DDM —

A Cache-Only

Memory Architecture

Erik Hagersten, Anders Landin, and Seif Haridi

Swedish Institute of Computer Science

A new architecture has
the programming
paradigm of shared-
memory architectures
but no physically
shared memory. Caches
attached to the
processors contain all
the system memory.

44

typically implemented as such — with a shared memory. We introduce
an architecture with large caches to reduce latency and network load.
Because all system memory resides in the caches, a minimum number of network
accesses are needed. Still, it presents a shared-memory view to the programmer.

M ultiprocessors providing a shared memory view to the programmer are

Single bus. Shared-memory systems based on a single bus have some tens of
processors, each one with a local cache, and typically suffer from bus saturation.
A cache-coherence protocol in each cache snoops the traffic on the common bus
and prevents inconsistencies in cache contents.! Computers manufactured by
Sequent and Encore use this kind of architecture. Because it provides a uniform
access time to the whole shared memory, it is called a uniform memory architecture
(UMA). The contention for the common memory and the common bus limits the
scalability of UM As.

Distributed. Computers such as the BBN Butterfly and the IBM RP3 use an
architecture with distributed shared memory, known as a nonuniform memory
architecture (NUMA). Each processor node contains a portion of the shared
memory, so access times to different parts of the shared address space can vary.
NUMASs often have networks other than a single bus, and the network delay can
vary to different nodes. The earlier NUMAGs did not have coherent caches and left
the problem of maintaining coherence to the programmer. Today, researchers are
striving toward coherent NUMA s with directory-based cache-coherence proto-
cols.? By statically partitioning the work and data, programmers can optimize
programs for NUMAs. A partitioning that enables processors to make most of
their accesses to their part of the shared memory achieves a better scalability than
is possible in UMAs.

Cache-only. In a cache-only memory architecture (COMA), the memory orga-
nization is similar to that of a NUMA in that each processor holds a portion of the
address space. However, the partitioning of data among the memories does not
have to be static, since all distributed memories are organized like large (second-
level) caches. The task of such a memory is twofold. Besides being a large cache for
the processor, it may also contain some data from the shared address space that the
processor never has accessed — in other words, it is a cache and a virtual part of

0018-9162/92/0900-0044803.00 © 1992 IEEE COMPUTER

fr—— .

the shared memory. We call this inter-
mediate form of memory attraction mem-
ory. A coherence protocol attracts the
data used by a processor toits attraction
memory. Comparable to a cache line,
the coherence unit moved around by
the protocol is called an item. On a
memory reference, a virtual address is
translated into an item identifier. The
itemidentifier spaceislogically the same
as the physical address space of typical
machines, but there is no permanent
mapping between anitem identifier and
a physical memory location. Instead, an
item identifier corresponds to a loca-
tionin an attraction memory, whose tag
matches the item identifier. Actually,
there are cases where multiple loca-
tions of different attraction memories
could match.

A COMA provides a programming
model identical to that of shared-mem-
ory architectures, but it does not re-
quire static distribution of execution
and memory usage to run efficiently.
Running an optimized NUMA program
on a COMA results in a NUMA-like
behavior, since the work spaces of the
different processors migrate to their
attraction memories. However,a UMA
version of the same program would have
asimilar behavior, because the data are
attracted to the using processor regard-
less of the address. A COMA also adapts
to and performs well for programs with
a more dynamic or semidynamic sched-
uling. The work space migrates accord-
ing to its usage throughout the compu-
tation. Programs can be optimized for a
COMA to take this property into ac-
count to achieve a better locality.

A COMA allows for dynamic data
use without duplicating much memory,
compared with an architecture in which
a cached datum also occupies space in
the shared memory. To avoid increas-
ing the memory cost, the attraction
memories should be implemented with
ordinary memory components. There-
fore, we view the COMA approach as a
second-level, or higher level, cache tech-
nique. The accessing time to the attrac-
tion memory of a COMA is compar-
able to that to the memory of a
cache-coherent NUMA. Figure 1 com-
pares COMAs to other shared-memory
architectures.

A new COMA. This article describes
the basic ideas behind a new COMA.
The architecture, called the Data Diffu-
sion Machine (DDM),? relies on a hier-

September 1992

Network]

1 L .

Attraction Attraction
memory memory

" | Cache Cache
Processor Processor

[Network
[Network l
Cache | CaLhe | [Cache] | Cache |
Processor| " |Processor| [Processor]| """ [Processor}
(a) (b)

(c)

Figure 1. Shared-memory architectures compared with COMAs: (a) uniform
memory architecture (UMA), (b) nonuniform memory architecture (NUMA),
and (c) cache-only memory architecture (COMA).

Pread/Nread

Nwrite, Nread.inv

Nread.inv

Pwrite/
Nread.inv

Nread.inv/
intercept

Nread/
intercept

Notation:

in-transaction/
out-transaction

P = processor
transaction

N = network
transaction

D = Dirty

| = Invalid

R = Reserved

V = Valid

Figure 2. An example of a protocol similar to the write-once protocol.

archical network structure. We intro-
duce the key ideas behind DDM by
describing a small machine and its pro-
tocol. We also describe a large machine
with hundreds of processors, overview
the ongoing prototype project, and pro-
vide simulated performance figures.

Cache-coherence
strategies

The problem of maintaining coher-
ence among read-write data shared by
different caches has been studied ex-
tensively. Either software or hardware
can maintain coherence. We believe
hardware coherence is needed in a
COMA for efficiency, since the item
must be small to prevent performance
degradation by false sharing. (In false
sharing, two processors accessing dif-
ferent parts of the same item conflict
with each other, even though they do

not share any data.) We measured a
speedup of 50 percent when false shar-
ing was removed from the wind tunnel
application, MP3D-Diff, reportedin the
“Simulated performance” section. Hard-
ware-based schemes maintain coherence
without involving software and can be
implemented more efficiently. Exam-
ples of hardware-based protocols are
snooping-cache protocols and directo-
ry-based protocols.

Snooping-cache protocols have a dis-
tributed implementation. Each cache is
responsible for snooping traffic on the
bus and taking actions to avoid an inco-
herence. An example of such a protocol
is the write-once protocol introduced
by Goodman and discussed by Sten-
strom.! As Figure 2 shows, in that proto-
col, each cache line can be in one of four
states: Invalid, Valid, Reserved, or Dirty.
Many caches can have the same cache
line in the state Valid at the same time,
and may read it locally. When writing to
a cache line in Valid, the line changes

45

state to Reserved, and a write
is sent on the common bus to
the common memory. All
other caches with lines in
Valid snoop the write and
invalidate their copies. At this
pointthereis only one cached
copy of the cache line con-
taining the newly written val-
ue. The common memory
now also contains the new
value. If a cache already has
the cache line in Reserved, it
can perform a write locally
without any transactions on
the common bus. Its value
now differs from that in the
memory, and itsstate is there-
fore changed to Dirty. Any
read requests from other
caches to thatcache line must
now be intercepted to pro-
vide the new value (marked
by “intercept” in Figure 2).

Snooping caches rely on broadcast-
ing and are not suited for general inter-
connection networks: Unrestricted
broadcasting would drastically reduce
the available bandwidth, thereby obvi-
ating the advantage of general networks.
Instead, directory-based schemes send
messages directly between nodes.! A
read request is sent to main memory,
without any snooping. The main memo-
ry knows if the cache line is cached —

Arbitration, Top
selection protocol
\

DDM bus

quest and its datareply. The
delay between the request
and its reply can be of arbi-
trary length, and there might
be a large number of out-
standing requests. The reply

Output Attraction }
y buffer

memory
Controller

u
———]
1
-
]
3
L.

State + data
memory

ssmmmmmAmsssannnn

Processor

transaction will eventually
appear on the bus asa differ-

Attraction
memory

ent transaction. Unlike oth-
er buses, the DDM bus has a
selection mechanism to make
sure that at most one node is
selected toservice arequest.
This guarantees that each

Processor

transaction on the bus does
not produce more than one
new transaction for the bus,

Figure 3. The architecture of a single-bus DDM. Below the

arequirement necessary for
deadlock avoidance.

attraction memories are the processors. On top of the bus

are arbitration and selection.

ly resides. The access time, including
this extra indirection, would be identi-
cal to that required for reading a dirty
cacheline notinaNUMA s home node.
The directory home can also make sure
that the last copy of an item is not lost.

Instead of the above strategy, DDM
is based on a hierarchical snooping bus
architecture and uses a hierarchical
search algorithm for finding an item.
The directory information in DDM is
dynamically distributed in the hierar-

and in which cache or caches — and chy.
whether it has been modified. If the line

has been modified, the read request is
passed on to the cache with a copy,

A minimal COMA

which provides a copy for the request-

ing cache. On a write to a shared cache
line, a write request sent to the main
memory causes invalidation messages
to all caches with copies to be sent. The
caches respond with acknowledge mes-
sages. To achieve sequential consisten-
cy, all acknowledgments must be re-
ceived before the write is performed.
The cache-coherence protocol for a
Ci MA can adopt techniques used in
other cache-coherence protocols and
extend them with the functionality for
finding a datum on a cache read miss
and for handling replacement. A direc-
tory-based protocol could have a part of
the directory information, the directory
home, statically distributed ina NUMA
fashion, while the data would be al-
lowed to move freely. Retrieving the
data on a read miss would then require
one extra indirect access to the directo-
ry home to find where the item current-

46

DDM.

We introduce DDM by looking at the
smallest instance of the architecture,
which could be a COMA onits own or a
subsystem of a larger COMA. A single
bus connects the attraction memories
of the minimal DDM. The distribution
and coherence of data among the at-
traction memories are controlled by the
snooping protocol memory above, and
theinterface between the processor and
the attraction memory is defined by the
protocol memory below. The protocol
views a cache line of an attraction mem-
ory, here called an item, as one unit.
The attraction memory stores one small
state field per item. Figure 3 shows the
node architecture in the single-bus

DDM uses an asynchronous split-
transaction bus: The bus is released be-
tween a requesting transaction and its
reply, for example, between a read re-

Single-bus DDM protocol.
We developed a new proto-
col, similar in many ways to
the snooping-cache protocol, limiting
broadcast requirements to a smaller
subsystem and adding support for re-
placement.® The write coherence part
of the protocol is the write-invalidate
type: To keep data coherent, all copies
of the item except the one to be updated
are erased on a write. In a COMA with
a small item size, the alternative ap-
proach, write update, could also be at-
tractive: On a write, the new value is
multicast to all “caches” with a shared
copy of the item.

The protocol also handles the attrac-
tionofdata (read) and replacement when
a set in an attraction memory gets full.
The snooping protocol defines a new
state and a new transaction to send as a
function of the transaction appearing
on the bus, and the present state of the
item in the attraction memory:

Protocol: old state x transaction —
new state X new transaction

An item can be in one of seven states
(the subsystem is the attraction memo-

ry):

¢ Invalid. This subsystem does not
contain the item.

® Exclusive. This subsystem and no
other contains the item.

® Shared. This subsystem and possi-
bly other subsystems contain the
item.

® Reading. This subsystem is waiting
for a data value after having issued
aread.

COMPUTER

e Waiting. This subsystem is waiting
to become Exclusive after having
issued an erase.

® Reading-and-Waiting. This sub-
system is waiting for a data value,
later to become Exclusive.

* Answering. This subsystem has
promised to answer a read request.

The first three states — Invalid, Ex-
clusive, and Shared — correspond to
the states Invalid, Reserved, and Valid
in Goodman’s write-once protocol. The
state Dirty in that protocol — with the
meaning that this is the only cached
copy and its value differs from that in
the memory — has no correspondence
in a COMA. New states in the protocol
are the transient states Reading, Wait-
ing, Reading-and-Waiting, and Answer-
ing. Transient states are required be-
cause of the split-transaction bus and
the need to remember outstanding re-
quests.

The bus carries the following transac-
tions:

e Erase. Erase all copies of this item.

e Exclusive. Acknowledge an erase
request.

® Read. Read a copy of the item.

¢ Data. Carry the data in reply to an
earlier read request.

¢ Inject. Carry the only copy of an
item and look for a subsystem to
move into — caused by a replace-
ment.

e Qut. Carry the item on its way out of
the subsystem — caused by a re-
placement. It will terminate when
another copy of the item is found.

A processor writing an item in Exclu-
sive state or reading an item in Exclu-
sive or Shared state proceeds without
interruption. As Figure 4 shows, a read
attempt of an item in Invalid will result
ina Readrequestandanewstate, Read-
ing. The bus selection mechanism will
select one attraction memory to service
the request, eventually putting a Data
transaction on the bus. The requesting
attraction memory, now in Reading, will
grab the Data transaction, change to
Shared, and continue.

Processors are allowed to write only
toitems in Exclusive state. If the item is
in Shared, all other copies have to be
erased and anacknowledgment received
before the writing is allowed. The at-
traction memory sends an Erase trans-
action and waits for the Exclusive ac-

September 1992

Ndata

Pwrite/
Nread

Ndata/Nerase

@ Nerase/Nread 0

Nerase/Nread
Nexclusive/Nread

Nexclusive

Nerase/Nread

Pwrite/
Nerase

Pread
Nread/Ndata

Notation:

in-transaction/
out-transaction

P = from processor

Nread/Ndata N = from network

E = Exclusive
| = Invalid
R = Reading
RW = Reading-
and-Waiting
S = Shared
Pread W = Waiting

Pwrite

Figure 4. A simplified representation of the attraction memory protocol not in-

cluding replacement.

knowledgment in the new state, Wait-
ing. Many simultaneous attempts to write
the same item will result in many attrac-
tion memories in Waiting, all with an
outstanding Erase transaction in their
output buffers. The first Erase to reach
the bus is the winner of the write race.

All other transactions bound for the
same item are removed from the small
output buffers. Therefore, the buffers
also have to snoop transactions. The
output buffers can be limited to a depth
of three, and deadlock canstill be avoid-
ed with a special arbitration algorithm.
The losing attraction memories in Wait-
ing change state to Reading-and-Wait-
ing, while one of them puts a read re-
quest in its output buffer. Eventually
the top protocol of the bus replies with
an Exclusive acknowledgment, telling
the only attraction memory leftin Wait-
ing that it may now proceed. Writing to
an item in the Invalid state results in a
Read request and a new state, Reading-
and-Waiting. Upon the Data reply, the
state changes to Waiting and an Erase
request is sent.

Replacement. Like ordinary caches,
the attraction memory will run out of
space, forcing some items to make room
for more recently accessed ones. If the
set where an item is supposed to reside
is full, one item in the set is selected to
be replaced. For example, the oldest
item in Shared, of which there might be
other copies, may be selected. Replac-
ing an item in Shared generates an Out
transaction. The space used by the item
can now be reclaimed. If an Out trans-
action sees an attraction memory in

Shared, Reading, Waiting, or Reading-
and-Waiting, it does nothing; otherwise
it is converted to an Inject transaction
by the top protocol. An Inject transac-
tion can also be produced by replacing
anitemin Exclusive. The inject transac-
tion is the last copy of an item trying to
find a new home in a new attraction
memory. In the single-bus implementa-
tion, it will do so first by choosing an
empty space (Invalid state), and second
by replacing an item in Shared state —
in other words, it will decrease the
amount of sharing. If the item identifier
space, which corresponds to the physi-
cal address space of conventional archi-
tectures, is not made larger than the
sum of the attraction memory sizes, it is
possible to devise a simple scheme that
guarantees a physical location for each
item.

Often a program uses only a portion
of a computer’s physical address space.
This is especially true of operating sys-
tems with a facility for eager reclaiming
of unused work space. In DDM, the
unused item space can be used to in-
crease the degree of sharing by purging
the unused items. The operating system
might even change the degree of shar-
ing dynamically.

The hierarchical DDM

So far, we have presented a cache-
coherent single-bus multiprocessor with-
out physically shared memory. Instead,
the resources form huge second-level
caches called attraction memories, min-
imizing the number of accesses to the

47

DDM bus

D = Directory
AM = Attraction memory
P = Processor

Controller

State memory

input Output
buffer buffer
\

DDM bus

Figure 5. A hierarchical DDM with three levels.

only shared resource left: the shared
bus. Data can reside in any or many of
the attraction memories. Data are auto-
matically moved where needed.

To make the single-bus DDM a sub-
system of a large hierarchical DDM, we
replace the top with a directory, which
interfaces between the bus and a higher
level bus of the same type. Figure 5
shows the hierarchy.

The directory is a set-associative state
memory that keeps information for all
the items in the attraction memories
below it, but contains no data. The di-
rectory can answer these questions: “Is
this item below me?” and “Does this
item exist outside my subsystem?” From
the bus above, the directory’s snooping
protocol directory above behaves very
much like the memory above protocol.
From the bus below, its directory below
protocol behaves like the top protocol
for items in the Exclusive state. This
makes operations onitems local to a bus
identical to those of the single-bus DDM.
The directory passes through only trans-
actions from below that cannot be com-
pleted inside its subsystem or transac-
tions from above that need to be serviced
by its subsystem. In that sense, the di-
rectory acts as a filter.)

AsFigure 6 shows, the directory has a
small output buffer above it to store
transactions waiting to be sent on the
higher bus. Transactions for the lower
bus are stored in another output buffer
below, and transactions from the lower
bus are stored in an input buffer. A
directory reads from the input buffer
when it has the time and space to do a
lookup in its status memory. This is not
part of the atomic snooping action of
the bus.

48

The hierarchical DDM and its proto-
col have several similarities with archi-
tectures proposed by Wilson® and Good-
man and Woest.® DDM is, however,
different in its use of transient states in
the protocol, itslack of physically shared
memory, and its network (higher level
caches) that stores only state informa-
tion and no data.

Multilevel read. If the subsystems
connected to the bus cannot satisfy a
read request, the next higher directory
retransmits the request on the next high-
er bus. The directory also changes the
item’s state to Reading, marking the
outstanding request. Eventually, the
request reaches a level in the hierarchy
where a directory containing a copy of
the item is selected to answer the re-
quest. The selected directory changes
the item’s state to Answering, marking
an outstanding request from above, and
retransmits the Read request on its low-
er bus. As Figure 7 shows, the transient
states Reading and Answering in the
directories mark the request’s path
through the hierarchy, like an unwound
red read thread that shows the way
through a maze, appearing in red in
Figure 7.

A flow-control mechanism in the pro-
tocol prevents deadlock if too many
processors try to unwind a read thread
to the same set in a directory. When the
request finally reaches an attraction
memory with a copy of the item, its data
reply simply follows the read thread
back to the requesting node, changing
all the states along the path to Shared.

Combined reads and broadcasts are
simple to implementin DDM. If a Read
request finds the read thread unwound

Figure 6. The architecture of a directory.

for the requested item (Reading or
Answering state), it simply terminates
and waits for the Data reply that even-
tually will follow that path on its way
back.

Multilevel write. An Erase from be-
low to a directory with the item in Ex-
clusive state results in an Exclusive ac-
knowledgment being sent below. An
Erase that cannot get its acknowledg-
ment from the directory will work its
way up the hierarchy, changing the di-
rectories’ states to Waiting to mark the
outstanding request. All subsystems of
a bus carrying an Erase transaction will
get their copies erased. The propaga-
tion of the Erase ends when it reaches a
directory in Exclusive (or the top), and
the acknowledgment is sent back along
the path marked Waiting, changing the
states to Exclusive.

A write race between any two proces-
sorsin the hierarchical DDM has asolu-
tionsimilar to that of asingle-bus DDM.
The two Erase requests are propagated
up the hierarchy. The first Erase trans-
action to reach the lowest bus common
toboth processors is the winner, as shown
in Figure 8. The losing attraction mem-
ory (in Reading-and-Waiting) will re-
start a new write action automatically
upon receipt of the erase.

Replacement in the hierarchical
DDM. Replacement of a Shared item in
the hierarchical DDM results in an Out
transaction propagating up the hierar-
chy and terminating when it finds a sub-
system in any of the following states:
Shared, Reading, Waiting, or Answer-
ing. If the last copy of an item marked
Shared is replaced, an Out transaction

COMPUTER

Exclusive acknowledge

Erase
request
(winner)

Erase
request
loser)

Figure 7. A read request from processor P, has found its
way to a copy of the item in the attraction memory of pro-
cessor P,. Its path is marked with states Reading (R) and
Answering (A), which will guide the data reply back to P,.
(I indicates processors in the Invalid state, S processors in

Figure 8. A write race between two processors P, and P, is
resolved when the request originating from P, reaches the
top bus (the lowest bus common to both processors). The
top can now send the acknowledgment, Exclusive, which
follows the path marked with W’s (processors in the Wait-

the Shared state.)

that fails to terminate will reach a direc-
tory in Exclusive and turn into an Inject
transaction. Replacing an item in Ex-
clusive generates an Inject transaction
that tries to find an empty space in a
neighboring attraction memory. Inject
transactions first try to find an empty
space in the attraction memories of the
local DDM bus, as in the single-bus
DDM. Unlike in a single-bus DDM, an
Inject failing to find an empty space on
the local DDM bus will turn to a special
bus, its home bus, determined by the
item identifier. On the home bus, the
Inject will force itself into an attraction
memory, possibly by throwing out a for-
eigner or a Shared item. The item home
space is equally divided between the
bottommost buses, and therefore space
is guaranteed on the home bus.

The preferred location in DDM is
different from memory location in
NUMAS in that an item seeks a home
only at replacement after failing to find
space elsewhere. When the item is not
inits home place, other items can use its
place. The home also differs from the
NUMA approach in being a bus: Any
attraction memory on that bus will do.
The details of the directory protocols
are available elsewhere.*

Replacement in a directory. Baer and
Wang studied the multilevel inclusion
property,” which has the following im-
plications for our system: A directory at
level i + 1 has to be a superset of the

September 1992

ing state) back to the winning processor P,. The Waiting
states are changed to Exclusive by the acknowledgment.
The Erase transaction will erase the data in P, and P, forc-
ing P, to redo its write attempt.

directories, or attraction memories, at
level i. In other words, the size of a
directory and its associativity (number
of ways) must be B, times that of the
underlying leveli, where B,is the branch
factor of the underlying level i, and size
means the number of items:

Size: Dir,,, = B; * Dir,;
Associativity: Dir,,, = B, * Dir,

Even if implementable, higher level
memories would become expensive and
slow if those properties were fulfilled
for a large hierarchical system. Howev-
er, the effects of the multilevel inclu-
sion property are limited in DDM. It
stores only state information in its di-
rectories and does not replicate data in
the higher levels. Yet another way to
limit the effect is to use “imperfect di-
rectories” withsmaller sets (lower num-
ber of ways) than what is required for
multilevel inclusion and to give the di-
rectories the ability to perform replace-
ment, that is, to move all copies of an
item out of their subsystem. We can
keep the probability of replacement ata
reasonable level by increasing the asso-
ciativity moderately higher up in the
hierarchy. A higher degree of sharing
also helps to keep that probability low.
A shared item occupies space in many
attraction memories, but only one space
in the directories above them. The im-
plementation of directory replacement
requires one extra state and two extra
transactions.*

Other protocols. Our protocol gives
the programmer a sequentially consis-
tent system. It fulfills the strongest mem-
ory access model, but performance is
degraded because the processor has to
wait for the acknowledgment before it
can perform the write. However, the
acknowledgment is sent by the topmost
node of the subsystem in which all cop-
ies of the item reside, instead of by each
individual attraction memory with a
copy. This not only reduces the remote
delay, it also cuts down the number of
system transactions. The writer might
actually receive the acknowledgment
before all copies are erased. Neverthe-
less, sequential consistency can be guar-
anteed.® The hierarchical structure can
also efficiently support looser forms of
consistency providing higher perfor-
mance. We have designed a processor-
consistent protocol*and a protocol com-
bining processor consistency with an
adaptive write update strategy.

Increasing the
bandwidth

Although most memory accesses tend
to be localized in the machine, the hier-
archy’s higher levels may nevertheless
demand a higher bandwidth than the
lower systems, creating a bottleneck.
To take the load off the higher levels,
we can use a smaller branch factor at the

49

Even

Odd 4

Y Y Yy

o

irectory I I Directory |

)

irectory | I DirectoryJ

/ A

X X

Figure 9. Increas-
ing the band-
width of a bus by

:

splitting buses.

top of the hierarchy than lower down.
This solution, however, increases the
levels in the hierarchy, resulting in a
longer remote access delay and an in-
creased memory overhead. Instead, we
can widen the higher levels of the hier-
archy to produce a fat tree.” We split a
directory into two directories half the
original directory’s size. The two direc-
tories deal with different address do-
mains (even and odd). The communica-

Related activities

tion with other directories is also split,
which doubles the bandwidth. We can
perform a splitany number of times and
at any level of the hierarchy. Figure 9
shows that regardless of the number of
splits, the architecture is still hierarchi-
cal to each specific address.

Yet another solution is a heteroge-
neous network: We use the hierarchy
with its advantages as far as possible
and tie several hierarchies together at

At the Swedish Institute of Computer Science, we are developing an operat-
ing system for the DDM prototype. This work is based on the Mach operating
system from Carnegie Mellon University, which we modified to support DDM
efficiently. Related activities involve a hardware prefetching scheme that dy-
namically prefetches items to the attraction memory; this is especially useful
when a process is started or migrated. We are also experimenting with alter-

native protocols.'

A DDM emulator is currently under development at the University of Bristol.2
The emulator runs on the Meiko transputer platform and models an architec-
ture with a tree-shaped link-based structure, with transputers as directories.
The transputers’ four links permit a branch factor of three at each level. The
transputers at the leaves execute the application. All references to global data
are intercepted and handled in a DDM manner by software. The emulator’s
DDM protocol has a different representation suited for a link-based architec-
ture structured like a tree, rather than for a bus-based architecture. The im-
plementation has certain similarities to directory-based systems.

References

1. E. Hagersten, Towards a Scalable Cache-Only Memory Architecture, PhD thesis, SICS
Dissertation Series 08, Swedish Institute of Computer Science, Kista, Sweden, 1992.

2. 8. Raina and D.H.D. Warren, “Traffic Patterns in a Scalable Multiprocessor Through
Transputer Emulation,” Proc. Hawaii Int’| Conf. System Sciences, Vol. |, IEEE-CS Press,
Los Alamitos, Calif., Order No. 2420, 1992, pp. 267-276.

50

-

their tops by a general network with a
directory-based protocol. This scheme
requires some changes in the protocol
to achieve the same consistency model.

The DDM prototype
project

A prototype DDM design is near com-
pletion at the Swedish Institute of Com-
puter Science. The hardware implemen-
tation of the processor and attraction
memory is based on the system TP881V
by Tadpole Technology, UK. Each such
system has up to four Motorola MC88100
20-MHz processors, each one with two
MC88200 16-Kbyte caches and memory
management units; 8 or 32 Mbytes of
DRAM; and interfaces for the SCSI
bus, Ethernet, and terminals, all con-
nected by the Motorola Mbus as shown
in Figure 10.

We are developing a DDM node con-
troller board to host a single-ported
state memory. As Figure 10 shows, it
will interface the TP881V node with the
first-level DDM bus. The node control-
ler snoops accesses between the proces-
sor caches and the memory of the
TP881V according to the memory-
below protocol, and also snoops the
DDM bus according to the memory-
above protocol. We have integrated the
copy-back protocol of multiple proces-
sor caches into the protocol mechanisms.
The node controller thus changes the
memory’s behavior into that of an at-
traction memory. Read accesses to the
attraction memory take eight cycles per
cache line, which is one more thanin the
original TP881V system. Write accesses
to the attraction memory take 12 cycles
compared with 10 cycles for the original
system. A read/write mix of 3/1 to the
attraction memory results in an access
time to the attraction memory on the
average 16 percent slower than that to
the original TP881V memory.

As Table 1 shows, a remote read to a
node on the same DDM bus takes 55
cycles at best, most of which are spent
making Mbus transactions (a total of
four accesses). Read accesses climbing
one step up and down the hierarchy add
about 45 extra cycles. Write accesses to
shared state take at best 40 cycles for
one level and 50 cycles for two levels.

The DDM bus is pipelined in four
phases: transaction code, snoop, selec-
tion, and data. We designed our initial

COMPUTER

bus conservatively, since pushing the
bus speed is not a primary goal of this
research. The prototype DDM bus op-
erates at 20 MHz, with a 32-bit data bus
and a 32-bit address bus. It provides a
moderate bandwidth of about 80 Mbytes
per second, which is enough for con-
necting up to eight nodes — that is, 32
processors. Still, the bandwidth has not
been the limiting factor in our simula-
tion studies. We can increase bus band-
width many times by using other struc-
tures. The slotted ring bus proposed by
Barosso and Dubois!® has a bandwidth
one order of magnitude higher.

For translations to item identifiers,
DDM uses the normal procedures for
translating virtual addresses to physical
addresses, as implemented in standard
memory management units. This means
that an operating system has knowledge
of physical pages.

Any attraction memory node can have
a connected disk. Upon a page-in, the
node first attracts all the data of an item
page as being temporarily locked to its
attraction memory. If the items of that
page were not present in the machine
earlier, they are “born” at this time
through the protocol. Then the node
copies (by direct memory access) the
page from the disk to the attraction
memory, unlocking the data at the same
time. Page-out reverses the process,
copying a dirty page back to the disk.
The operating system can purge the items
of unused pages for more sharing.

Memory overhead

It might seem that an implementa-
tion of DDM would require far more
memory than alternative architectures.
Extra memory is required for storing
state bits and address keys for the set-
associative attraction memories, as
well as for the directories. We have
calculated the extra bits needed if all
items reside in only one copy (worst
case). We assume an item size of 16
bytes — the cache line size of the Mo-
torola MC88200.

A 32-processor DDM — that is, a
one-level DDM with a maximum of eight
two-way set-associative attraction mem-
ories — needs four bits of address tag
per item, regardless of the attraction
memory size. As we said earlier, the
item space is not larger than the sum of
the sizes of the attraction memories, so
the size of each attraction memory is

September 1992

DDM bus
l fissatt—————— TP8BIV |
: Memory — SCS! :
: (attraction- Interface }—TTY :
: memory data) I— Ethemet H
Node ' T T H
controlier [~ ui Mbus :
Attraction-ll ¢ | cache f | cache § | cache f | cacne :
Mo l f{Mmu | Mmu | | MU § | MMU :
o] 1L it i i '
il Pro- Pro- Pro- Pro-
+‘|cessor| |cessor| |cessor} |cessor :

Figure 10. A node of the DDM prototype consisting of four processors sharing

one attraction memory.

one eighth of the
item space. Because

Table 1. Remote delay in a two-level DDM (best cases).

eachsetintheattrac- State in Delay, Delay,
tionmemoryis <.iiVid- CPU Attraction One Level Two Levels
ed twoways, 16items Access Memory (cycles) (cycles)

can reside in the

same set. In addition Read Invalid 55 100

to the four bits need- Write Shared 40 50
edtotellitems apart, Write Invalid 80 130
eachitem needs four S

bits of state. Thus,
an item size of 128
bits gives an over-
head of (4+4)/128 = 6 percent.

Adding another layer with eight eight-
way set-associative directories brings
the maximum number of processors to
256. The size of the directories is the
sum of the sizes of the attraction mem-
ories in their subsystems. A directory
entry consists of six bits for the address
tag and four bits of state per item, using
a calculation similar to the one above.
The overhead in the attraction memo-
ries is larger than in the previous exam-
ple because of the larger item space:
seven bits of address tag and four bits of
state. The total overhead per item is
(6+4+7+4)/128 = 16 percent. A larger
item size would, of course, decrease
these overheads.

To minimize the memory overhead,
we can use a different interpretation of
the implicit state for different parts of
the item space. In our initial implemen-
tation of DDM, the absence of an entry
in a directory is interpreted as Invalid.
The replacement algorithm introduces
a home bus for an item. If an item is
most often found in its home bus and
nowhere else, the absence of an entry in
a directory could instead be interpreted

as Exclusive for items in its home sub-
system, and as Invalid for items from
outside. This would drastically reduce a
directory’s size. The technique would
be practical only to a limited extent.
Too small directories restrict the num-
ber of items moving out of their sub-
systems and thus limit sharing and mi-
gration, resulting in drawbacks similar
to those of NUMAs.

Item space is slightly smaller than the
sum of the attraction memories because
of sharing in the system. This introduc-
es a memory overhead not taken into
account in the above calculations. How-
ever,ina COMA a “cached” item occu-
pies only one space, while in other
shared-memory architectures it requires
two spaces: one in the cache and one in
the shared memory.

Simulated performance

We used an execution-driven simula-
tionenvironment that lets us study large
programs running on many processors
in a reasonable amount of time. We
parameterized the DDM simulation

51

model with data from our
ongoing prototype project.
The model accurately de-
scribes DDM behavior, in-
cluding the compromises in-
troduced by taking an existing
commercial productasastart-
ing point. The model also de-
scribes parts of the virtual
memory handling system. We
used two-way 1-Mbyte attrac-
tion memories and a proto-
col similar to the one de-
scribed here, providing
sequential consistency.

For a representation of
applications from engineer-
ing and symbolic computing,
we studied parallel execution
of the Stanford Parallel Ap-
plications for Shared Memo-
ry (Splash)." the OR-paral-

Speedup

100

80 —

60 —

40 |

20 —

Matrix 500 x 500

MP3D-Diff

Cholesky besstk15

The Splash-Water pro-
gram simulates the move-
ments of water molecules. Its
execution time is O(m?),
where m is the number of
molecules. Therefore, it is
often simulated with a small
working set. We used 192
molecules and a working set
of 320 Kbytes. Each of the 96
processors in Figure 11 han-
dles only two molecules.
Most of the locality in the
small working set can be ex-
ploited on the processor
cache, and only about 44 per-
cent of the transactions
reaching the attraction mem-

0 20 40 60 80
Processors

| ory will hit. A real-size work-
100 ing set would still have the
same good locality and would
benefit more from the large

lel Prolog system Muse, and
a matrix multiplication pro-
gram. All programs were
originally written for UMA
architectures (Sequent Sym-
metry or Encore Multimax computers)
and use static or dynamic scheduler al-
gorithms. They adapt well to a COMA
without any changes. All programs take
on the order of one CPU minute to run
sequentially, without any simulations,

grams.

Figure 11. Speedup curves for some of the reported pro-

on a Sun Sparcstation. The speedups
reported in Figure 11 and Table 2 are
relative to the execution of asingle DDM
node with one processor, assuming a
100 percent hit rate in the attraction
memory.

attraction memories to main-
tain the speedup. We tested
this hypothesis with a single
run with 384 molecules, as
shown in Table 2.

The Splash-MP3D program is a wind
tunnel simulator with which a good
speedup is harder to achieve because of
a high invalidation frequency resulting
in a poor hit rate. The program is often
run with the memory filled with data

Table 2. Statistics from DDM simulations. Hit rate statistics are for data only, except with Muse, where we used a unified
I + D cache. The remote access rate is the percentage of the data accesses issued by a processor that create remote coher-
ence traffic. An increased working set results in less load on the buses for Water and Cholesky.

— Water MP3D MP3D-Diff — Cholesky - Matrix Muse
Input data 192 384 75,000 75,000 ml4 ml5 500x500 Pundit
molecules molecules particles particles (small) (large)
Cold start included? yes yes no no yes yes yes no
DDM topology 2x8x4 2x8x4 2x8x2 2x8x2 2x8x2 2x8x2 8x4 4x4
Hit rate (data) percent
D cache 99 99 86 92 96 89 92 98.5
Attraction memory 44 65 40 88 6 74 98 91
Remote access rate 0.6 0.4 8.4 1.0 3.8 2.8 0.16 0.20
Bus utilization percent
Mbus 31 26 86 54 70 60 55 —
Lower DDM bus 39 30 88 24 80 66 — —
Top DDM bus 25 20 66 13 70 49 4 —
Speedup per number
of processors 52/64 53/64 6/32 19/32 10/32 17/32 29/32 — /16
52 COMPUTER

structures representing particles, divid-
ed equally among the processors. The
three-dimensional space is divided into
space cells represented by data struc-
tures. MP3D runs in time phases and
moves each particle once each phase.
Moving a particle involves updating its
state and also the state of the space cell
where the molecule currently resides.
All processors must write to all the space
cells, resulting in a poor locality. In fact,
95 percent of the misses we found in
DDM were due to this write-invalidate
effect. We simulated 75,000 particles, a
working set of 4 Mbytes.

MP3D-Diff is a rewritten version of
the program that achieves a better hit
rate. Particle distribution over proces-
sors is based on their current location in
space. In other words, all particlesin the
same space cells are handled by the
same processor. Updating of both parti-
cle state and space cell state is local to
the processor. When a particle moves
across a processor border, a new pro-
cessor handles its data — the particle
data diffuse to the new processor’s at-
traction memory. The rewritten pro-
gram has some 30 extra lines and re-
quiresa COMA torunwell. Ina COMA
the particle data that occupy the major
partof the physical memory are allowed
to move freely among the attraction
memories.

Splash-Cholesky factorizes a sparse-
ly positive definite matrix. The matrix is
divided into supernodes in a global task
queue to be picked up by any worker —
the scheduling is dynamic. We used the
large input matrix besstk15 (m15), which
occupies 800 Kbytes unfactored and 7.7
Mbytes factored. The nature of the
Cholesky algorithm limits the available
parallelism, which depends on the size
of the input matrix. For comparison,
Table 2 presents a run with the smaller
matrix besstk14 (ml14) of 420 Kbytes
unfactored and 1.4 Mbytes factored.

The matrix multiplication program
performs plain matrix multiplication on
a 500 x 500 matrix using a blocked algo-
rithm. The workingsetis about 3 Mbytes.

Muse is an OR-parallel Prolog sys-
tem implemented in C at the Swedish
Institute of Computer Science. Itsinput
is the large natural language system
Pundit from Unisys Paoli Research Cen-
ter. Anactive working set of 2 Mbytes is
touched during the execution. Muse dis-
tributes work dynamically and shows a
good locality on a COMA. Because we
ran Muse on an earlier version of the

September 1992

%=y National University of
rE2 Smgappre .
- Computational Science Programme

Yy

Applications are invited for Faculty positions/appointments under
the Computational Science Programme from candidates who pos-
sess a PhD degree or its equivalent in any of the following areas:

« Geometric Modelling and Scientific Visualization

- Computer Architecture

« Parallel Processing

- Statistical Computing

Duties include teaching, research and some administrative work.

The Computational Science Programme, consisting of Computa-
tional Chemistry, Computational Mathematics and Computational
Physics, is an interdisciplinary undergraduate programme in the Fac-
ulty of Science. There are eight faculties in the National University of
Singapore with a current student enrollment of some 18,000. All de-
partments are well-equipped with a wide range of facilities for teaching
and research.

Gross annual emoluments range as follows:
Lecturer $$50,390 - 64,200
Senior Lecturer $$58,680 - 100,310
Associate Professor $$88,650 - 122,870
(US$1.00 = S$1.60 approximately)
The commencing salary will depend on the candidate’s qualifica-
tions, experience and the level of appointment offered.

Leave and medical benefits will be provided. Depending on the type
of contract offered, other benefits may include: provident fund benefits
or an end-of-contract gratuity, a settling-in allowance of $$1,000 or
$$2,000, subsidised housing at nominal rentals ranging from $$100 to
$$216 p.m., education allowance for up to three children subject to a
maximum of $$16,425 per annum per child, passage assistance and
baggage allowance for the transportation of personal effects to Singa-
pore. Staff members may undertake consultation work, subject to the
approval of the University, and retain consultation fees up to a maxi-
mum of 60% of their gross annual emoluments in a calendar year.

All academic staff have access to the following computer and tele-
communication resources: an individual microcomputer, an IBM 3090
mainframe, an NEC SX supercomputer, on-line library catalogue, all
networked through optical fibre based FDDI technology. International
contact is maintained through BITNET and INTERNET. In addition,
the Computational Science Laboratory is equipped with a SUN parallel
processing and scientific visualization platform and two clusters of
DECstation 5000 workstations.

Application forms and further information on terms and conditions
of service may be obtained from:
The Director
Personnel Department
National University of Singapore
10 Kent Ridge Crescent
Singapore 0511

Enquiries may also be sent through BITNET to:
PERPL@NUS3090, or through Telefax: (65)7783948.

simulator, some of the statistics are not
reported in Table 2.

imulation shows that the COMA

principle works well for pro-

grams originally writtenfor UMA
architectures and that the slow buses of
our prototype can accommodate many
processors. The overhead of the COMA
explored in our hardware prototype is
limited to 16 percent in the access time
between the processor caches and the
attraction memory. Memory overhead
is 6 to 16 percent for 32 to 256 proces-
sors. l

Acknowledgments

The Swedish Institute of Computer Sci-
ence is a nonprofit research foundation spon-
sored by the Swedish National Board for
Technical Development (NUTEK), Swed-
ish Telecom, Ericsson Group, ASEA Brown
Boveri, IBM Sweden, Nobel Tech System
AB, and the Swedish Defence Materiel Ad-
ministration (FMV). Part of the work on
DDM is being carried out within the ES-
PRIT project 2741 PEPMA.

We thank our many colleaguesinvolved in
or associated with the project, especially
David H.D. Warren of the University of
Bristol, who is a coinventor of DDM. Mikael
Lofgren of the Swedish Institute of Comput-
er Science wrote the DDM simulator, basing
his work on “Abstract Execution,” which
was provided to us by James Larus of the
University of Wisconsin.

References

1. P. Stenstrém, “A Survey of Cache Co-
herence for Multiprocessors,” Comput-
er, Vol. 23, No. 6, June 1990, pp. 12-24.

2. D. Lenoski et al., “The Directory-Based
Cache Coherence Protocol for the DASH
Multiprocessor,” Proc. 17th Ann. Int’l
Symp. Computer Architecture, IEEE-CS
Press, Los Alamitos, Calif., Order No.
2047, 1990, pp. 148-159.

3. D.H.D. Warren and S. Haridi, “Data
Diffusion Machine—A Scalable Shared
Virtual Memory Multiprocessor,” Int’l
Conf. Fifth Generation Computer Sys-
tems, ICOT, Ohmsha, Ltd., Tokyo, 1988,
pp- 943-952.

4. E. Hagersten, S. Haridi, and D.H.D.
Warren, “The Cache-Coherence Proto-
col of the Data Diffusion Machine,” in
Cache and Interconnect Architectures in
Multiprocessors, M. Dubois and S.

54

Thakkar, eds., Kluwer Academic, Nor-
well, Mass., 1990, pp. 165-188.

5. A. Wilson, “Hierarchical Cache/Bus Ar-
chitecture for Shared Memory Multipro-
cessor,” Tech. Report ETR 86-006, En-
core Computer Corp., Marlborough,
Mass., 1986.

6. J.R. Goodman and P.J. Woest, “The
Wisconsin Multicube: A New Large-Scale
Cache-Coherent Multiprocessor,” Proc.
15th Ann. Int’'l Symp. Computer Archi-
tecture, IEEE-CS Press, Los Alamitos,
Calif., Order No. 861, 1988, pp. 422-431.

7. J.-L. Baer and W.-H. Wang, “On the
Inclusion Properties for Multi-Level
Cache Hierarchies,” Proc. 15th Ann. Int’l
Symp. Computer Architecture, IEEE-CS
Press, Los Alamitos, Calif., Order No.
861, 1988, pp. 73-80.

8. A. Landin, E. Hagersten, and S. Haridi.
“Race-Free Interconnection Networks
and Multiprocessor Consistency,” Proc.
18th Ann. Int’l Symp. Computer Archi-
tecture, IEEE-CS Press, Los Alamitos,
Calif.,Order No. 2146, 1991, pp. 106-115.

9. C.E. Leiserson, “Fat Trees: Universal
Networks for Hardware-Efficient Super-
computing,” /EEE Trans. Computers,
Vol. 34, No. 10, Oct. 1985, pp. 892-901.

10. L. Barroso and M. Dubois, “Cache Co-
herence on a Slotted Ring,” Proc. Int’l
Conf. Parallel Processing, IEEE-CS Press,
Los Alamitos, Calif., Order No. 2355,
1991, pp. 230-237.

11. J.S. Singh, W.-D. Weber, and A. Gupta,
Splash: Stanford Parallel Applications for
Shared Memory, Tech. Report. CSL-TR-
91-469, Computer Systems Laboratory,
Stanford Univ., Stanford, Calif., 1991.

Erik Hagersten has led the Data Diffusion
Machine Project at the Swedish Institute of
Computer Science since 1988. He is a coin-
ventor of the Data Diffusion Machine. His
research interests include computer archi-
tectures, parallel processing, and simulation
methods. From 1982 to 1988, he worked at
the Ericsson Computer Science Lab on new
architectures and at Ericsson Telecom on
high-performance fault-tolerant processors.

From 1984 to 1985, he was a visiting research
engineer in the Dataflow Group at MIT.

Hagersten received his MS in electrical
engineering in 1982 from the Royal Institute
of Technology, Stockholm, where he is cur-
rently finishing off his PhD degree.

Anders Landin is a research staff member at
the Swedish Institute of Computer Science,
where he has been working with the DDM
project since 1989. His research interests
include computer architecture, parallel pro-
cessing, memory systems for shared-memo-
ry multiprocessors, and VLSI systems and
simulation.

Landin received his MS in computer sci-
ence and engineering from Lund University,
Sweden, in 1989. He is a PhD student at the
Royal Institute of Technology. Stockholm.

Seif Haridi is leader of the Logic Program-
ming and Parallel Systems Lab at the Swed-
ish Institute of Computer Science. He is also
an adjunct professor at the Royal Institute of
Technology, Stockholm. His research inter-
ests include combining parallel logic pro-
gramming, concurrent objects, and con-
straints, and multiprocessor architectures
suitable for such programming paradigms.
He is a coinventor of DDM. Before joining
the Swedish Institute of Computer Science,
he was at the IBM T.J. Watson Research
Center.

Haridireceived his BS from Cairo Univer-
sity and his PhD from the Royal Institute of
Technology.

Readers can contact the authors at the
Swedish Institute of Computer Science, Box
1263, 164 28 Kista, Sweden; e-mail
{hag,landin,seif}@sics.se.

COMPUTER

