics simulation (19200 cycles

per processor between off-node synchronization oper-

ations). We ran Water with the default parameters:
288 molecules for 2 steps. Cholesky performs parallel

factorization of sparse positive definite matrices, and

is an example of a program with fine-grained paral-

lelism from the SPLASH benchmark suite (4,000 cycles

per processor between off-node synchronization opera-

tions). Cholesky was run with the default input file,

‘bcsstk14’. TSP and Cholesky use only locks for syn-

chronization, Jacobi uses only barriers, and Water uses

both.

5.2 Architectural Model

We used two basic architectural models, an Ethernet

model and an ATM switch model. Both models assume

40 MHz RISC processors with 64 Kbyte direct-mapped
caches and a 12 cycle memory latency, 4096 byte pages,

and an infinite local memory (no capacity misses). The

ethernet is modeled as a 10 MBit/see broadcast net-

work, while the ATM is modeled as a 100 MBit/see

cross-bar switch.

5.3 Protocol Simulation

Each message exchanged by the protocols was mod-

eled by the wire time consumed by sending the mes-
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Access Miss Lock Unlock Barrier

LH 2m 3 0 2(n-l)+u

LI 2m 3 0 2(n-1)

LIJ $2m 3+2h o 2(n-l)+2u

EI 2or3 3 2C 2(n-1) + v

EIJ 2 3 2C 2(n-l)+2u

m = # concurrent last mollifiers for the missing page

h = # other concurrent last modifiers for any local page

c = # other cachers of the page

n = # processors in system

p = # pages in system

u = ~f=l (# other procs caching pages modified by i)

v = ~f’=l (# excess invalidators of page i)

Table 1 Shared Memory Operation Message Costs

sage, any inherent network latency, contention for the

network, and a soflware overhead that represents the

operating system cost of calling a user-level handler

for incoming messages, creating and reading the mes-

sages in the DSM software, and the cost of the DSM
protocol implementation. This cost is set at (1000 +

message length * 1.5/4) processor cycles at both the

destination and source of each message. These figures

were modeled after the Peregrine [1 O] implement ation

overheads. Peregrine is an RPC system that provides

performance close to optimal by avoiding intermediate

copying. The lazy implementation’s extra complexity

is modeled by doubling the per-byte message overhead

both at the sender and at the receiver. Diffs are mod-

eled by charging four cycles per word per page for each

modified page at the time of cliff creation. Although

all messages are simulated, protocol-specific consistency

information is not reflected in the amount of data sent.

Only the actual shared data moved by the protocols is

included in message lengths.

6 Simulation Results

6.1 DSM on an Ethernet

Although prior work [5] showed that Ethernet-based

software DSMS can achieve significant speedups, we find

that for modern processors the Ethernet is no longer
a viable option. Figure 6 shows the speedup of Ja-

cobi, a coarse-grained program. Jacobi’s speedup peaks

at 5.2 for eight processors, and declines rapidly there-

after. While J acobi’s communication needs are modest

in comparison with other programs, the individual pro-

cessors execute identical code and therefore create sign-

ificant network contention at each barrier. This cont-

ention is especially significant for the update protocols,

in which each processor sends updates to its neighbors

prior to the barrier. In an 8-processor run, processors

on average wait more than 3 milliseconds before gaining

control of the Ethernet.

6.2 DSM on an ATM

The emerging ATM networks have several advantages

over the Ethernet. Foremost among these are increased

bandwidth and reduced opportunity for contention.

Unlike the Ethernet, in which all processors seeking to

communicate cent end wit h each other, processors in an

ATM network can communicate concurrently and in-

terfere only when they try to send to a common desti-

nation.

Figures 7-9 summarize the performance of the Jacobi

program on an ATM. While the Ethernet simulation of

Jacobi achieved a speedup of about 5, the ATM version

reaches 14. Part of this increase is due to the increased

bandwidth, but much of it is due to the fact that no

more than two competing updates (from each of a pro-

cessor’s two neighbors) ever arrive at a single destina-
tion during one interval. The performance of all five

protocols is roughly the same for this program because

of the regular nearest-neighbor sharing. The invalidate

protocols fare slightly worse than the update protoccds

because pages on the edge of a processor’s assigned data

are invalidated at barriers, and have to be paged acrcss

the network. The lazy protocols perform slightly worse

than the eager protocols because of the extra overhead
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added in the simulation for message processing. This

overhead is probably unjustified for Jacobi because of

the nature of communication involvecl. As will be seen

in all of the simulations, EI moves significantly more

data than the other protocols because its access misses

cause entire pages to be transmitted, rather than cliffs.

Like Jacobi, TSP is a coarse-grained program with

modest amounts of communication. Much of TSP’S

inefficiency results from contention for a global tour

queue. Fully 10% of a 16-processor execution is wasted
waiting for the queue lock. In order to prevent repeated

acquires because of unpromising tours, each acquirer

holds the queue’s lock while making a preliminary check

on the topmost tour. If the tour is promising, the

queue’s lock is released. Otherwise, the acquirer re-

moves another tour from the queue.

Figures 10-12 present TSP’S performance. There is

little variation among the lazy protocols and among the

eager protocols because of the large granularity and the

contention for the queue lock. However, the speedup

for the eager protocols is better than for the lazy pro-
tocols. TSP uses a branch-and-bound algorithm, using

a global minimum to prune recursive searches. Read

access to the current minimum is not synchronized. A

processor may therefore read a stale version of the min-

imum. The lock protecting the minimum is acquired

only when the length of the tour just explored is smaller

than (the potentially stale value of) the minimum. The

length is then rechecked against the value of the min-

imum, which is now guaranteed to be up to date, and

the minimum is updated, if necessary. The eager pro-

tocols push out the new value of the minimum at each

release, and therefore local copies of the minimum are

frequently updated. It is thus unlikely that a processor

would read a stale value, unlike with the lazy protocols

where the local copy is only updated as a result of an

acquire. Since the algorithm uses the global minimum

to prune searches, such stale values may cause TSP to

explore more unpromising tours with the lazy protocols.

Water is a medium-grained program that uses both
locks and barriers. Water’s data c6nsists primarily of
an array of molecules, each protected by a lock. During

each iteration, the force vectors of all molecules with
a spherical cutoff range of a molecule are updated to

reflect the molecule’s influence. In combination with
the relatively small size of the molecule structure in

comparison with the size of a page, this creates a large

amount of false sharing. The simulation results for Wa-

ter can be seen in Figures 13-15. LH performs better

than the other protocols because the molecules’ migra-
tory behavior during the force modification phase al-

lows the protocol to have far fewer cache misses, and

hence messages, than the other protocols. The lazy

protocols perform better than the eager protocols, and
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invalidate performs better than update. E(J sends an

order of magnitude more messages than any of the other

protocols because releases cause updates to be sent to

many other processors. Ninety-one percent of ElJ’s

messages are updates sent during lock releases. The

invalidate protocols send fewer messages because fewer

processors cache each page.

Cholesky is a program with fine-grained synchroniza-

tion that uses a task queue approach to parallelism.

Locks are used to dequeue tasks as well as to protect

access to multiple columns of data. Figures 16-18 sum-

marize Cholesky ’s performance. The large amount of

synchronization limits the speedup to no more than

1.3 for any of the protocols. The eager protocols suf-

fer from excessive updates and invalidations caused by

false sharing. The lazy protocols, and in particular LH,

fare better because communication is largely localized

to the synchronizing processors, leading to much better

handling of false sharing.

Our simulations indicate that synchronization is a

major obstacle to achieving good performance on DSM

systems. For example, 83% of the messages required

by Water running on the 16-processor A Thl model un-

der the hybrid protocol were for synchronization. For

Cholesky running on 2 processors, 96% of the mes-

sages were used for synchronization. All but a few of

these synchronization messages were for lock acquisi-

tion. Moreover, 84% of each processor’s time was spent

acquiring locks in the 16-processor LH Cholesky run.

While approximately one third of the lock acquisition

messages carried data, the rest were solely for synchro-

nization purposes. When a lock is reacquired by the

same processor before another processor acquires it, the

lazy protocols have an advantage over the eager proto-

cols. An eager protocol must distribute cliffs at every

lock release. Lazy release consistency permits us to

avoid external communication when the same lock is

reacquired.

6.3 The Effect of Network Characteris-

tics

The network is a shared resource that can be a perfor-

mance bottleneck. We can break down the network’s

effect on performance into three categories: bandwidth,

serialization, and collisions. Bandwidth affects the to-

tal amount of data that can be moved. Serialization

refers to the processor wait time when other proces-

sors have control of the contended network link. By

collisions we mean actual network collisions aa well as

the effect of protocols like exponential backoff that are

used to avoid network collisions in the case of an eth-

ernet network. Table 2 summarizes speedup for Jacobi

and Water on five different networks.
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[1 I Jacobi I Water n
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Table 2 Speedups With Different Network

Characteristics (LH, 16 processors)

Jacobi communicates with neighbors at a barrier.

Both the implementation of barriers and the access

pattern (regular, to fixed neighbors) benefit from a

point-to-point network that eliminates most serializa-

tion. Hence, most of the benefits of ATM for this pro-

gram are from the concurrency in the network. Water’s

access pattern is much less regular because molecules
move. The potential for communication to be c.om-

pletecl entirely in parallel is significantly reduced. As

a result, Water benefits as much from network concur-

rency as from increased bandwidth. Increasing the net-

work bandwidth to 1 Gbit/sec does not improve per-

formance significantly with a 40 MHz processor, since

at this point, the software overhead is the major per-

formance bottleneck.

6.4 The Effect of Software Overheads

Software overheads have a significant impact on per-
formance. Table 3 shows the simulated performance of

an ATM network in the 16-processor case, with no soft-

ware overhead, with software overhead identical to that

used in the previous simulations, and with double that

amount.

We first removed the overhead in order to find an up-

per bound on DSM performance for the given network

and processor architecture, regardless of the operating

system and DSM implementation. The large speedups

indicate the performance potential for the protocols,

and the potential gains to be had from hardware sup-

port.

With software overhead removed, there is no longer a

significant per-message penalty on a crossbar network,

This lessens the importance of access misses, and favors

protocols that reduce the amount of data moved for

improved performance. For instance, the LI protocol

outperforms LH on a 16-processor Cholesky run even

though the LH protocol sends 30% fewer messages and
has 75~o fewer access misses than the LI protocol. The

reason is that the hybrid protocol attempts to find a

compromise between low message counts, low numbers

Prog. Overhd. LH LI L(J EI E(J

Zero 15.1 15.3 15.1 14.9 1?5.4’

Jacobi Normal 13.7 13.4 13.7 14.2 13.4-

Double 12.9 12.6 12.8 12.7 12.5-

Zero 7.8 7.8 7.8 10.3 10.3’

TSP Normal 7.9 7.9 7.8 9.7 9.8-

Double 8.7 8.7 7.4 10.3 1o.3-

Zero 13.1 13.1 12.8 5.2 10.5’
Water Normal 8.3 7.7 6.6 3.8 2.6-

Double 6.9 6.0 5.2 3.3 1.5-

Zero 2.4 2.6 1.2 0.7 1.3’

(:;hol. Normal 0.8 0.7 0.4 0.5 0.2-
Double 0.4 0.4 0.2 0.3 0.1-

Table 3 Speedups With Varying Software

Overhead (16 processors)

of access misses, and low amounts of data, but the data

total is more significant if software overhead is removed.

The significance of software overhead can be seen

most clearly in comparing the speedups of Water with

and without overhead. The lazy protocols improve

by an average of 80% when the overhead is removed.

EI still performs badly because the amount of data it

moves, five times more than any of the other protocols.

EU, which runs three times slower than the LH proto-

col when software overhead is included, speeds up by

more than 400% when software overhead is removed.

In order to determine the variation in performance

that might occur due to an increase in software over-

head, we determined speedups when the overhead per

message was doubled. The performance decreases by

20% to 40% for Water. The decrease in performance is

not as large as when going from zero to normal over-

head since the normal overhead includes the per cliff

overhead, which is significant. In general, the lazy pro-

tocols, and in particular the lazy hybrid, perform better

as communication becomes more expensive.

6.5 The Effect of Processor Speeds

Processor speeds affect the ratio of computation time to

communication time. However, the soft ware overheaLd

is proportional to the processor speed. We varied the

processor speeds from 20 to 80 MHz. Table 4 shows the

variation in speedup for the 16-processor case when us-

ing the lazy hybrid protocol in the case of Jacobi, TSP

and Water, and the 8-processor csse for Cholesky. For
Jacobi and TSP, the variations are negligible because

the low message counts for these programs results in lit-

tle variation in the computation to communication r;a-
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tie. Water and Cholesky show a more significant varia-

tion in speedup due to the larger amount of communicat-

ion. In the latter two cases, communication latency is

as much of a bottleneck as the software overheads, and

hence an increased processor speed reduces speeclup.

However, some of the improvements are masked by the

corresponding changes in software overheads.

6.6 The Effect of Page Size

The large page sizes in common use in software DSMS

result in a high probability of false sharing. Prior work

has developed implementations of relaxed memory con-
sistency models for DSM that reduce but do not to-

tally eliminate the effects of false sharing. For example,

Munin’s eager implementation of release consistency

eliminates the “ping-pong” effect of a page bouncing

between two writing processors [5]. However, modifica-

tions to falsely shared pages still have to be distributed

to all processors caching the page at a release. The

lazy hybrid protocol further reduces the effect of false

sharing because data movement only occurs between

synchronizing processors. In other words, false sharing

in LH increases the amount of data movement but not

the number of messages.

The results we have reported are for a page size

of 4096 bytes. To obtain a measure of the effects of

false sharing, we ran simulations using a page size of

1024 bytes. While going to a 1024-byte page reduces

false sharing, we found that we need to communicate

with approximately the same number of processors to

maintain consistency. Furthermore, the resulting re-

duction in communication is often partially counterbal-

anced by the increased number of access misses (see

Table 5, which presents data for the lazy hybrid proto-

col). While reducing the page size has a limited effect

on performance, restructuring the program may prove

more beneficial.

7 Related Work

This work draws on the large body of research in re-

laxed memory consistency models (e.g., ~J, 4,8, 9]). We

Procs Page Size Jac. TSP Wat. Chol.

(bytes)

2 1024 1.8 1.7 1.9 1.0

4096 1.8 1.7 1.8 0.9

4 1024 3.7 2.6 3.1 1.2

4096 3.7 2.6 2.9 1.1
u “

8 1024 7.2 5.1 5.1 1.4

4096 7.2 5.1 4.8 1.3

16 1024 13.7 8.5 8.7 0.9

4096 13.7 7.9 8.3 0.8

Table 5 Effect on Speedup of Reducing the

Page Size to 1024 bytes (LH)

have chosen as our basic model the release consis-

tency model introduced by the DASH project at Stan-

ford [12], because it requires little or no change to ex-

isting shared memory programs. An interesting alter-

native is entry consistency (EC), defined by Bershad

and Zekauskas [4]. EC differs from RC because it re-

quires all shared data to be explicitly associated with

some synchronization variable. On a lock acquisition

EC only needs to propagate the shared data associated

with the lock. EC, however, requires the programmer

to insert additional synchronization in shared memory

programs to execute correctly on an EC memory. Typ-

ically, RC does not require additional synchronization.

Ivy [13] and Munin [5] are two implementations of

software DSMS for which performance measurements

have been published. Both achieve good speedups on

many of the applications studied. The slow proces-

sors used in the implementations prevented the net-

work from becoming a bottleneck in achieving these

speedups. With faster processors, faster networks are

needed and more sophisticated methods are required.

In addition, synchronization latency becomes a major

issue. Performance measurements are also available for

the DASH hardware DSM multiprocessor. Compari-

son between these numbers and our simulation results

indicates the benefits of a dedicated high-speed inter-

connect for fine-grained parallel applications.

‘ Pr. Spd (MHz) Jacobi TSP Water Chol. 8 Conclusions

80 13.7 10.5 7.7 0.9

40 13.7 9.8 8.3 1.3
With the advent of faster processors, the performance

20 13.4 10.0 8.6 1.4
of DSM that can be achieved on an Ethernet network

is limited. Serialization of messages, collisions, and

low bandwidth severely constrain speedups, even for
Table 4 Speedups with Different Processor coarse-grained problems. Higher-bandwidth point-to-

Speeds (LH, 16 processors) point networks, such as the ATM LANs appearing on
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the market, allow much better performance, with good

speedups even for medium-grained applications. Fine-

grained applications still perform poorly even on such

networks because of the frequency and cost of synchro-

nization operations.

Lazy hybrid is a new consistency protocol that com-

bines the benefits of invalidate protocols (relatively lit-

tle data) and update protocols (fewer access misses and

fewer messages). In addition, the lazy hybrid shortens

the lock acquisition latency considerably compared to

a lazy update protocol. The hybrid protocol outper-
forms the other lazy protocols under a model that takes

into account soft ware overhead for communicant ion. For

medium-grained applications the differences are quite

significant.

The latency of synchronization remains a major prob-

lem for software DSMS. Without resorting to broad-

cast, it appears impossible to reduce the number of mes-

sages required for lock acquisition. Therefore, the only

possible approach may be to hide the latency of lock

ac,quisit ion. Multithreading is a common technique for

masking the latency of expensive operations, but the

attendant increase in communication could prove pro-

hibitive in software DSMS. Program restructuring to

reduce the amount of synchronization may be a more

viable approach.
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