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Abstract 

The importance of an accurate branch 
mechanism has been well documented. 

prediction 
Since the 

information is the same will not result in mispredictions. 
We define this situation as neutral aliasing. On the other 
hand, two aliased indices with different information might 
interfere with each other and result in a misprediction. We 

define this situation as destructive aliasing. This paper is 

organized as follows: the next section looks at previous 
schemes to reduce aliasing and highlights their strong and 
weak points. In the third section we introduce Yet Another 
Global Scheme (YAGS), which combines the strengths of 
the previous schemes to eliminate aliasing. The fourth 
section presents the results of our performance studies. The 
fifth section offers concluding remarks and proposes future 
directions for this research. 

introduction of gshare [I] and the observation that 
abasing in the PHT is a major factor in reducing 
prediction accuracy [2,3,4,5], several schemes have been 
proposed to reduce aliasing in the PHT 16, 7, 8, 91. All 
these schemes are aimed at maximizing the prediction 
accuracy with the fewest resources. In this paper we 
introduce Yet Another Global Scheme (YAGS) - a new 
scheme to reduce the aliasing in the PHT - that combines 
the strong points of several previous schemes. YAGS 
introduces tags into the PHT that allows it to be reduced 
without sacrificing key branch outcome information. The 
size reduction more than offsets the cost of the tags. Our 
experimental results show that YAGS gives better 
prediction accuracy for the SPEC95 benchmark suite than 
several leading prediction schemes, for the same cost. It 
also performs better than the other schemes in the presence 
of a context switch. Finally, YAGS displays good results for 
the go benchmark, which is of special interest since it has a 
large number of static branches and reflects situations 
where aliasing in the PHT can be a problem. 

1. Introduction 

To realize the performance potential of today’s widely- 
issued, deeply pipelined superscalar processors, a good 
branch prediction mechanism is essential. The introduction 
of two level adaptive schemes was an important step in this 
direction [lo]. They are able to achieve predicted levels of 
90% or more. Of the two level schemes, global history 
schemes appear to work best for integer code [ 111. This, in 
part, is due to the large number of if-else instructions in 
integer programs. Sequences of if-else are often highly 
correlated. 

The main problem which reduces the prediction rate in the 
global schemes is aliasing between two indices (an index is 

typically formed from history and address bits) that map to 
the same entry in the Pattern History Table (PHT). Since 
the information stored in the PHT entries is either “taken” 
or “not taken,” two aliased whose corresponding 

2. Previous Work 

Gshare. The first scheme to address the aliasing problem 

in two level adaptive branch predictors was gshare [l] 
(figure 1). The observation that the usage of the PHT 
entries is not uniform when indexed by concatenations of 

the global history and the branch address, led to idea of 
using the “exclusive or” function instead of concatenation 
to more evenly use the entries in the PHT. Detailed studies 
have shown it yields little, if any, advantage 141. 

The Agree Predictor. The agree predictor (figure 2) 

assigns a biasing bit to each branch in the Branch Target 
Buffer (BTB) according to the branch direction just before 
it is written into the BTB [7]. The PI-IT information is then 
changed from “taken” or “not taken” to “agree” or 

“disagree” with the prediction of the biasing bit. The idea 
behind the agree predictor is that most branches are highly 

biased to be either taken or not taken and the hope is that 
the first time a branch is introduced into the BTB it will 
exhibit its biased behavior. If this is the case, most entries 
in the PHT will be “agreeing,” so if aliasing does occur it 
will more likely be neutral aliasing, which will not result in 
a misprediction. 

It is one of the first two level scheme to take advantage 
branches’ biased behavior to reduce destructive aliasing by 

replacing it with neutral aliasing. It considerably reduces 
destructive aliasing. However, there is no guarantee that 
the first time a branch is introduced to the BTB its behavior 
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will correspond to its bias. When such cases occur, the 
biasing bit will stay the same until the branch is replaced in 
the BTB by a different branch. Meanwhile, it will pollute 
the PHT with “disagree” information. There is still aliasing 

between instances of a branch which do not comply with 
the bias and instances which do comply with the bias. 
Furthermore, when a branch is not in the BTB, no 
prediction is available. 

The Bi-Mode Predictor. The bi-mode predictor (figure 
3) tries to replace destructive aliasing with neutral aliasing 
in a different manner [S]. It splits the PI-IT table into even 
parts. One of the parts is the choice PI-IT, which is just a 
bimodal predictor (an array of two bit saturating counters) 

with a slight change in the updating procedure. The other 
two parts are direction PHTs; one is a “taken” direction 
PHT and the other is a “not taken” direction PHT. The 
direction PHTs are indexed by the branch address xored 
with the global history. When a branch is present, its 

address points to the choice PHT entry which in turn 
chooses between the “taken” direction PHT and the “not 
taken” direction PHT. The prediction of the direction PHT 
chosen by the choice PHT serves as the prediction. Only 
the direction PHT chosen by the choice PHT is updated. 
The choice PHT is normally updated too, but not if it gives 
a prediction contradicting the branch outcome and the 
direction PHT chosen gives the correct prediction. 

As a result of this scheme, branches which are biased to be 
taken will have their predictions in the “taken” direction 
PI-IT, and branches which are biased not to be taken will 
have their predictions in the “not taken” direction PHT. So 
at any given time most of the information stored in the 
“taken” direction PHT entries is “taken” and any aliasing is 
more likely not to be destructive. The same phenomenon 
happens in the “not taken” direction PHT. The choice PHT 

serves to dynamically choose the branches’ biases. 

In contrast to the agree predictor, if the bias is incorrectly 
chosen the first time the branch is introduced to the BTB, it 
is not bound to stay that way while the branch is in the 
BTB and as a result pollute the direction PHTs. 

However, the choice PHT takes a third of all PHT 

resources just to dynamically determine the bias. It also 
does not solve the aliasing problem between instances of a 
branch which do not agree with the bias and instances 
which do. 

The Skewed Branch Predictor. The skewed branch 
predictor (figure 4) is based on the observation that most 
aliasing occurs not because the size of the PHT is too 

small, but because of a lack of associativity in the PHT (the 
major contributor to aliasing is conflict aliasing and not 
capacity aliasing). The best way to deal with conflict 

aliasing is to make the PHT set-associative, but this 
requires tags and is not cost-effective. Instead, the skewed 
predictor emulates associativity using a special skewing 
function [6]. 

The skewed branch predictor splits the PHT into three even 
banks and hashes each index to a 2-bit saturating counter in 
each bank using a unique hashing function per bank (fl, f2 
and f3). The prediction is made according to a majority 
vote among the three banks. If the prediction is wrong all 

three banks are updated. If the prediction is correct, only 
the banks that made a correct prediction will be updated 
(partial updating). 

The skewing function should have inter-bank dispersion. 
This is needed to make sure that if a branch is aliased in 
one bank it will not be aliased in the other two banks, so 
the majority vote will produce an unaliased prediction. 

The reasoning behind partial updating is that if a bank 
gives a misprediction while the other two give correct 
predictions, the bank with the misprediction probably holds 
information which belongs to a different branch. In order 
to maintain the accuracy of the other branch, this bank is 

not updated. 

The skewed branch predictor tries to eliminate all aliasing 
instances and therefore all destructive aliasing. Unlike the 
other methods, it tries to eliminate destructive aliasing 
between branch instances which obey the bias and those 
which do not. However, to achieve this, the skewed 
predictor stores each branch outcome in two or three 

banks. This redundancy of l/3 to 213 of the PHT size 
creates capacity aliasing but eliminates much more conflict 
aliasing, resulting in a lower misprediction rate. However, 
it is slow to warm-up on context switches. 

The Filter Mechanism. Reducing the amount of 
redundant information stored in the PHT is the main point 
of this scheme [9]. The idea is that highly biased branches 
can be predicted with high accuracy with just one bit. The 
filtering of such branches out of the PHT is done by a bias 
bit and a saturating counter (figure 5) for each BTB entry. 
When a branch is introduced to the BTB the bias bit is set 
to the direction of the branch when it is resolved and the 
counter is initialized. When every branch instance is 

resolved, if the direction of the branch is the same as the 
bias bit the counter is incremented. If not, the counter is 
zeroed and the bias bit is toggled. A branch is predicted 

using the PHT if the counter is not saturated. If the counter 
is saturated, it means that the branch is highly biased in the 

direction indicated by the bias bit, and therefore the bias bit 
is used as a prediction. In this case, when the counter is 
saturated, the PHT is not updated with the branch outcome 
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- the saturated counter filters this information from the 
PHT. 

The size of the counter has to be tuned to the size of the 
PHT. If the PHT size is large, the amount of filtering 
needed is small, and therefore the size of the counters 
should be large. 

When a branch is first introduced in the BTB, the counter 
is initialized. It was found that it is best to initialize the 
counter to its maximum value so the filtering mechanism 
will start working immediately. If the branch is not highly 
biased, the bias bit will flip fairly quickly and the counter 

will be zeroed. On the other hand, if the counter is 
initialized to zero and the branch is highly biased, it will 
take time for the filtering mechanism to start working and 
the PHT will be polluted in the meantime. 

The filter mechanism tries to eliminate all aliasing 
instances, neutral and destructive, by considerably 
reducing the amount of information stored in the PHT. 
However, it mispredicts instances of highly biased 
branches which do not comply with the bias. 

3. YAGS 

The brief overview above, of earlier proposals to reduce 
aliasing in global schemes, suggests that splitting the PI-IT 

into two branch streams corresponding to biases of “taken” 
and “not taken,” as is done in the agree and bi-mode 
predictors, is a good idea. However, as in the skewed 
branch predictor, we do not want to neglect aliasing 
between biased branches and their instances which do not 
comply with the bias. Finally, it will be beneficial if we can 
reduce the amount of unnecessary information in the PHT, 
as in the filter mechanism, but not at the expense of 
mispredicting some of the branch instances. 

The motivation behind YAGS is the observation that for 
each branch we need to store its bias and the instances 
when it does not agree with it (figure 6). If we employ a 
bimodal predictor to store the bias, as the choice predictor 
does in the bi-mode scheme, than all we need to store in 
the direction PHTs are the instances when the branch does 
not comply with its bias. This reduces the amount of 
information stored in the direction PHTs, and therefore the 
direction PHTs can be smaller than the choice PHT. To 
identify those instances in the direction PHTs we add small 

tags (6-8 bits) to each entry, referring to them now as 
direction caches. These tags store the least significant bits 

of the branch address and they virtually eliminate aliasing 
between two consecutive branches. 

When a branch occurs in the instruction stream, the choice 
PHT is accessed. If the choice PHT indicated “taken,” the 

“not taken” cache is accessed to check if it is a special case 
where the prediction does not agree with the bias. If there 
is a miss in the “not taken” cache, the choice PHT is used 
as a prediction. If there is a hit in the “not taken” cache it 
supplies the prediction. A similar set of actions is taken if 
the choice PHT indicates “not taken,” but this time the 
check is done in the “taken” cache. The choice PHT is 
addressed and updated as in the bi-mode choice PHT. The 
“not taken” cache is updated if a prediction from it was 
used. It is also updated if the choice PHT is indicating 
“taken” and the branch outcome was “not taken.” The 
same happens with the “taken” cache. 

We still need to take care of aliasing for instances of a 

branch which do not agree with the branch’s bias. After 
making the introduction of tags cost-effective, the natural 
solution for the aliasing problem is to add associativity (in 
[6] it was showed that the vast majority of aliasing in the 
PHT is conflict aliasing). 

When making the direction caches set-associative, there is 
some extra cost for keeping a correct replacement policy. 
For example, in a two-way set-associative cache, one bit 
for every two entries will suffice to keep track of which 
entry was replaced last. We use an LRU replacement 
policy with one exception: an entry in the “taken” cache 
which indicates “not taken” will be replaced first to avoid 
redundant information. If an entry in the “taken” cache 
indicates “not taken,” this information is already in the 
choice PHT and therefore is redundant and can be 
replaced. 

4. Performance Studies 

4.1 Methodology 

The experimental data presented in this paper were 
collected using SPEC95 benchmark traces. The 
benchmarks were compiled on the SunOS operating system 

using the gee compiler. The traces were run to completion. 
In order to simulate a context switch for the context switch 

study only, a new trace file was created by interleaving all 
eight SPEC95 benchmarks every 60,000 instructions until 
one of the files runs out of instructions The number was 
chosen not to reflect a real context switching interval, 
which would be much less frequent, but to emphasize the 
effect of context switching on the various predictors. The 
size of the YAGS predictors includes the tags of the 

direction caches. In the case where YAGS is set- 
associative the LRU and history bits are also added. 
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4.2 Results 

Figure 7 shows the misprediction rate for gshare, the 
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Figure 7. Prediction rates for four schemes 
including YAGSG (6 bits in the tags). 

skewed predictor, the bi-mode predictor and YAGS with 
direct mapped direction caches. As can be seen, YAGS 
performs better than the other schemes, particularly for 
small sizes. However, as the size of the PHT increases, 
YAGS’s advantage over the other schemes decreases. This 
is to be expected, because, the aliasing problem in the PHT 
decreases with size and therefore the performance of all the 
schemes converges. 

One of the pitfalls of the SPEC95 benchmark suite is that 
most traces have a small static branch signature [8]. For 
example, the compress benchmark has only 482 static 
branches. These branches are executed over and over again 
throughout the course of the program. However, the small 
static branch signature implies each branch is more likely 
to have a unique entry in the PHT for each history instance, 
resulting in a very small amount of aliasing in the PHT. 
This yields optimistic figures for many branch predictions 
schemes. 

The gee and go benchmarks are thus of special interest 
because of their large static and dynamic branch signatures. 
As can be seen in figures 8 and 9, YAGS also outperforms 
the other schemes for the go and gee benchmarks. The go 
benchmark is particularly interesting because it suffers the 
most from destructive aliasing. The gshare scheme for 
small predictors achieves a 69% correct prediction rate for 
go. For about the same amount of resources (OSKB) 
YAGS achieves a 77% correct prediction rate. The bi- 
mode, which is designed to reduce destructive aliasing, 
achieves only 73% correct prediction rate. 
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When increasing the size of the PHT, we increase the size 
of the history register to better exploit correlation between 
branches. However, if the direction caches are made two 
way set-associative, not all the bits in the history register 
are used to index into the direction caches. In fact, one less 
bit is used than if the direction caches were direct-mapped. 
This loss of correlation has a negative effect on the 
prediction rate. In the present YAGS scheme, the amount 
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Figure 9. Predicting GCC. 

4.3 Set Associativity in the Direction Caches 
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of remaining aliasing is so little that the advantage gained 
by making the direction PHT set-associative is offset by 
the loss of correlation. In order to maintain the same level 
of correlation, one bit of history is used as a tag in addition 

to the usual tag. 

Figure 10 shows the prediction rate of a 6 bit tag YAGS vs. 
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Figure 10.6 bit tags vs. 2-way set associative. 

the same predictor with a 2 way set associative cache. The 
extra bits that are used by the two way set-associative are 
the LRU bits and the extra tag bit which is taken from the 
history register. As expected, the two way set-associative 
version is able to reduce the aliasing in the direction 
caches. The small difference between the schemes is due 

to lack of aliasing in the direction caches. 

4.4 Context Switching 

Future high-performance microprocessors will use larger 
branch prediction schemes - a trend that is very likely to 
continue in the near future. Ideally, the prediction rate 
should improve in proportion to the amount of hardware 
put into the scheme. However, a pitfall of large predictors 
is the time it takes them to reach peak performance from a 
cold start. In the presence of intensive context switching 
the warm-up time of the branch prediction scheme can 

have a significant influence on the misprediction rate. 
Furthermore, some complex schemes might end up 
achieving less accurate predictions than a less sophisticated 
scheme, due to long warm-up times. It was shown that a 
hybrid predictor (first proposed in [ 11) composed of gshare 
and the bimodal predictor has good performance in the 

presence of a context switch [9]. This is due to a short 
warm up time of the bimodal component. Each branch is 

mapped to only one entry in the PHT of the bimodal 
scheme. Therefore, it takes only few executions of a branch 
for its respective entry to reflect the information stored the 
branch. On the other hand, the gshare scheme has to 
execute a branch several times for each history instance for 
it to warm up. The potentially large number of history 

instances (i.e., 2history length) will result in a very long 
warm-up time and that in turn will cause a degradation in 

performance in the presence of context switches. The same 
phenomenon is observed in the skewed predictor. 

However, one would expect the bi-mode predictor and 
YAGS to be more tolerant of context switches. Most of the 
information in the “not taken” direction PHT of the bi- 
mode predictor is “not taken.” Once the choice PHT points 
to the “not taken” direction PHT the probability of a 
“taken” prediction is very small. Thus only a few 
executions of each branch are needed to warm up the 
choice PHT (it is essentially the bimodal predictor). After 
that, it will take more executions to warm up the branch’s 
history instances which do not comply with the branch 
bias. But for the most part, the predictor will perform as 

well as the bimodal. The same phenomenon occurs in 
YAGS. This time it is due to the tags. There is a low 
probability that the tags will match after a context switch. 
Therefore, until some tags match, the choice PHT (which 
is, in fact, the bimodal) will serve as the predictor. 

In a sense, YAGS and the bi-mode predictors are hybrid 
predictors which combine the gshare scheme with the 
simple bimodal predictor. In the presence of a context 
switch, they should exhibit the short warm up time of the 
bimodal predictor. (Similar behavior is seen in the agree 

predictor.) 

Figure 11 shows the performance of the schemes tested in 
the presence of context switches. As expected, YAGS and 
the bi-mode predictor perform much better than gshare and 
the skew predictor because of their short warm-up times. 
The differences between the performance of the different 
methods is much more pronounced in the presence of 
context switches. The gshare scheme would converge with 
the others only if the PI-IT were large enough to 
accommodate most of the branch instances from all the 

SPEC95 benchmarks. Without context switches, the 
schemes would converge if the gshare PHT were big 

enough to accommodate the benchmark with the largest 
branch signature. 

The gshare scheme does not perform as well as the others. 
This is because of its long warm-up time, as discussed 
above. 
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Figure 11. Predicting in the presence 
of context switches. 

The difference between the performance of YAGS and that 
of the bi-mode scheme is very small. Only for very small 
predictor size is the difference significant. It might be that 
YAGS would do better in the presence of a context switch 
if a larger tag size were used. 

4.5 Design Space 

The YAGS version shown so far has a 6 bit tag and the 
direction caches are each half the size of the choice PHT. 
This is somewhat arbitrary. How big do the tags need to be 
to identify the branch in most cases? Figure 12 shows the 

prediction rate as a function of the tag size for SPEC95. 
The size of the choice PI-IT is 0.25KB (1024 entries), each 
direction cache has 5 12 entries and its size varies according 
to the size of the tag. According to figure 12, there is no 
reason to increase the size of the tag beyond 8 bits - 
prediction improvement is almost zero. There may be no 
reason to increase the size of the tag from 6 to 8 bits since 
the prediction improvement is very small and may not 
justify the increase in the predictor size. Figure 13 shows 

the prediction rate as a function of tag size for the go 
benchmark only. The difference between the prediction 
rate for a 6 bit tag and 8 bit tag is more noticeable for the 
go benchmark than for SPEC95 in general. As mentioned 
before, the go benchmark has a large branch signature and 
can benefit from an increase in tag size. 

Figures 14 and 15 shown the prediction rate vs. predictor 
size for the SPEC95 and go benchmark respectively. On 
average for SPEC95, increasing the tag from 6 bits to 8 bits 
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does not result in better predictions (figure 14). On the 
other hand, it does improve the prediction rate for the go 

benchmark (figure 15). The prediction rate improvement is 
minimal and almost negligible. Even increasing the size of 
the tag to 32 bits does not result in a better prediction rate, 
but it increases the size of the predictor considerably. 

By reducing the amount of unnecessary information stored 
in the direction caches, we are able to reduce the number of 
entries in the direction caches and to make the introduction 
of tags cost-effective. Figure 16 gives some insight as to 

Figure 13. Tag sizes for GO. 
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how small the direction caches can be with respect to the 
choice PHT. Figure 16 shows the prediction rate vs. 
predictor size for three versions of YAGS. The direction 
caches in the first version are each half the size of the 
choice PI-IT. In the second version, they are one quarter the 
size of the choice PHT, and in the third are one eighth of 
the size. All versions use a six bit tag 

Figure 16 shows that for small predictor sizes the 0.125 

version is best, while for large predictor sizes, the 0.5 
version is best. For small predictor sizes, most of the 
resources should be allocated to the choice PHT, ensuring 
that the predictor will predict at least as well as a simple 
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Figure 16. Direction cache size. 

bimodal predictor. When the amount of resources 
increases, there is much less aliasing in the choice PHT and 
resources can be freed to handle the cases where a branch 
does not agree with its bias (i.e. larger direction caches). 
Thus the size of the direction caches should be tuned 
according to the overall size of the predictor. 

5. Summary 

We introduced YAGS, a two level global branch prediction 
scheme which tries to eliminate aliasing in the PHT by 
combining the advantages of previous schemes. YAGS 
performs as well as all other schemes tested. In many cases 
it was considerably better. YAGS and the bi-mode 
predictors perform well in context switches. 

Some work was done to investigate the design space. 
Increasing the size of the tags only improves performance 

up to a point. After that, increasing the tag size will 
degrade performance, and the marginally better prediction 
rate does not justify the resources taken up by the larger 
tag. We have found that the size of the direction caches 
should be tuned to the size of the predictor. 

We believe the potential of YAGS is greater than what we 

were able to demonstrate in this paper. In all experiments 
conducted for this paper, the size of the history register was 
dictated by the amount of resources allocated for the 
predictor. For example, in a 1KB gshare, there are 4KB 
entries and therefore the size the history register was forced 
to be 12 bits. The closest bi-mode predictor in size which 
was tested is a 0.75KB predictor, from which only 0.25KB 
(1K entries) were dedicated to each direction PHT. This 
forced this instance of the bi-mode predictor to use only a 
10 bit history register. As a result, the bi-mode although 
reducing the aliasing in the PHT, has reduced correlation 
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information for use in the prediction, compared to a similar 
sized gshare. This phenomena holds true for the YAGS 
predictor as well, since the size of the direction caches is 
reduced even further than in the bi-mode predictor and as a 
result the size the history register (and therefore the 

correlation information) was reduced. An example is the 
1.25KB YAGS where 0.25KB are dedicated to the choice 
PHT. Each direction cache takes OSKB and has 64 entries, 

i.e., the history register is only 6 bits. 

In figure 16, whenever the size of the direction caches was 

decreased by half, the size of the history register was 
decreased by one bit and therefore correlation information 
was lost. A better experiment would decrease the relative 
size of the direction caches while adding history bits as 

tags. Making the direction caches 2 way set associative 
hardly improved the prediction. This led us to believe that 
the aliasing problem in the direction PHT was almost 
completely solved. Therefore, decreasing the size of the 
direction caches degraded the performance because of the 
reduction in correlation information, and not necessarily 
because of increased aliasing. 

We hypothesize that an improved YAGS would have much 
smaller direction caches with more history bits in the tags 
to preserve or increase the correlation information for use 
in prediction. Of course history bits can be tagged in every 
predictor scheme but the overhead in YAGS would be 
significantly smaller than all the other schemes. 

Finally, the basic idea behind YAGS could be combined 
with other of the schemes, particularly the filter 
mechanism. An enhancement that might be tried is add a 
small cache to capture the instances filtered out of the PHT 
which do not agree with the bias bit. 
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