
Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

Scalable shared-memory multiprocessors distribute memory
among the processors and use scalable interconnection networks
to provide high bandwidth and low latency communication. In
addition, memory accesses are cached, buffered, and pipelined
to bridge the gap between the slow shared memory and the fast
processors. Unless carefully controlled, such architectural opti-
mizations can cause memory accesses to be executed in an order
different from what the programmer expects. The set of allow-
able memory access orderings forms the memory consistency
model or event ordering model for an architecture.

This paper introduces a new model of memory consistency,
called release consistency, that allows for more buffering and
pipelining than previously proposed models. A framework for
classifying shared accesses and reasoning about event order-
ing is developed. The release consistency model is shown to
be equivalent to the sequential consistency model for parallel
programs with sufficient synchronization. Possible performance
gains from the less strict constraints of the release consistency
model are explored. Finally, practical implementation issues are
discussed, concentrating on issues relevant to scalable architec-
tures.

1 Introduction

Serial computers present a simple and intuitive model of the
memory system to the programmer. A load operation returns
the last value written to a given memory location. Likewise,
a store operation binds the value that will be returned by sub-
sequent loads until the next store to the same location. This
simple model lends itself to efficient implementations
uniprocessors use caches, write buffers, interleaved main mem-
ory, and exploit pipelining techniques. The accesses may even
be issued and completed out of order as long as the hardware
and compiler ensure that data and control dependences are re-
spected.

For multiprocessors, however, neither the memory system
model nor the implementation is as straightforward. The mem-
ory system model is more complex because the definitions of
“last value written”, “subsequent loads”, and “next store” be-
come unclear when there are multiple processors reading and
writing a location. Furthermore, the order in which shared mem-
ory operations are done by one process may be used by other
processes to achieve implicit synchronization. For example, a
process may set a flag variable to indicate that a data structure

it was manipulating earlier is now in a consistent state. Con-
sistency models place specific requirements on the order that
shared memory accesses (events) from one process may be ob-
served by other processes in the machine. More generally, the
consistency model specifies what event orderings are legal when
several processes are accessing a common set of locations.

Several memory consistency models have been proposed in
the literature: examples include sequential consistency 171, pro-
cessor consistency [5], and weak consistency [4J. The sequen-
tial consistency model [7] requires the execution of a parallel
program to appear as some interleaving of the execution of the
parallel processes on a sequential machine. While conceptually
simple, the sequential consistency model imposes severe restric-
tions on the outstanding accesses that a process may have and
effectively prohibits many hardware optimizations that could
increase performance. Other models attempt to relax the con-
straints on the allowable event orderings, while still providing
a reasonable programming model for the programmer.

Architectural optimizations that reduce memory latency are.
especially important for scalable multiprocessor architectures.
As a result of the distributed memory and general interconnec-
tion networks used by such multiprocessors [8, 9, 121, requests
issued by a processor to distinct memory modules may execute
out of order. Caching of data further complicates the ordering of
accesses by introducing multiple copies of the same location.
While memory accesses are atomic in systems with a single
copy of data (a new data value becomes visible to all proces-
sors at the same time), such atomicity may not be present in
cache-based systems. The lack of atomicity introduces extra
complexity in implementing consistency models. A system w-
chitect must balance the design by providing a memory consis-
tency model that allows for high performance implementations
and is acceptable to the programmer.

In this paper, we present a new consistency model called
release consistency, which extends the weak consistency
model [4] by utilizing additional information about shared ac-
cesses. Section 2 presents a brief overview of previously pro-
posed consistency models. The motivation and framework for
release consistency is presented in Section 3. Section 4 con-
siders equivalences among the several models given proper in-
formation about shared accesses. Section 5 discusses potential
performance gains for the models with relaxed constraints. Fi-
nally, Section 6 discusses implementation issues, focusing on
issues relevant to scalable architectures.

CH2887-8/90/0000/0015$01.00 0 1990 IEEE 15

2 Previously Proposed Memory Consis-
tency Models

In this section, we present event ordering requirements for sup-
porting the sequential, processor, and we& consistency models.
Although the models discussed in this section have already been
presented in the literature,, we discuss them here for purposes
of completeness, uniformity in terminology, and later compari-
son. Readers familiar with the first three models and the event
ordering terminology may wish to skip to Section 3.

To facilitate the description of different event orderings, we
present formal definitions for the stages that a memory request
goes through. The following two definitions are from Dubois
et al. [4, lo]. In the following, Pi refers to processor i.

Definition 2.1: Performing a Memory Request
A LOAD by Pi is considered performed with respect to
9 at a point in time when (he issuing of a STORE to the
same address by Pk cannot affect the value returned by
the LOAD. A STORE by P, is considered perjormed with
respect to Pk at a point in time when an issued LOAD to
the same address by Pk returns the value defined by this
STORE (or a subsequent STORE to the same location). An
access is performed when it is performed with respect to
all processors.

.Definition 2.2 describes the notion of globally performed for
LOADS.

Definition 2.2: Performing a LOAD Globally
A LOAD is globallyperformed if it is performed and if the
STORE that is the source of the returned value has been

. performed.

The distinction between performed and globally performed
LOAD accesses is only present in architectures with non-atomic
STORES. A STORE is atomic if the value stored becomes read-
able to all processors at the same time. In architectures with
caches and general interconnection networks, a STORE opera-
tion is inherently non-atomic unless special hardware mecha-
nisms are employed to assure atomicity.

From this point on, we implicitly assume that uniprocessor
control and data dependences are respected. In addition, we
assume that memory is kept coherent, that is, all writes to the
same location are serialized in some order and are performed in
that order with respect to any processor. We have formulated
the conditions for satisfying each model such that a process
needs to keep track of only requests initiated by itself. Thus,
the compiler and hardware can enforce ordering on a per pro-
cess(or) basis. We define program order as the order in which
accesses occur in an execution of the single process given that
no reordering takes place. When we use the phrase “alI previ-
ous accesses”, we mean all accesses in the program order that
are before the current access. In presenting the event ordering
conditions to satisfy each model, we assume that the imple-
mentation avoids deadlock by ensuring that accesses that occur
previously in program order eventually get performed (globally
performed).

2.1 Sequential Consistency

Lamport [7] defines sequential consistency as follows.

Definition 2.3: Sequential Consistency
A system is sequentially consistent if’ the result of any
execution is the same as if the operations of all the pro-
cessors were executed in some sequential order, and the
operations of each individual processor appear in this se-
quence in the order specified by its program.

Scheurich and Dubois [lo, 111 have described event order re-
strictions that guarantee sequential consistency. Condition 2.1
presents sufficient conditions for providling sequential consis-
tency (these differ slightly from conditions given in [lo]).

Condition 2.1: Sufficient Conditions for Sequential
Consistency
(A) before a LOAD is allowed to perform with respect to
any other processor, all previous LOAD accesses must be
globally performed and all previous STORE accesses must
be performed, and
@) before a STORE is allowed to perform with respect to
any other processor, all previous LOAD accesses must be.
globally performed and all previous STORE accesses must
be performed.

2.2 Processor Consistency

To relax some of the orderings imposed by sequential consis-
tency, Goodman introduces the concept of processor consis-
tency [5]. Processor consistency requires that writes issued from
a processor may not be observed in any order other than that
in which they were issued. However, the order in which writes
from two processors occur, as observed by themselves or a
third processor, need not be identical. Processor consistency is
weaker than sequential consistency; therefore, it may not yield
‘correct’ execution if the programmer assumes sequential con-
sistency. However, Goodman claims that most applications give
the same results under the processor and sequential consistency
models. Specifically, he relies on programmers to use explicit
synchronization rather than depending on the memory system
to guarantee strict event ordering. Goodman also points out that
many existing multiprocessors (e.g., VAX 8800) satisfy proces-
sor consistency, but do not satisfy sequential consistency.

The description given in [S] does not specify the ordering
of read accesses completely. We have defined the following
conditions for processor consistency.

Condition 2.2: Conditions for Processor Consistency
(A) before a LOAD is allowed to perform with respect to
any other processor, all previous LOAD accesses must be
performed, and
(B) before a STORE is allowed to perform with respect
t0 My Other processor, all preViOUS accesses (LOADS and
STORES) must be performed.

The above conditions allow reads following a write to bypass
the write. To avoid deadlock, the impletnentation should guar-
antee that a write that appears previously in program order will
eventually perform.

2.3 Weak Consistency

A weaker consistency model can be derived by relating mem-
ory request ordering to synchronization points in the program.
As an example, consider a processor updating a data structure
within a critical section. If the computation requires several
STORE accesses and the system is sequentially consistent, then

16

each STORE will have to be delayed until the previous STORE
is complete. But such delays are unnecessary because the pro-
grammer has already made sure that no other process can rely
on that data structure being consistent until the critical section
is exited, Given that all synchronization points are identified,
we need only ensure that the memory is consistent at those
points. This scheme has the advantage of providing the user
with a reasonable programming model, while permitting multi-
ple memory accesses to be pipelined. The disadvantage is that
all synchronization accesses must be identified by the program-
mer or compiler.

The weak condtency model proposed by Dubois et 01. [4]
is based on the above idea. They distinguish between ordinary
shared accesses and synchronization accesses, where the latter
are used to control concurrency between several processes and
to maintain the integrity of ordinary shared data. The conditions
to ensure weak consistency are given below (slightly different
from the conditions given in [4]).

Conditiod 2.3: Conditions for Weak Consistency
(A) before. an ordii LOAD or STORE access is allowed
to pefionn with respect to any other processor, all previous
synchronizunb~ accesses must be performed, and
(B) before a synchronizution access is allowed to perform
with respect to any other processor, all previous ordinary
LOAD and STORE accessesmustbe perfonned,aud
(C) synchronizution accesses are sequentially consistent
with respect to one mother.

3 The Release Consistency Model

This section presents the framework for release consis-
tency. There are two main issues explored in this section-
performance and correctness, For performance, the goal is to
exploit additional information about shared accesses to develop
a memory consistency model that allows for more efficient im-
plementations. Section 3.1 discusses a categorization of shared
accesses that provides such information. For correctness, the
goal is to develop weaker models that are equivalent to the
stricter models as far as the results of programs are concerned.
Section 3.2 introduces the notion of properly-labeled programs
that is later used to prove equivalences among models. Finally,
Section 3.3 presents the release consistency model and discusses
how it exploits the extra information about accesses.

3.1 Categorization of Shared Memory Accesses

We first describe the notions of conljicfing accesses (as pre-
sented in [13]) and competing accesses. Two accesses are con-
flicting if they are to the same memory location and at least
one of the accesses is a STORE.' Consider a pair of conilicting
accesses al and a2 on different processors. If the two accesses
sre not ordered, they may execute simultaneously thus causing
a race condition. Such accesses al and az form a competing
pair. If an access is involved in a competing pair under any
execution, then the access is considered a competing access.

A parallel program consisting of individual processes spec-
ifies the actions for each process and the interactions among
processes. These interactions are coordinated through accesses
to shared memory. For example, a producer process may set

‘A read-modify-write operation can be treated as an atomic access con-
alsling of both a load and 8 stos.

shared access

A
acquire release

Figure 1: Categorization of shared writable accesses.

a flag variable to indicate to the consumer process that a data
record is ready. Similarly, processes may enclose all updates
to a shared data structure within lock and unlock operations
to prevent simultaneous access. All such accesses used to en-
force an ordering among processes are called synchronizution
accesses. Synchronization accesses have two distinctive char-
acteristics: (i) they are competing accesses, with one process
writing a variable and the other reading it: and (ii) they are fre-
quently used to order conflicting accesses (i.e., make them non-
competing). For example, the lock and unlock synchronization
operations are used to order the non-competing accesses made
inside a critical section.

Synchronization accesses can further be partitioned into uc-
quire and release accesses. An acquire synchronization access
(e.g., a lock operation or a process spinning for a flag to be
set) is performed to gain access to a set of shared locations.
A release synchronization access (e.g., an unlock operation or
a process setting a flag) grants this permission. An acquire is
accomplished by reading a shared location until an appropriate
value is read. Thus, an acquire is always associated with a read
sy&hronization access (atomic read-modify-write accesses are
discussed in Section 3.2). Similarly, a release is always associ-
ated with a write synchronization access.

Not all competing accesses are used as synchronization ac-
cesses, however. As an example, programs that use chaotic
relaxation algorithms make many competing accesses to read
their neighbors’ data. However, these accesses are not used
to impose an ordering among the parallel processes and are
thus considered non-synchronizufion competing accesses in OUT
terminology. Figure 1 shows this categorization for memory
ZlCCeSseS.

The categorization of shared accesses into the suggested
groups allows one to provide more efficient implementations by
using this information to relax the event Ordering restrictions.
For example, the purpose of a release access is to inform other
processes that accesses that appear before it in program order
have completed. On the other hand, the purpose of an acquire
access is to delay future access to data until informed by another
process. The categorization described. here can be extended to
include other useful information about accesses. The tradeoff
is how easily that extra information can be obtaine& from the
compiler or the programmer and what incremental performance
benefits it can provide.

Finally. the method for identifying sn access as a competing
access depends on the consistency model. For example, it is
possible for an access to be competing under processor consis-
tency and non-competing under sequential consistency. While
identifying competing pairs is difficult in general, the following
conceptual method may be used under sequential consistency.
‘ho conflicting accesses bl and b on different processes form

17

/\
a% relL

Figure 2: Labels for memory accesses.

a competing pair if there exists at least one legal interleaving
where bl and b are udjucent.

3.2 Properly-Labeled Programs

The previous subsection described a cate’gorization based on
the intrinsic properties of an access. We now describe the la-
belings for an access. The label represents what is asserted
about the categorization of the access. It is the responsibility
of the compiler or the programmer to provide labels for the ac-
cesses. Figure 2 shows possible labelings for memory accesses
in a program. The labels shown correspond to the categoriza-
tion of accesses depicted in Figure 1. The subscript L denotes
that these are labels. The labels at the same level are disjoint,
and a label at a leaf implies all its parent labels.

The release consistency model exploits the information con-
veyed by the labels to provide less strict event ordering con-
straints. Thus, the labels need to have a proper relationship to
the actual categov of an accesses to ensure correctness under
release consistency. For example,, the ordinary~ label asserts
that an access is non-competing. Since the hardware may ex-
ploit the ordinary~ label to use less strict event orderings, it
is important that the ordinary~ label be used only for non-
competing accesses. However, a non-competing access can be
conservatively labeled as specialL. In addition, it is impor-
tant that enough competing accesses be labeled as acqL and
reZL to ensure that the accesses labeled ordinary~ are indeed
non-competing. The following definition provides a concep-
tual model for determining whether enough specialr, accesses
have been categorized as syne~ (again assuming the sequential
consistency model).

Definition 3.1: Enough Synch bbels
Pick any two accesses u on processor P, and v on proces-
sor P, (I’” not the same as Py) such that the two messes
conflict, and at least one is labeled as ordin~~ry~. Under
any legal interleaving, if 2) appears after (before) u, then
there needs to be at least one synch write (read) access
on P, and one syncr, read (write) on P, separating tl and
II, such that the write appears before the read. There are
enough accesses labeled BS synch if the above condition
holds for all possible pairs 21 and 2). A synct read has to
be labeled as acqt and a sync& write has to be labeled as
Tt?lL.

To determine whether all labels are appropriate, we present
the notion of properly-labeled programs.

Definition 3.2: Properly-Labeled (PL) Programs
A program is properly-labeled (PL} if the following hold:
(shared access) c sharedL, competing c specials,
and enough (as defined above) speci& accesses are la-
beled as acqL and relL.

An acqL or r& label implies the syncL, label. Any apecial~,
access that is not labeled as syncr. is labeled as nsync~. In
addition, any share& access that is not labeled as speck&
is labeled as ordinary~. Note that this categorization is based
on access and not on location. For example, it is possible that
of two accesses to the same location, onle is labeled special,c
while the other is labeled urdinaryr,.

Most architectures provide atomic read!-modify-write opera-
tions for efficiently dealing with competing accesses. The load
and store access in the operation can be labeled separately based
on their categorization, similarly to individual load and store ac-
cesses. The most common label for a read-modify-write is an
acqL for the load and an nsync~ for the store. A prevalent
example of this is an atomic test-and-set operation used to gain
exclusive access to a set of data. Although the store access is
necessary to ensure mutual exclusion, it does not function as
either an acquire or a release. If the programmer or compiler
cannot categorize the read-modify-write appropriately, the con-
servative label for guaranteeing correctness is acqt and relr. for
the load and store respectively (the operation is treated as both
an acquire and a release).

There is no unique labeling to make a program a PL pro-
gram. As long as the above subset properties are respected, the
program will be considered properly-labeled. Proper labeling is
not an inherent property of the program, but simply a property
of the labels. Therefore, any program can be properly labeled.
However, the less conservative the labeling, the higher is the
potential for performance benefits.

Given perfect information about the category of an access, the
access can be easily labeled to provide a PL program. However,
perfect information may not be available at all times. Proper
labeling can still be provided by being conservative. This is
illustrated in the three possible labeling strategies enumerated
below (from conservative to aggressive). Only leaflabels shown
in Figure 2 are discussed (remember that a leaf label implies all
parent labels).

If competing and non-competing accesses can not be dis-
tinguished, then all reads can be labeled as acqL and all
writes can be labeled as rel,+

If competing accesses can be distinguished from non-
competing accesses, but synchronization and non-
synchronization accesses can not be distinguished, then all
accesses distinguished as non-competing can be labeled as
wdinaryr, and all competing accesses are labeled as acqL
and reZL (as before).

If competing and non-competing accesses are distinguished
and synchronization and non-synchronization accesses are
distinguished, then all non-competing accesses can be la-
beled as ordinaryL, all non-synchronization accesses can
be labeled as nsync~, and all synchronization accesses are
labeled as acqL and relt (as before).

We discuss two practical ways for labeling accesses to pro-
vide PL programs. The first involves parallelking compilers
that generate parallel code from sequential programs. Since the
compiler does the parallelization, the information about which
accesses are competing and which accesses are used for syn-
chronization is known to the compiler and can be used to label
the accesses properly.

The second way of producing PL programs is to use a pro-
gramming methodology that lends itself to proper labeling. For

18

example, a large class of programs are written such that ac-
cesses to shared data are protected within critical sections. Such
programs are called synchronized program, whereby writes to
shared locations are done in a mutually exclusive manner (no
other reads or writes can occur simultaneously). In a synchro-
nized program, all accesses (except accesses that Bn part of
the synchronization constructs) can be labeled as mdinaryL.
In addition, since synchronization constructs are predefined, the
accesses within them can be labeled properly when the con-
structs are first implemented. For this labeling to be proper, the
programmer must ensure that the program is synchronized.

Given a program is properly-labeled, the remaining issue is
whether the consistency model exploits the extra information
conveyed by the labels. The sequential and processor consis-
tency models ignore all labels aside from shared~. The weak
consistency model ignores any labelings past otdinaryL and
special&. In weak consistency, an access labeled spe&alL is
treated as a synchronization access and as both an acquire and
a release. In contrast, the release consistency model presented
in the next subsection exploits the information conveyed by the
labels at the leaves of the labeling tree.

From this point on, we do not distinguish between the cate-
gorization and the labeling of an access, unless this distinction
is necessary.

3.3 Release Consistency

Release consistency is an extension of weak consistency that
exploits the information about acquire, release, and non-
synchronization accesses. The following gives the conditions
for ensuring release consistency.

Condition 3.1: Conditions for Release Consistency
(A) before an ordii LOAD or STORE access is allowed
to perform with respect to any other processor, all previous
acquire accesses must be performed, and
@) before a release access is allowed to perform with
respect to any other processor. all previous ordinary LOAD
and STORE accesses must be performed, and
(C) special accesses are processor consistent with respect
tc one another.

Four of the ordering restrictions in weak consistency are not
present in release consistency. The first iS that ordinary LOAD

and STORE accesses following a release access do not have to
be delayed for the release to complete: the purpose of the re-
lease synchronization access is to signal that previous accesses
in a critical section are complete, and it does not have anything
to say about ordering of accesses following it. Of course, the
local dependences witbin the same processor must still be re-
spected. Second, an acquire synchronization access need not be
delayed for previous ordinary LOAD and STORE accesses to be
performed. Since an acquire access is not giving permission to
any other process to read/write the previous pending locations,
there is no reason for the acquire to wait for them to complete.
Third, a non-synchronization special access does not wait for
previous ordinary accesses and does not delay future ordinary
accesses; a non-synchronization access does not interact with
ordinary accesses. The fourth difference arises from the order-
ing of special accesses. In release consistency, they are only
required to be processor consistent and not sequentially con-
sistent. For all applications that we have encountered, sequen-
tial consistency and processor consistency (for special accesses)
give the same results. Section 4 outlines restrictions that allow

O&ring mwng Ordinary O&ring bchvesn Or&ring among Ordinuy Ordering ktwwn
and Special AC-S Spccid Accrues and Special Accesses Special Acccircs

weak CQnsistency (WCSC) Release consistency (RCpc)

Figure 3: Ordering requirements for different consistency mod-
els.

us to show this equivalence. We chose processor consistency
since it is easier to implement and offers higher performance.

4 Model Equivalences

The purpose of this section is to provide more insight into the
similarities and differences among the consistency models pre-
sented in Sections 2 and 3 by showing relations and equiva-
lences among the models.

We have presented four consistency models: sequential con-
sistency (SC), processor consistency (PC), weak consistency
with special accesses sequentially consistent (WCsc), and re-
lease consistency with special accesses processor consistent
(RCpc). Two other models that fit within this framework are
weak consistency with special accesses processor consistent
(WCpc) and release consistency with special accesses sequen-
tially consistent (RCsc). Figure 3 depicts the event orderings
imposed by Conditions 2.1 through 2.3 for SC, PC, WCsc, and
Condition 3.1 for RCpc. The WC and RC models have fewer
restrictions on ordering than SC and PC, and RC has fewer
restrictions than WC. Of course, a hardware implementation
has the choice of enforcing the stated conditions directly ox
imposing some alternative set of conditions that guarantee the
executions of programs appear as if the stated conditions were
followed.

We define the relations 2 (stricter) and = (equal) for relat-

19

ing the models. If A and B are different consistency mod-
els, then relation A 1 B says that results of executions of
a program under model A will be in accordance to legal m-
suits for the program under model B, but not necessarily vice
versa. The stricter relation is transitive. The relation A = B
says that for a certain program, models A and B cannot be
distinguished based on the results of the program. Given
A 2 B and B 2 A, we know A = B. Some obvious re-
lations that hold for any parallel program are: SC 2 PC,
SC 2 WCsc 2 RCsc, SC 2 WCpc 2 RCpc. PC 2 RCpc,
WCsc 1 WCpc, and RCsc > RCpc. However, the stricter
relation does not hold among the following pairs: (PC,WCsc),
(PC,RCsc), (PC,WCpc), and (RCsc,WCpc).

Due to the more complex semantics of the weaker models,
it is desirable to show that the weaker models are equivalent
to the stricter models for certain classes of programs. Such
equivalences would be useful. For example, a programmer can
write programs under the well defined semantics of the sequen-
tial consistency model, and as long as the program satisfies the
restrictions, it can safely be executed under the more efficient
release consistency model.

Let us first restrict the programs to PL programs under se-
quential consistency. Given such programs, we have proved the
following equivalences: SC = WCsc = RCsc. This is done
by proving RCsc > SC for PL programs and using the relation
SC 2 WCsc 2 RCsc. Our proof technique is based on an
extension of the formalism presented by Shasha and Snir [13].
We have included the proof for RCsc 2 SC in the appendix.
A similar proof can be used to show PC = WCpc = RCpc
for PL programs under the processor consistency model.

More equivalences can be shown if we restrict programs to
those that csnnot distinguish between sequential consistency
and processor consistency (SC = PC). Given a set of re-
strictions on competing LOAD accesses, it can be shown that
SC = PC.2 The restrictions are general enough to allow for
all implementations of locks, semaphores, barriers, distributed
loops, and task queues that we am interested in. Given compet-
ing LOAD accesses have been restricted (therefore, SC = PC)
and shared accesses are properly labeled to qualify the pro-
gram as a PL program under SC, it is easily shown that
SC = PC = WCsc = RCsc = WCpc = RCpc. There-
fore, such a program could be written based on the sequential
consistency model and wiIl run correctly under release consis-
tency (RCpc).

The above equivalences hold for PL programs only. In some
programs most accesses are competing (e.g., chaotic relaxation)
and must be labeled as special for proper labeling. While this
will make the equivalences hold, the program’s performance
may not be substantially better on RCsc than on SC. However,
such applications are usually robust enough to tolerate a more
relaxed ordering on competing accesses. For achieving higher
performance in these cases, the programmer needs to directly
deal with the more complex semantics of release consistency to
reason about the program.

2Given such ~~txictions, one can allow an atomic test-and-set used as an
acquire to perform before a previous special write access (e.g., unset) has
heen performed We are currently preparing a technical report that describes
the details.

5 Performance Potentials for Different
Models

The main purpose of examining weaker models is performance.
In this section, we explore the potential gains in performance
for each of the models. Realizing the full potential of a model
will generally depend on the access behavior of the program
and may require novel architectural and compiler techniques.
Our goal is to provide intuition about how one model is more
efficient than another.

The performance differences among the consistency mod-
els arise from the opportunity to overlap large latency mem-
ory accesses with independent computation and possibly other
memory accesses. When the latency of an access is hidden by
overlapping it with other computation, it is known as access
buffering. When the latency of an access is hidden by overlap-
ping with other accesses, it is known as access pipelining. TO
do buffering and pipelining for read accesses requires prefetch
capability (non-blocking loads).

We provide simple bounds for the maximum performance
gain of each model compared to a base execution model. The
base model assumes that the processor is stalled on every access
that results in a cache miss. It is easily shown that sequential
consistency and processor consistency can at best gain a factor
of 2 and 3, respectively, over the base model. This gain arises
from the opportunity to buffer accesses. In practice though
these two models are not expected to perform much better than
the base model, since access buffering is not effective when the
frequency of shared accesses is high.

The weak and release consistency models can potentially pro-
vide large gains over the base model, since accesses and compu-
tation in the region between two adjacent synchronization points
can be overlapped freely as long as uniprocessor dependences
are respected. In this case, the maximum gain over the base
model is approximately equal to tlot/taer, where 11,~ is the la-
tency of a miss and t rer is the shortest delay between the issue of
two consecutive accesses that miss in a cache. Intuitively, this
is because ordinary accesses within a region can be pipelined.
Unlike the maximum gains for SC and PC, the potential gains
for WC and RC are more realizable. For example. several nu-
merical applications fetch and update large arrays as part of
their computations. The pipelining of reads and writes in such
applications can lead to large performance gains.

The difference in performance between WC and RC arises
when the occurrence of special accesses is more frequent. While
weak consistency requires ordinary accesses to perform in the
region between two synchronization points, release consistency
relaxes this by allowing an ordinary access to occur anywhere
between the previous acquire and the next release. In addition,
an acquire can perform without waiting for previous ordinary
accesses and ordinary accesses can perform without waiting for
a release, Figure 4 shows an example that highlights the dif-
ference between the two models (assume that there are no local
dependence@.

To illustrate the performance gains made possible by the re-
lease consistency model, we consider the example of doing up-
dates to a distributed hash table. Each bucket in the table is
protected by a lock. A processor acquires the lock for a bucket
first. Next, several words are read from records in that bucket,
some computation is performed, and several words are writ-
ten based on the result of the computation. Finally, the lock
is released. The processor then moves on to do the same se-

Figure 4: Possible overlap difference between WCsc and RCpc.

quence of operations on another bucket. Such operations are
common in several applications (for example, token hash tables
in OPS5 [6]). The locality of data in such sn application is low
since the hash table can be large and several other processors
may have modified an entry from the last time it was accessed.
Therefore, the mad and write accesses will miss often.

Under sequential consistency, all accesses and computation
become serialized. With weak consistency, the reads can be
pipelined. Of course, this assumes the architecture allows mul-
tiple outstanding reads. AlI reads need to complete before the
computation. Once the computation completes, the writes occur
in a pipelined fashion. However, before releasing the lock, all
writes need to complete. The lock for the next record can not
be acquired until the previous lock is released.

Release consistency provides the most opportunity for over-
lap. Within a critical section, the overlap is the same as in weak
consistency. However, while the release is being delayed for the
writes to complete, the processor is free to move on to the next
record to acquire the lock and start the reads. Thus, there is
overlap between the writes of one critical section and the reads
of the next section.

To make the example mom concrete, assume the latency of
a miss is 40 cycles. Consider read miss, write miss, acquir-
ing a lock, and releasing a lock as misses. Assume t.., is 10
cycles and the computation time is 100 cycles. Assume three
read misses and three write misses in each record lookup and
update. If all accesses are serialized, each critical section takes
420 cycles. With weak consistency, the read misses before the
computation and the write misses after the computation can be
pipelined The three read misses will complete in 60 cycles.
The same is true for the write misses. Therefore, the criti-
cal section completes in 300 cycles on an implementation with
weak consistency. Under release consistency, the same over-
lap is possible within a critical section. In addition, them is
overlap between critical sections. Therefore, the processor can
move on to the next critical section every 230 cycles. Figure 5
shows the overlap differences among sequential, weak, and re-
lease consistency. The segments shown span the time from the
issue to the completion of an access. An access may be initi-
ated by the processor several cycles before it is issued to the
memory system.

Figure 5: Overlap in processing hash table buckets.

6 Implementation Issues

The two most important issues from an implementation point of
view are correctness and performance. The consistency model
determines what a correct implementation of the memory sys-
tem must provide. The challenge for a correct implementation
is to achieve the full performance potential of the chosen con-
sistency model. This section presents practical implementation
techniques, focusing on issues relevant to scalable architectures
that use caches, distributed memory, and scalable interconnec-
tion networks.

In the following subsections, we outline the techniques for
ordering accesses under the various consistency models. The
problem is split between ordering accesses to the same memory
block and those to different memory blocks. General solutions
to achieve the proper ordering are given along with the par-
ticular solutions employed in the DASH prototype system [8].
Our discussion focuses on invalidation-based coherence proto-
cols, although the concepts can also be applied to update-based
protocols.

6.1 Inter-Block Access Ordering and the FENCE
Mechanism

As a resuh of the distribution of the memory and the use of
scalable interconnection networks, requests issued by a proces-
sor to distinct memory modules may execute out of order. To
maintain order among two accesses, we need a mechanism to
delay the issue of one access until the previous one has been
performed.3 This requires each processor to keep track of its
outstanding accesses. Due to multiple paths and variable delays
within the memory system, acknowledge messages from target
memories and caches are required to signal the completion of
an access.

We refer to the mechanism for delaying the issue of accesses
as a fence [3, 5, 131. We define a general set of fence opera-
tions and demonstrate how these fence operations can be used
to implement the consistency models presented earlier. While

)Then is a subtle difference between delaying issue. and delaying aa ac-
cess from being performed with respect to any other processor. Instead of
delaying the issue of a write, the processor can delay making the new value
visible to other processors. The write is considered performed when the
new value is made visible to other processors. This allows write accesses to
be pipelined. We are studying hardware techniques that exploit this distinc-
tion for write accesses in invalidate-based machines. However, we do not
consider such techniques in this paper.

21

Model Operation Preceded Fence Type Previous Accesses that
by Fence must be petformed

LOAD STORE
SC LOAD full G P

STORE full G P
PC LOAD filll P

STORE Wm.2 P P

Figure 6: Fence operations to achieve sequential and processor
consistency. P denotes performed while G denotes globally
performed.

fence operations are described here as explicit operations, it is
possible, and often desirable, to implicitly associate fences with
load, store, and special (e.g., acquire, release) accesses.

For generality, we assume that load operations are non-
blocking. The processor can proceed after the load is issued,
and is only delayed if the destination register of the load is ac-
cessed before the value has returned. In contrast, a blocking
load stalls the processor until it is performed.

Fence operations can be classified by the operations they de-
lay and the operations they wait upon. Useful operations to
delay are: (i) all future read and write accesses (fullfence); (ii)
all future write accesses (write fence), and (iii) only the access
immediately following the fence (immediate fence). Likewise,
useful events to wait for are a combination of previous load
accesses, store accesses, and (for the weaker models) special
accesses.

Figure 6 shows the placement and type of fence operations
required to achieve sequential and processor consistency. For
example, the first line for SC in the figure indicates that the
fence prior to a load is a full fence waiting for all previous
loads to globally perform and all previous stores to perform.
Figure 7 shows the fence operations necessary to achieve weak
consistency (WCsc) and release consistency (RCpc). The im-
plementations outlined are the most aggressive implementation
for each model in that only the delays that are necessary are
enforced. Conservative implementations are possible whereby
hardware complexity is reduced by allowtig some extra delays.

To implement fences, a processor must keep track of out-
standing accesses by keeping appropriate counters. A count is
incremented upon the issue of the access, and is decremented
when the acknowledges come back for that access (an acknowl-
edge for a read access is simply the return value). For full and
write fences, the number of counters necessary is a function of
the number of different kinds of accesses that need to be distin-
guished. For example, RCpc needs to distinguish four groups
of accesses: ordinary, nsync load, acquire, and special store ac-
cesses. Therefore, an aggressive implementation requires four
counters. However, only two counters are required if special
loads are blocking. For immediate fences, the same number of
counters (as for full or write fence) is required for each out-
standing immediate fence. Therefore, we have to multiply this
number by the number of immediate fences that are allowed
to be outstanding. Slightly conservative implementations of re-
lease consistency may simply distinguish special load accesses
from other accesses by using two counters (only one if spe-
cial loads are blocking) and limit the number of outstanding
immediate fences to a small number.

Full fences can be implemented by stalling the processor until
the appropriate counts are zero. A write fence can be imple-

mented by stalling the write buffer. The immediate fence, whidh
is only required in release consistency (for an aggressive imple-
mentation), requires the most hardware. Each delayed operation
requires au entry with its own set of counters. In addition, ac-
cesses and acknowledges need to be taggecd to distinguish which
entry’s counters should be decremented upon completion. In
the DASH prototype (discussed in Section 6.3), a write fence
is substituted for the immediate fence (load accesses are block-
ing), thus providing a conservative implementation of release
consistency.

6.2 Intra-Block Ordering of Accesses

The previous section discussed ordering constraints on accesses
to different memory blocks. When caching is added to a multi-
processor, ordering among accesses to the same block becomes
an issue also. For example, it is possible to receive a read re-
quest to a memory block that has invalidations pending due to a
previous write. There am subtle issues involved with servicing
the read request while invalidations are pending. Cache blocks
of larger than one word further complicate ordering, since ac-
cesses to different words in the block can cause a similar inter-
action.

In an invalidation-based coherence protocol, a store operation
to a non-dirty location requires obtaining exclusive ownership
and invalidating other cached copies of the block. Such inval-
idations may reach different processors at different times and
acknowledge messages are needed to indicate that the store is
performed. In addition, ownership accesses to the same block
must be serialized to ensure only one value persists. Unfortu-
nately, the above two measures are not enough to guarantee cor-
rectness. It is important to distinguish between dirty cache lines
with pending invalidates versus those w:ith no pending invali-
dates. Otherwise, a processor cache may give up its ownership
to a dirty line with invalidates pending to a read or write re-
quest by another processor, and the requesting processor would
not be able to detect that the line returned was not performed.
The requesting processor could then improperly pass through
a fence operation that requires all previous loads to be glob-
ally performed (if access was a read) or all previous stores to
be performed (if access was a write). Consequently, read and
ownership requests to a block with pending invalidates must
either be delayed (by forcing retry or delaying in a buffer) until
the invalidations are complete, or if the request is serviced, the
requesting processor must be notified of the outstanding status
and acknowledges should be forwarded to it to indicate the com-
pletion of the store. The first alternative provides atomic store
operations. Tbe second alternative doesn’t guarantee atomicity
of the store, but informs the requesting processor when the store
has performed with respect to all processors. In the next sub-
section, we will discuss the specific implementation technique
used in DASH.

The issues in update-based cache coherence schemes are
slightly different. In an update-based schleme, a store operation
to a location requires updating other cache copies. To maintain
coherence, updates to the same block need to be serialized at a
central point and updates must reach each cache in that order.
In addition, SC-based models are difficult to implement because
copies of a location get updated at different times (it is virtually
impossible to provide atomic stores). Consequently, a load may
return a value from a processor’s cache,, with no indication of
whether the responsible store has performed with respect to all

22

Model Operation Preceded Fence l)pa Previous Accesses that
by Fence must be Performed

LOAD 1 STORE 1 SPECIAL LD 1 SPECIAL ST

Figure 7: Fence operations to achieve weak consistency and release consistency. P denotes performed while G denotes globally
performed.

processors. For this reason, PC-based models are an attractive
alternative for update-based coherence schemes.

6.3 The DASH Prototype

The DASH multiprocessor [8], currently being built at Stanford,
implements many of the features discussed in the previous sec-
tions. The architecture consists of several processing nodes
connected through a low-latency scalable interconnection net-
work. Physical memory is distributed among the nodes. Each
processing node, or clusfer, is a Silicon Graphics POWER Sta-
tion 4D/240 [2] consisting of four high-performance processors
with their individual caches and a portion of the shared mem-
ory. A bus-based snoopy scheme keeps caches coherent witbin
a cluster while inter-cluster coherence is maintained using a dis-
tributed directory-based protocol. For each memory block, the
directory keeps track of remote clusters caching it, and point-
to-point messages are sent to invalidate remote copies of the
block.

Each cluster contains a directory controller board. This direc-
tory controller is responsible for maintaining cache coherence
across the clusters and serving as the interface to the intercon-
nection network. Of particular interest to this paper are the
protocol and hardware features that are aimed at implementing
the release consistency model. Further details on the protocol
are given in [8].

The processor boards of the 4D/240 are designed to work
only with the simple snoopy protocol of the bus. The base,
single-bus system implements a processor consistency model.
The single bus guarantees that operations cannot be observed
out of order, and no acknowledgements are necessary. Read
operations are blocking on the base machine.

In the distributed DASH environment, the release consistency
model allows the processor to retire a write after it has received
ownership, but before the access is performed with respect to
sll other processors. Therefore, a mechanism is needed to keep
track of outstanding accesses. In DASH, this function is per-
formed by the remote access cache @AC). Corresponding to
each outstanding access, the RAC maintains a count of inval-
idation acknowledges pending for that cache block and keeps
track of the processor(s) associated with that access. In addi-

tion, the RAC maintains a counter per processor indicating the
number of RAC entries (i.e., outstanding requests) in use by
each processor.

To ensure proper intra-block ordering, the RAC detects ac-
cesses to blocks with pending invalidates by snooping on the
cluster bus. In case of a local processor access, the RAC allows
the operation to complete, but adds the new processor to the pro-
cessor tag field of the IZAC. Thus, the processor that has a copy
of the line now shares responsibility for the block becoming
performed. For remote requests (i.e., requests from processors
on a different cluster) the RAC rejects the request. The RAC
does not attempt to share a non-performed block with a remote
processor because of the overhead of maintaining the pointer to
this remote processor and the need to send an acknowledgement
to this processor when the block has been performed. Rejecting
the request is not as desirable as queuing the requests locally,
but this would require extra buffering.

TO ensure proper inter-block ordering, DASH again relies on
the acknowledges in the protocol and the RAC. The per pro-
cessor counter indicates the number of outstanding requests for
each processor. When this count is zero, then the processor
has no outstanding operations and a fence operation can com-
plete. There are two types of fence operations in DASH: a
full fence and a write fence. The full fence is implemented by
stalling the processor until all previous memory operations are
performed (i.e., the RAC count is zero for that processor). The
less restrictive write fence is implemented by stalling the output
of the processor’s write-buffer until all previous memory oper-
ations are performed. This effectively blocks the processor’s
access to the second level cache and cluster bus.

DASH distinguishes lock and unlock synchronization opera-
tions by physical address. All synchronization variables must be
partitioned to a separate area of the address space. Each unlock
(release) operation includes an implicit write fence. This blocks
the issuing of any further writes (including the unlock opera-
tion) from that processor until all previous writes have been
performed. This implicit write fence provides a sufficient im-
plementation for release consistency. The explicit forms of full
and write fence operations are also available. These allow the
programmer or compiler to synthesize other consistency models.

23

7 Concluding Remarks

The issue of what memory consistency model to implement in
hardware is of fundamental importance to the design of scalable
multiprocessors. In this paper, we have proposed a new model
of consistency, called release consistency. Release consistency
exploits information about the property of shared-memory ac-
cesses to impose fewer restrictions on event ordering than previ-
ously proposed models, and thus offers the potential for higher
performance. To avoid having the programmer deal directly
with the more complex semantics associated with the release
consistency model, we presented a framework for distinguishing
accesses in programs so that the same results are obtained un-
der RC and SC models. In particular, we introduced the notion
of properly-labeled (PL) programs and proved the equivalence
between the SC and the RCsc model for PL programs. This is
an important result since programmers can use the well defined
semantics of sequential consistency to write their programs, and
as long as the programs are PL, they can be safely executed on
hardware implementing the release consistency model.

To implement the various consistency models, we propose
the use of fence operations. Three different kinds of fence
operations - full fence, write fence, and immediate fence -were
identified. Careful placement of these multiple types of fences
enabled us to minimize the duration for which the processor is
blocked. We also discussed subtle ordering problems that arise
in multiprocessors with caches and provided solutions to them.
Finally, practical implementation techniques were presented in
the context of the Stanford DASH multiprocessor.

We are currently building the prototype for the DASH archi-
tecture, which supports the release consistency model. We are
using a simulator for the system to quantify the performance dif-
ferences among the models on real applications and to explore
alternative implementations for each model. We are also explor-
ing compiler techniques to exploit the less strict restrictions of
release consistency. Finally, we are investigating programming
language and programming environment enhancements that al-
low the compiler to gather higher level information about the
shared accesses.

8 Acknowledgments

We would like to thank Rohit Char&a for several useful dis-
cussions, and Jaswinder Pal Singh and Sarita Adve for their
comments on the paper, We also wish to thank the reviewers
for their helpful comments. This research was supported by
DARPA contract N00014-87-K-0828. Daniel Lenoski is sup-
ported by Tandem Computer Incorporated. Phillip Gibbons is
supported in part by NSF grant CCR-86-10181 and DARPA
contract NOO014-88-K-0166.

References

PI

PI

Sarita Adve and Mark Hill. Personal communication.
March 1990.

Forest Basket& Tom Jermoluk, and Doug Solomon. The
4D-MP graphics superworkstation: Computing + graphics
= 40 MIPS + 40 MFLOPS and 100,000 lighted polygons
per second. In Proceedings of the 33rd IEEE Computer

r31

[41

PI

El

[71

PI

191

IlO

WI

WI

r131

Society International Conference - COMPCON 88, pages
468471, February 1988.

W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3
processor-memory element. In Proceedings of the 1985
International Conference on Paralle[Processing, pages
782-789, 1985.

Michel Dubois, Christoph Scheurich, and Fayb Briggs.
Memory access buffering in multiprocessors. In Proceed-
ings of the 13th Annual International Symposium on Com-
puter Architecture, pages 434-442, June 1986.

James R. Goodman. Cache consistlency and sequential
consistency. Technical Report no. 61, SC1 Committee,
March 1989.

Anoop Gupta, Milind Tambe, Dirk Kalp, Charles Forgy,
and Allen Newell. Parallel implementation of OPS5 on the
Encore multiprocessor: Results and analysis. International
Journal of Parallel Programming, 17(2):95-124, 1988.

Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):241-248, September
1979.

Dan Lenoski, James Laudon. Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The directory-based
cache coherence protocol for the DASH multiprocessor.
In Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, May 1990.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har-
vey, W. J. Kleinfelder, K. P. McAuliffe. E. A. Melton,
V. A. Norton, and J. Weiss. The Il3M research parallel
processor prototype (RP3): Introduction and architecture.
In Proceedings of the 1985 International Conference on
Parallel Processing, pages 764-771, 1985.

C. Scheurich and M. Dubois. Correct memow operation of
cache-based multiprocessors. In Proceedings of the 14th
Annual International Symposium on Computer Architec-
ture, pages 234-243, June 1987.

Christoph Scheurich. Access Ordering and Coherence in
Shared Memory Multiprocessors. PhD thesis, University
of Southern California, May 1989.

G. E. Schmidt. The Butterfly parallel processor. In Pro-
ceedings of the Second Znternational Conference on Su-
percomputing, pages 362-365, 1987.

Dennis Shasha and Marc Snir. Efficient and correct ex-
ecution of parallel programs that share memory. ACM
Transactions on Programming Languages and Systems,
10(2):282-312, April 1988.

Appendix A: Proof for SC = RCsc

in this appendix we present a proof of the equivalence between SC
and RCsc for PL programs (with respect to SC). For brevity, we
will use the terms RC to denote RCsc and PL to denote PL programs
properly-labeled with respect to SC. We begin with a few definitions.

An execution of a program on an implem’entation defines a pair,
(T, EO), as follows.

24

The per-processor trace, T, is a set of traces, one for each
pmeessor, showing the instructions executed by the processor
during the execution. The order among instructions in the trace
is adjusted to depict program order for each processor.

The execution order, EO, specifies the order in which confricting
accesses are executed. (Recall from section 3 that two accesses,
u and v, conjrict if and only if u and II are to the same location
and one is a STORE.) EO fully specifies the results of a pm-
gram, since any sequential execution of tbe accesses in an order
that extends the execution order (i.e., topological sort) will give
the same result.

The delay relation, D, is an ordering constraint among instructions
within a processor as imposed by some event ordering. For example,
the delay relation for RC enforces Condition 3.1, as well as local data
and control dependences. These notions of execution order, conflict-
ing accesses, and delay relation were developed previously in [13]. To
prove various equivalences, we extend the notions presented in [13] to
handle conditionals, non-atomic writes, and consistency models other
than SC (we are preparing a technical report on this). Although
writes are not atomic, we can assume thai conflicting accesses are
totally ordered by EO since the implementations we are considering
provide cache coherence (i.e., all processors observe two writes to
the same location in the same order). Also we make the common
assumption that accesses are only to words of memory: each read
access returns the value written by some (single) write access.

The execution order EO on an implementation is considered legal
if EO U D is acyclic. The graph corresponding to EO U D is called
the precedence gruph, G , of the execution. Thus a cycle in G denotes
an impossible execution. An instruction I reaches an instruction y in
an execution if there is a (directed) path from I to y in the precedence
graph of the execution.

We partition EO into two disjoint sets, EO, and EO,, where
EO. defines the execution order among any two (conflicting) special
accesses and &, defines the execution order among any two (conflict-
ing) accesses where at least one is an ordinary access. Likewise, G
is partitioned into G, and G,.

Given these preliminary detinitions, we now proceed with the
proof. We first assume that special accesses are not affected by or-
dinary accesses. This permits us to claim that EO,,sc = EO,,RC
follows if TSC = Tnc. We will later describe how this restriction
can be lifted. In lemma 1, we show that if the same per-processor
trace can occur on both SC and RC, then the program results are
the same. This lemma is then used to prove the main theorem, which
shows that SC = RC for all PL programs. The difficulty in extend-
ing the lemma to the main theorem is in showing that any legal trace
on RC may occur on SC despite any conditional branches or indirect
addressing. Note that SC 2 RC for any program, so it suffices to
show that RC 2 SC.

Lemma 1: Consider an execution E = (TRc, EORC) on RC of a
PL program. If there exists a trace on SC such that 2’s~ = TRC,
then there is a corresponding execution on SC with the same results
(i.e., EOSC = EORC).
Proof: Since the event ordering on special accesses is SC for both
implementations, and special accesses are not affected by ordinary
accesses, G.,sc = Gs:nc is a legal precedence graph for special
accesses on SC. We will show there exists a legal execution on SC,
based on G.:sc, such that EO,sc = EO,:RC.

Let u and II be two contlicting accesses from TSC, such that u
is an ordinary access. If u and II are on the same processor, then
the execution order, EO, between the two is determined by local
dependences and is enforced in the same way on SC and EC.

If u and v are on different processors, then the two accesses need
to be ordered through special accesses for the program to be a PL
program. Access v can be either an ordinary or a special access.
Consider the case where ‘u is an ordinary access. For u and v to be
ordered, there is either (a) a release REL, and an acquire ACQ”

such that REL, reaches ACQ” in G,:sc or(b) a release REL, and
an acquire ACQ” such that REL, reaches ACQu in G*:sc. If (a)
holds, then u before II, uEOv, is the only possible execution order
on SC. The same is true on EC, since vEOu will lead to a cycle
in the precedence graph. This is because clauses (A) and (B) of
Condition 3.1 are upheld. Likewise, a symmetric argument can be
used if(b) holds. The same correspondence between SC and RC can
be shown for the case where v is a special access. Thus the execution
order EO between u and v is the same on SC and EC.

Since EO.:sc = EO,,R~. and this execution order determines
an E, that is the same for both SC and RC, we have shown that
EOsc = EORC. D

Therefore, RC 2 SC for a program if, for every execution of a
program on RC, there is an execution on SC such that the traces are
the same.

How can the traces for a program on SC and RC differ? There
are two possible sources for any discrepancies between traces: con-
ditional control flow (affecting which instructions are executed) and
indirect addressing (affecting the location accessed by a read or write
instruction). In what follows, we consider only conditionals. Ex-
tending the argument to handle programs with indirect addressing is
trivial, and omitted in this proof.

We will prove that SC = RC for PL programs as follows. We must
show that there exists an execution on SC in which the outcome of
each conditional is the same. A conditional for which we have shown
this correspondence will be designated proven, otherwise it will be
called unproven. Initially, all conditionals in the trace on RC are
unproven. We will construct the trace on SC inductively in a series
of stages, where at each stage, we show that an unproven conditional
occurs the same way on SC. Once all conditionals are proven, the
traces must be equal and we can apply lemma 1.

Theorem 2: SC = RC for PL programs.
Proof: Let P be a PL program. Consider any execution E =
(Tat, EORC) on EC. Let GRC be the precedence graph for E.
By the definition of a precedence graph, any instruction that affected
another instruction in E, e.g., affected the existence of a write access
or the value returned on a read access, reaches that instruction in
GRC.

As indicated above, we proceed in a series of stages, one for each
conditional. At each stage, we construct an execution on SC such
that some unproven conditional and all previously proven conditionals
have the same outcome on SC and RC.

We begin with stage 1. The proof for stage 1 will be shown using
a series of claims. As we shall see, the proof for each remaining
stage is identical to stage 1.

Since GRC is acyclic, there is at least one unproven conditional,
zlt, that is not reached by any other unproven conditional. Let p,,
be the processor that issued ut. Let Al be the set of instructions that
reach ut in GRC. Although Al is only a subtrace (not even a prefix)
of the entire execution E, we will show that the set Al, constructed
in this way, can be used to prove ut.

Let At, be the special accesses in At. We have the following
characterization of Al,.

Claim 1: All special accesses program ordered prior to an access in
AI, are themselves in At,. There are no special accesses within any
branch of an unproven conditional, u, where u is program ordered
prior to an access in Al..
Proof: We first show that the claim holds for acquires. Any acquire
program ordered prior to an access, z, in Al reaches I and hence
will itself be in Al,. There are no acquires withim any branch of
an unproven conditional program ordered prior to an access in A,,
since no access after such a conditional can complete prior to the
conditional itself.

We claim that the last program ordered access in Al for each
processor (other than pU,) is a special access. This fact can be shown
by contradiction. Let zt. an ordinary access, be the last program

25

ordered access for some processor in At (other than p,,). Since zt
is in Al, there is a path, zt, 22,. . . , ut, in GRC. No access in Al is
locally dependent on zt since it is the last program ordered access
on its processor. Since P is a PL program, a release below zt is
needed to order the access ahead of zz on SC. However, there is no
release below xt in Al. Thus the only way for zt to affect zz on KC
would be in a competing manner that was prevented on SC. This
can happen only if some acquire above either zt or zs were missing
in Al,, which contradicts the claim of the previous paragraph.

Claim 1 follows since program order is preserved on RC for special
accesses. 0

Given this characterixation of Al., we show that there is an exe-
cution on SC such that special accesses are the same as in Al. In
other words, we show that both implementations have the same G.
for Al. This will be used to show that the results returned by read
accesses are the same and hence the outcome of conditional IQ is the
same.

Claim 2: There is a pretix of an execution on SC such that the
special accesses are precisely the accesses in Al. and the execution
order among these special accesses is identical to EOs:no.
Proot: The special accesses in Al. are selfcontained, i.e., there are
no acquires in Al, that are waiting on releases not in Al.. By claim
1, there is an execution on SC such that all special accesses in Al.
occur. Since special accesses are SC on both implementations, the
same execution order among these special accesses is possible on
both. To complete the proof, we argue that no other special access
(i.e., not in Al,) can be forced to occur prior to an access in Al, in
every execution on SC that includes Al.. How can a special access
be forced to occur on SC? Either the special access is program
ordered prior to some access in Al. or it is a release satisfying an
acquire that is not satisfied in Al,. But the former case contradicts
claim 1 and the latter case contradicts At d being self-contained. Thus
there is an execution on SC and a point in this execution in which the
special accesses performed are precisely the accesses in Al., and the
execution order among these special accesses is identical to EO,,nc.
0

Claim 3: There is an execution on SC in which the outcome of ut
isthesameasinE.
Proof: Since AI consists of all inspections that affect ut in E, the
outcome of ur in the full execution E is determined by only the
accesses in Al. Thus it suffices to show that (a) there is an execution
ESC on SC in which the instructions iu A 1 occur, (b) all read accesses
in Al return the ssme results in Esc as in E, and (c) the outcome of
UI in Esc is determined by only the accesses in A 1.

The accesses in Al will occur on SC since none of them are within
an unproven conditional. This follows from the fact that if an access
within a conditional can reach ut, then so can its conditional (since
RC enforces control dependence).

Consider the prefix execution, Et, constructed in claim 2, and let
E01, be the execution order among special accesses in Al. Since
El is a prefix of a PL program, EOI. determines EO.,sc for the
accesses in A,.

We claim that EOI. determines EO,,:RC for the accesses in Al.
We must show that the instructions in E 1 that are not in Al have no
effect on the results returned by read accesses in Al. Consider a write
access, ~1, in El that reaches a read access, rt, in Al on SC, but
does not reach it in GRC. Since rt is in Al, it cannot be reached on
GRC by an unproven conditional. Thus any local dependence chain
from zut to rt, inclusive, does not include any instruction within an
unproven conditional. Hence, if there is a local dependence on SC,
then there wilt be one on RC. Moreover, if wt is ordinary, then it
must be followed by a release on SC. Since all accesses complete
on RC prior to a release, VJ~ must be in A1 and reach the release in
GRC. Since EO,, is the execution order for both SC and RC, WI
must reach rt in GRC. Similarly, if wt is a special access, it must
reach rt in Gno. In either case, we have a contradiction.

Therefore, the results returned by read accesses in At on SC de
pend only on other accesses in Al. Thus we can view the traces as
being the same. Hence by lemma 1, all read accesses in Al up to the
last special access on p,, return the same results in Esc as in E.

Finally, the outcome of conditional u t depends on the values read
by pu,. These read accesses can be ordinary oc special. Since P is a
PL program, an ordinary read access affecting ut returns the value of
a write access, ‘~1, that is ordered by local dependence or through art
acquire. A special read access affecting ut is already shown to return
the correct value. Thus the outcome of it is the same as in E. 0

Stage k > 1. Inductively, we can assume that k .- 1 unproveu
conditionals have been shown to correspond on SC and RC, such
that there is a kth unproven conditional, ok, that is not reached by
any other unproven conditional. At this stage, we add to the current
subtrace all instructions tbat can reach us. Let & be this new set of
instructions. As before, although As is not a complete trace on SC
(or even a prefix), we can argue that there is at least one execution
on SC such that (1) the same G. occurs on Ak in both SC and RC,
and thus (2) the OutCOme of uk is the same a!i in E. The arguments
are identical to those in claims l-3 above, where ut , . . . , uk- t are no
longer unproven conditionals.

Therefore, by induction, there is an execution on SC such that the
outcome of all conditionals is the same as in E. Since all uuprovens
correspond, we know that the full traces are equal. Thus there exists
a valid trace Tsc of P on SC such that Tsc = TRC. Hence by
lemma 1, there exists an execution on SC such that Esc = ERC.
i.e., the results are the same. This shows that XC 2 SC for P. Since
SC 2 RC, it follows that RC = SC for P. 0

We have assumed for the above proof that special accesses are not
affected by ordinary accesses. This is used in the proof, for example,
when we assume in lemma 1 that EO.,sc = EO,,R~ follows if
Tsc = TRC. In general, however, an ordinary access can affect a
special access, e.g., it can be to the same location. Our proof can
be extended to handle this general case in which special accesses
are affected by ordinary accesses, as follows. Consider special read
accesses, conditional branches, and accesses with indirect addressing
all to be initially unproven. As above, include one new unproven at
each stage, until all are proven. Since we are proving special read
accesses along the way, we ensure the correspondence among special
accesses between SC and RC at each stage (i.e., EO,:sc = EO.:R~).
Therefore, theorem 2 holds for general PL programs.

Adve and Hill [I] have proved a similar equivalence between se-
quential consistency and their version of weak ordering.

26

