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Abstract 

Alewife is a multiprocessor architecture that suppons up to 5 I2 pro- 
cessmg nodes connected over a scalable and cost-effective mesh 
network at a constant cost per node. The MIT Alewife machine. 
a prototype implementation of the architecture. demonstrates that a 
parallel system can be both scalable and programmable. Four mech- 
anisms combine to achieve these goals: software-extended coherent 
shared memory provides a global, linear address space; integrated 
message passing allows compiler and operating system designers 
to provrde efficient commumcation and synchronization: support for 
fine-gram computation allows many processors to cooperate on small 
problem srzes: and latency tolerance mechanisms - including block 
multithreading and prefetching - mask unavoidable delays due to 
communication. 

Microbenchmarks. together with over a dozen complete npplica- 
tions running on the 32-node prototype, help to analyze the behavior 
of the system. Analysis shows that integrating message passing with 
shared memory enables a cost-efficient solution to the cache coher- 
ence problem and provides a rich set of programming primitives. 
Block multithreading and prefetching improve performance by up 
to 25% individually. and 35% together. Finally. language constructs 
that allow programmers to express fine-grain synchronization can 
improve performance by over a factor of two. 

1 Introduction 

The last few years have seen the introduction of a number of parallel- 
processing systems with truly impressive maximum performance. 
The amount of raw computation packaged in a single chassis is 
quickly approaching a trillion operations per second. Unfortunately, 
end-users rarely benefit from the advertised maximum performance 
of today’s massively parallel systems. Any application that actually 
exploits the full potential of a machine typically requires months of 
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careful programming. pamfui debugging, and relentless tumng. 

The MIT Alewife machine shows that a parallel archnecture can 
yield a rich shared memory programming envnonment on a scalable 
hardware base. The hardware, compiler. and operating system com- 
bine to achieve the goal ofprogrummabifir~ by solving problems that 
traditionally burden multiprocessor programmers: namely. schedul- 
ing computation and moving data between processing elements. Fea- 
tures of this environment mclude a globally shared address space. a 
scalable cache coherence mechanism. a compiler that automatically 
partitions regular programs with loops. a library of efficient synchro- 
mzation and communication routines. distributed garbage collection. 
and a parallel debugger. These features allow programmers to wnte 
applications quickly. Statistics-gathering tools help to optimize per- 
formance. 

The goal of scafabili~ addresses both the cost of building the 
machine and its ability to run programs efficiently. The Alewife 
architecture permits a physically scalable implementation: Alewife 
machines are built by replicating a single. modular processing node. 
Passive backplanes provide the wires to connect the nodes in a low- 
cost, two-dimensional mesh network. In order to provide 110 fa- 
cilities. VME and SCSI interface boards plug into the edges of the 
mesh. Whether an Alewife machine has one node or 512 nodes. 
this physical layout results in a constant cost per node. In the pro- 
totype, despite unit quantity purchasing. a single-node costs only 
about S2.000. With volume fabrication. this cost can be reduced 
substantially. 

This paper shows how the hardware and software components ot 
Alewife provide good performance on parallel applicauons. wnhout 
sacrificing physical scalability or programmability. Indeed. most ap- 
plications were written for other machines and run on Alewife with- 
out significant porting effort. The pnmary challenge to achieving 
these goals simultaneously is the latency of interprocessor commu- 
nication, which dominates the time required for intranode memory 
accesses. Therefore. Alewife provides four classes of architectural 
mechanisms that implement an UU~OI~U~IC loculiry IfIufzuIReIf1eIIrstrat- 
egy. This strategy seeks to maximize the amount of local communi- 
cation by consolidating related blocks of computation and data. and 
attempts to minimize the effects of non-local communication when 
it is unavoidable. The four classes of mechanisms are: coherent 
caches for shared memory. integrated message passing. support for 
fine-grain computatron. and latency tolerance. 

Coherent shared memory Although Alewife provides the ab- 
stracuon of globally shared memory to programmers. the system’s 
physical memory IS statrcally distnbuted over the nodes m the ma- 
chine. On each node. a Commurucatrons and Memory Managc- 
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mcnt Unit (CM~lU)[ IH] ticlds memory requests from a Sparcie 
processor121 and dctcrmmcs whether requests access local or re- 
mote memory When necessary. the CMMU synthesrzes messages 
tha[ tctch memory from remote nodes. 

The memory hardware helps manage locality by caching both pri- 
vate and shrtrcd data on each node. A scalable. soltware-extended 
scheme called L(mitLESS[9) mamtams the coherence of cached data. 

Thrs scheme handles common-case memory accesses n-r the CMMU 
hardware. but relies on software lraps to enforce coherence for mem- 
ory blocks that are shared by a large number of processors. 

Integrated message passing While the programmer sees a 
shared memory programming model. for performance reasons much 
of the underlying software is implemented using message passing. 
The performance of all of the layers of software that help manage 
locality (including the compiler. libraries. run-time system. and Lim- 
itLESS handlers) depend on an efficient communication mechanism. 
Features in Sparcle and the CMMU combine IO provide a stream- 
lined interface for transmitting and receiving messages: both system 
and user code can quickly describe and atomically launch a packet 
directly into the interconnectton network: a fast interrupt mecha- 
nism speeds message reception: and a direct memory access(DMA) 
mechanism allows data to flow hetween the network and memory. 

The Alewife hardware suppons a seamless interface between 
the various software layers by integrating the shared memory and 
message-passing mechanisms. To do SO. the system provides for- 
ward progress guarantees to shared memory accesses in the face of 
message reception interrupts. In addition. the DMA engine main- 
tains the coherence between the data in messages and the data in 
local caches [ 161. 

Fine-grain computation Given a fixed-size data set. the gran- 
ularity of computation (the time between events that require inter- 
processor communication) decreases as the number of processors 
in a system increases. A system that cannot handle small tasks 
efficiently must attempt to increase synchronization and communi- 
canon granulanty anrficially, possibly defeating attempts to manage 
locality. Alewife’s suppon for fine-grain computation includes fast, 
user-level messages and support for full/empty bit synchronization. 

Alewife’s programming languages. parallel C and Mul-T. include 
constructs for expressing fine-gram synchronizatton. These con- 
structs allow a thread to synchronize implicitly upon every memory 
xcess. 

Latency tolerance Block multithreading and prefetching pro- 
vide the last line of defense in Alewife’s locality management strat- 
egy. These mechanisms attempt to tolerate the latency of inter- 
processor communication when it cannot be avoided. Prefetching 
allows code to anticipate communication by requesting data or locks 
before they are needed. Block multithreading allows a processor to 
swatch between threads of computation on a cache miss or a failed 
synchronization attempt. 

Latency tolerance requires support from Alewife’s hardware and 
software components. Prefetching and block multithreading both 
require lockup-free caches( 151. Prefetching requires support in the 
compiler and special memory operattons. Block multithreading re- 
qmres a fast context switch[3] and a solution to the window of vul- 
nerability problem created by mrerleaved threads of execution[ 17) 

Figure 1: The Alewife architecture 

Although it is helpful to think of Alewife’s mechanismsas belong- 
tng to four distinct classes, the machine’s implementation integrates 
them tightly. For example. the CMMU’s transaction buffer closes the 
window of vulnerability opened not only by multithreading. but also 
by fast message handling and software-extended coherence. The 
transaction buffer also provides storage for prefetching. Similarly, 
Sparcle’s fast interrupt mechanism accelerates LimitLESS event han- 
dling, message reception, fine-grain synchronization events.and con- 
text switching. 

This paperdescribes the experience gained by designing. fabricat- 
ing, and running a complete parallel system. Specifically. it evaluates 
the effectiveness of the Alewife architecture and its locality manage- 
ment strategy. Section 2 describes the machine’s implementation and 
its programming environment IO show how the mechanisms combine 
to produce a coherent system. Section 3 describes Alewife’s prim- 
itive mechanisms and uses microbenchmarks to measure the base 
performance of the mechanisms in terms of the latency and band- 
width of primitive functions. Section4 presentsdetailed case-studies 
of two applications that illustrate the benefits of Alewife’s approach. 
Section 5 discusses related work on parallel architectures. Finally. 
Section 6 summarizes the insight gained from implementing Alewife 
and describes plans for future research. 

2 The Alewife Machine 

The Alewife architecture is organized as shown in Figure I. Memory 
is physically distributed over the processing nodes. which use a mesh 
network for communication. 

Each Alewife node consists of a Sparcle[Z] processor. 64K bytes 
of direct-mapped cache. 4M bytes of data and 2M bytes of directory 
(to suppona4M byteportionofsharedmemory). 2M bytesoiprivate 
(unshared) memory. a floatmg-point coprocessor. and an Elko-senes 
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Figure 2: 16-node machine and 12%node chassis. 

mesh routing chip (EMRC) from Caltech. Both the cache memories 
and floating-point unit (FPU) are off-the-shelf. SPARC-compatible 
components. The EMRC network routers use wormhole routing and 
are connected to form a direct network with a mesh topology. The 
nodes communicate via messages through this network. A single- 
chip Communications and Memory Management Unit KMMU) ser- 
vices data requests from the processor and network. 110 is provided 
by a SCSI disk array attached to the edges of the mesh network. 

Figure 2 shows the physical realization of a 16-node Alewife 
system and the chassis for 128 nodes. The 16-node system, com- 
plete with two internal 3f-inch disk drives. is about 74x l2x46cm. 
roughly the size of a floor-standing workstation. Packaging for a 
I28-node machine occupies a standard I9-inch rack. Timing num- 
bers in this paper reflect a 32-node Alewife machine, packaged in 
the lower right quarter of the I28node chassis. 

User access to an Alewife machine is through a host workstation. 
Client interface software connects to the Alewife machine via UNIX 
sockets to a server process running on the host. External NFS file 
access is also provided by the host. 

The first Alewife machine became operational in’May, 1994. Re- 
sults in this paper were obtained using first-silicon versions of Sparcle 
and the CMMU. Although there are a few bugs m the CMMU, all 
of them have software work-arounds. However. one of the bugs 
involves a timing conflict with the FPU, requiring operation at 20 
MHz when floating-point is in use. Integer codes run at 30 MHz. 
A planned respin of the CMMU will correct these bugs and boost 
performance to the intended 33 MHz. For consistency, the remainder 
of this paper will quote performance numbers at a 20 MHz system 
speed. 

2.1 Spade processor 

Sparcle was derived from an industry-standard SPARC [version 7) 
processor. It provides an efficient and tight coupling between the 
processor pipeline and the communications network. Many of the 
features of the underlying SPARC implementatton are exploited di- 
rectly by Alewife: for example, the SPARC external coprocessorin- 
terface is used for fast messaging, interrupt control. and fine-grained 
synchronization. SPARC also provides register windows that can be 
exploited as separate contexts for block multithreading. 

Sparcle augments the baste SPARC archttecturc wuh a few sample 

Figure 3: Block diagram and Roorplan for the CMMU f l5mm x I5mm) 

mechanisms to facilitate rapid messaging, block multithreading. and 
fine-grain synchronization: 

l User-levelcolored loads and stores. The SPARC architecture 
defines an I-bit AIternare Qmce hdicalor (ASI) that serves 
to tag all load and store operations with one of 256 different 
“colors”. Sparcle allocates the top 128 ASI values to the user 
anddefines new load and store instructions that emit these ASI 
values. 

l Extra synchronous trap lines. These lines enable unique trap 
vectors for context-switch and fine-grain synchronization traps. 

l Context management instructions. New instructions allow 
rapid switching between active hardware contexts. The SPARC 
current window pointer is visible at the pins. permittmg context- 
dependent state in the CMMU and FPU. 

These changes require an increase of fewer than 2000 gates over 
the unmodified SPARC design. Together. they yield a processor 
with support for low-overhead communication. including a l4-cycle 
context-switch time for a remote data cache miss. 

2.2 The Alewife CMMU 

The Alewife CMMU[ IS] implements most of the unique functional- 
ity of Alewife. In an Alewife node. the CMMU is connecteddirectly 
to the first-level cache bus and serves much the same functionality 
as a cache-controller/memory-management unit in a uniprocessor. It 
contains tags for the cache. provides DRAM refresh and ECC. and 
handles cache fills and replacements. In addition, it implements the 
architectural mechanisms described in this paper. The CMMU also 
provides asynchronousqueueing for the EMRC network chips and a 
number of hardware statistics facilities. 

Figure 3 shows a block diagram of this chip. The ProcessorGl~e 
Logic is responsible for interpreting colored memory operations and 
coprocessorinstruction requests. The Cucire Mur~ugrrrrrrrrarrc///~~~~r/- 
idation Control and Memory Coherence and DRAM Cortrrol blocks 
comprise. respectively. the processor and memory portions of the 
cache coherence protocol. In addition. both blocks servtce requests 
from the Nerwork hrerfacr md DMA Comrol block, which provrdcs 
user-level message passing with locally coherent DMA[ 161. Since 
the processor and memory sides of the cache coherence protocol 
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Category 
! Proccasor Kcquesl5 

Full/Empty Decode 21.5-I 

Memory Service 13351 
DRAM Control 8720 
Livelock Removal 2108 
Transaction Buffer I7399 
IPI interface II805 

Network Queuemg 7363 
CMMU Registers 9308 

Statistics 11958 
Miscellaneous 4627 

Gate 1 

Count I (‘i 

I1686 I 111 
2 

I3 
9 
1 

I7 
I2 
7 
9 

I2 
5 - 

Mcchamsm 1 
F;G - 
J 
d’ 

J 

Table I : Functtonal block sizes (in gates) for the Alewife CMMU. 
as well as contributions to shared memory GM). message passing 
(MP). latency tolerance (LT). and fine-gram synchronization (FG). 
Total chip resources: I OOK gates and I OOK bits of SRAM. 

as well as the message-passing interfaces share the same network 
queues. message passing and shared memory are integrated[ 141. 

The Trumucfmn B&V 15 a l6-entry. fully-associative data 
store that tracks outstanding cache coherence transactions. holds 
prefctched data. and stages data m transit between the cache. net- 
work and memory. It is integrated closely with the mechanism for 
removing livelock in the face of block multithrcadmg [ 171. The 
ReRrsrc>rs urrcl Srur~sr~cs block contains a dedicated cycle counter. a 
timer. and a number of statistics facilities. The Network Queues 
N/X/ Corm01 block contains asynchronous interfaces for the EMRC 
network routers. 

Figure 3 also shows a floorplan of the CMMU. This chip is imple- 
mented with three layers of metal in the LEA-300K hybrid gate-array 
technology irom LSI Logic. Shaded blocks are standard-cell mem- 
ories. The rest of the chip is implemented in a sea-of-gates style; 
costs for the gate-array portion of the chip are given in Table I. In 
this technology. a NAND gate is one (I ) gate, while a scan flip-flop 
takes nine (9) gates. 

2.3 Programming model 

Although the fast-messa_ee capability of Alewife makes it a good 

vehicle for executing programs written in a message-passmg style. 
it is better viewed by the programmer as a shared-memory machine. 
The Alewife hardware mechanisms. including fast messages, are 
combined in support of the shared-memory programming model. 
To facilitate programming. Alewife provides tools that inform pro- 
grammers when poor performance is caused by widely-shared data 
objects. and which parts of the application are affected. Programmers 
can then fine-tune performance by using the direct message-passing 
rnterface integrated with shared memory. 

Alewife has compilers for a parallel version of ANSI C and a 
parallel versron of LISP called Mul-T [ 131. For parallel C. Alewife 
supports the p4 library from Argonne National Laboratory as welt 
as parallel loops and distributed arrays. Automatic partitioning can 
be used when a program uses parallel loops and arrays [I], 

Parallelism in &I-Tis specified with the futureconstruct. Low 
thread creatton overhead is achieved using Inry rusk cremon [22), a 

method for dynamtc partttionmg and load balancing. The Alewife 
runtrme system includes a parallel stop-and-copy garbage collector. 

2.3 Alewife debugging and tuning 

Alewile provides a number of facilitres to aid in program debug- 
ging and pcrlormancc tunmg. An Alewife vcrston of CDB allows 
symbolic program dcbuggmg. complete with the ability to set break- 
points. cxaminc data and registers on individual nodes. and inspect 
threads. both active and blocked. 

The programmer can make use of two distinct facilities in Alewife 
for pcrformancc debugging. First. the LimitLESS cache coherence 

‘mechanism can bc configured to collect mformation about which 
memory locations arc being shared and accessed in a pattern that 
causes poor performance. A tool is available that traces errant mem- 
ory behavior directly to source variables. 

Second. the Alewife CMMU provides extensive facilities for per- 
formance monitoring. Four 32-bit statisttcs counters and a histogram 
array can be configured to measure a wide variety of hardware events: 
examples include cache hits and misses. mstruction counts. and net- 
work throughput statistics. A graphical interface allows users to 
specify a set of statistics and displays static and dynamic views of 
the results. 

3 Mechanisms and Microbenchmarks 

This sectton describes the implementanon of the mechanisms intro- 
duced in Section I. It presents the cost and the raw performance of 
each of the mechanisms in isolation. 

3.1 Shared memory 

The Alewife machine provides hardware support for distributed, 
cache-coherent shared memory. Cache lines in Alewife are I6 bytes 
in size and are kept coherent through a software-extended scheme 
called LimitLESS[8. 91. This scheme implements a full-map di- 
rectory protocol by supporting up to five readers per memory line 
directly in hardware and by trapping into software for more widely- 
shared data. Consequently. LimitLESS involves a close interaction 
between hardware and software. The hardware invokes software 
handling for remote requests by making use of the Alewife message- 
passing interface: faulted coherence requests are forwarded to the 
processor in the same way as any other message. The queueing 
inherent in the message-passing interface permits multiple pending 
LimitLESS coherence requests. 

Shared memory is distributed. in the sense that the shared address 
space is physically partitioned among nodes. Each l6-byte memory 
line has a home node that contains storage for its data and coherence 
directory. All coherenceoperations for agiven memory line, whether 
handled by hardware or software. are coordinated by its home node. 
Each Alewife node contains the data and coherence directories for a 
4M byte portion of shared memory. 

The Alewife directory entry format is shown in Figure 4. Direc- 
tortes are 64-bits wide and are stored in off-chip DRAM. Each entry 
contains five 9-bit pointers, two bits of state, two bits of meta-state. 
and four full/empty bits tone for each word in the line). The Loco1 
Bit provides an optimization which guarantees that the local node 
can always acquire a pointer. The Pointers In Use field indicates the 
number of other pointers that are in use. The number of pointers 
available to the hardware may be adjusted from two to five with the 

Pomters Avuiluble field. Since the Powers In Use field can be set 
by software. the cost of the LimitLESS read handler is amortized 
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Figure 4: A hardware directory entry in Alewife. 

/ Name of Meta-State 1 Descnotion 1 
i Normal 1 dir. entry under hardware corn 
1 Trap-On-Write 1 reads handled bv hw. writes bv SW 1 

Write-In-Progress 1 dir. entry software interlocked 
Trap-Always all requests handled by SW 

Table 2: The four directory entry meta-states of the CMMU. 

over up to six different read requests: when invoked to handle a read 
request. the handier resets the foinfers /n Use field. allowing the next 
five requests to be handled without software intervention. 

Table 2 describes the four LimitLESS meta-states. Two of these 
states. Normal and Trap-On-Write. are persistent. Normal 
indicates that a directory entry is entirely under hardware control 
- the four states associated with this meta-state form a base write- 
invalidate protocol. Trap-On-Write indicates that the identities 
of some of the readers are unknown to the hardware: consequent1y.a 
write request must be handled by software. Read requests, however. 
take advantage of a “read-ahead”optimization: the CMMU simulta- 
neously forwards read requests to the local processorandretums data 
to the requesting nodes at hardware speed. Trap-Always permits 
experimental protocols to be constructed in entirely software. 

LimitLESS interrupt handlersdirectly manipulate hardwaredirec- 
tortes. Thus. although all hardware directory entry manipulations are 
atomic. interlock mechanisms are necessary to prevent the hardware 
from modifying directories that are in the process of being altered 
by software. To implement this functionality, Alewife provides two 
instructions for directory entry manipulation. rldir (read and lock 
directory) and wudir (write and unlock directory). While the mu- 
tual exclusion provided by these instructions is sufficient for simple 
atomicity. Alewife provides a second mechanism for greater perfor- 
mance: the Write-In-Progress meta-state. This state marks a 
directory entry as requiring software manipulation and unavailable 
to the hardware. This additional state is necessary for the read-ahead 
optimization described above. 

Sparcle employs a single-ported. unified first-level cache, with no 
on-chip instruction cache. Consequently, 32-bit loads and stores that 
hit in the cache take two and three cycles. respectively (one cycle for 
the instruction fetch). Doubleword (64-bit) loads and stores that hit 
in the cache take one additional cycle. 

Table 3 shows the cost incurred when memory references miss in 

the cache. These values were obtained with a sequence of expert- 
ments run on an otherwise idle Alewife system. All remote missesor 
invalidations are between adjacent nodes. Each additional “hop” of 

communication distance increases these latencies by approximately 
I .6 cycles. 

For a stmple load miss to remote memory handled in hardware. 
58% of the 38-cycle mtss penalty IS due to network latency (I I 

Miss 

Type 

Home 
Location 

local 

# Inv. hwl Miss Penalty 
Msgs SW Cycles I jrsec 

I 0 hw I I 1 0.55 
remote 0 hw 38 I .90 

Load remote (2-party) I hw 42 2.10 
remote (3-party) I hw 63 3.15 

remote SW’ 425 21.25 

local 0 hw 12 0.60 
local I hw 40 2.00 

remote 0 hw 38 I .90 

Store remote (2-party) I hw 43 2.15 

remote (3-party) I hw 66 3.30 

remote 5 hw 84 4.20 
remote 1 6 ) SW 1 707 ) 35.35 ( 

’ This SW rend ume represents the throughput seen by a single node 

that invokes LimitLESS handhng at a sw-limited rate 

Table 3: Typical shared memory miss penalties. 

Action 1 Count 
Cache-miss to request tn network 
Request transit time (8 bytes) 
Request at memory to output header transmit 

1 Cachetil1titne 1 ! 1 

Data return tn network (24 bytes) 
Response arrival to beginning of cache fill 

Table 4: Rough breakdown of 3%cycle clean read-miss to neigh- 
boring node. 

out of 1.9 microseconds). Roughly three-quarters of the network 
latency is time spent transferring flits between the CMMU and the 
interconnection network (36 flits at 22.5 nanoseconds/flit). Table 4 
gives a breakdown of the various latencies involved in satisfying a 
remote read-miss. 

Misses handled in software represent the access time seen when 
a cache line is shared more widely than is supported in hardware 
(five pointers). so that the home node processor must be interruptcc 
to service the request. In the case of a load. the software time 
represents the maximum throughput available when every requcs[ 
requires software servicing. Because of the read-ahead optimiza- 

tion and amortized read-handling, this latency number will rarely 
be experienced by a requesting node. The software store latent) 
represents an actual latency seen by a writer; it includes the time 
required for the software handler to send six invalidations. for these 
invalidations to be received by the hardware. and for an exclusive 
copy to be returned. 

3.2 Message passing 

Message passing is both a crucial component of the LimitLESS 
cache coherence protocol and a mechanism to be used in coopera- 
tion with software-extended shared memory. Some communication 
operations. such as file I/O. remote task dispatch. and the inner 
loops of typical scientific codes. can often be implemented more 
efficiently with message passing than with shared memory. Further. 
since Alewife provtdes a protected user-level message-passing Inter- 
face. compilation targets such as active messages/301 arc naturally 
supported. 
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4 solo neader. Siplout i 

j stlo dataword, Sipzoutl 
’ St10 address. Siplout 

stlo length. Sipioutj 
ipilaunch 2, 1 

Figure 5: Xlachinc code implementmp 
;I message send. In addiuon to the re- 
qulrcd header. this message includes one 
explicit data word. and one block of data 
tram memory. 

;i 1000 One-lo-All Wnle 
% 
1 

. One-to-All Read 

z- 

i 

Producer-Consumer Wrne 
F l Producer-Consumer Read 
g I 
5 100 
; 
P 
E 
2 

B~eecIm Traffic Nz4On~Q0cl BmxI~on T&c Vsfbdb’sec~ 

(a) Shared Memory (b) Message Paaaing 

Figure 6: Latency versus bisection traffic for I6 nodes. (a) shared memory. two diffennt 
data types. (b) message passing, random destinations. 

Messages in Alewife are sent through a Iwo phase process: first 
&scri&. then /olu~r/r. A message is described by writing directly 
to an output descnptor array with a colored store instruction called 
scio. The output descriptor array consists of I6 memory-mapped 
network registers m the CMMU. Writes into this array mcttr the same 
cost ;IZ write hns in the cache. Once a message IS described. it is 

iaunchcd via an atomic. single-cycle instruction called ipilaunch. 
This IWO phase process permits direct. user-level access to the ner- 
work queues. 

Figure 5 illustrates code for launching a message that consists 
of a header. one word of data from a register. and a block of data 
from memory (to be transferred via DMA). header. dataword, 
address. and length are aliases for arbitrary Sparcle registers. 
On entry IO this code sequence. header contains the packet header, 
dataword contains the word ofdata. address points to the start of 
the data block. and length gives the number of double-words in the 
data block. This packet descriptor is two double-words long andcon- 
tams one double-word of explicit data (header and dataword). 
Alewife maintains loco/ coherence for the data block specified by 
address and length: data is acquired from the local cache at the 
source and invalidated tram the local cache a1 the destination. 

When a message arrives at its destination. it rypically causes an 
mterrupt. The CMMU overlaps message arrival with interrupt pro- 
cessing by postmp the interrupt as soon as it has received the header 
of a message. Since the operating system reserves one of the four 
Sparcle hardware contexts for message processing (as in [24. 271). 
no regtster saves or restores are necessary. The first 16 words of 
an incoming message are presented in the memory-mapped input 
packet array. Consequently. an interrupt handler may either load 
words directly from this array via the ldio instruction. or initiate a 
DMA sequence to store the message into memory. 

The Alewife message-passing interface has low overhead. A sim- 
ple. 2-word message (one header. one data-word). can be transmitted 
with 3 instructlons. or 7 cycles. Message reception can use polling or 
inrerrupts. The cost of reception is more expensive when an intcrmpt 
must be fielded ar the receiving end. Using interrupts. a system-level 
handler for a 2-word message can be entered in approxtmately 35 
cycles. This time includes reading the message from the network, 
dlspaKhmg on an opcode in the header. and setting up for a gencrttl 
call to handler routmes wnrren in C. 

Adding user-level message protection increases this entry time 
by another I5 cycles to approximately 50 cycles. A null user-level 
message handler requires a total of 95 cycles. Much of this time 
is associated with saving and restoring the system-level timer (lo 
time out an errant user-level handler and prevent a user from locking 
up the machine). preventing access IO shared memory before the 
current message has been removed from the queue. and checking 
for user-requested atomicity. Simple modifications planned for the 
respin of the CMMU will combine these three functions into a single 
mechanism and reduce the overhead of protected message passing 
considerably. 

3.3 Shared memory versus message passing 

Measurements of Alewife’s mesh network show that each channel 
provides a peak bandwidth of approximately 356 Mbits/second (22.5 
nanoseconds per S-bit flit). For a sixteen node machine. this rate 
yields a maximum possible bisection bandwidth of 2.8 GbitsIsec. 
Synthetic workload generators measure the capacity of Alewife’s 
network in more realistic environments. 

Figure 6 characterizes Alewife’s network performance in terms of 
latency and bandwidth of both shared memo? and message passing. 
A shared-memory workload generator simulates Iwo different types 
of data. Figure 6(a) shows the results of runnmg this microbench- 
mark on a 16-node Alewife machine. The honzontal axis shows the 
bisection traffic achieved by each run; the vertical axis uses a loga- 
rithmic scale 10 plot the average latency of a memory transaction (a 
read or a write). This experiment measures actual network traffic. as 
opposed to the bandwidth available to user data. For shared mcm- 
ory, user data accounts for roughly half of the traffic. The latency 
is measured from the time a node requests a memory block until the 
time that the block is ready to be accessed from a transaction buffer. 

The curves in Figure 6(a) marked with circles show the base 
performance of shared memory. During rhese experimenrs. every 
processor accesses memory in a producer-consumer fashion: each 
processor writes to a number of blocks in iu local memory and then 
reads the same amount of data from another processor’s memory. 
The read phase of this benchmark generates bIsectIon traffic of up 
to I Gbit/sec. over 35% of the maxImum possible bandwIdth. The 
shared memory coherence protocol produces half 3s much traffic 

514 



during the wnte phase of this benchmark. All of the producer- 
consumer transacttons require about 2 microseconds (rlsec) latency 
across the enttre traihc range. 

The expenments plotted wrth mangles show the performance 
when each processor writes to a number of memory blocks and all 
of the other processors in the system read the blocks. This one-m-all 
scenario invokes Alewife’s software-extended shared memory. Due 
to the director-y read-ahead feature (see Section 3. I ). the read latency 

at low bandwidths is similar to the producer-consumerexperiments.. 
However. the read traffic saturates at 346 Mbits/set. with a 4.2 ~.WX 
latency: the base write latency lies at 52 rcsec. and increases to 380 
psec as bandwidth demands increase. 

Figure 6(b) shows the results of a synthetic message-passing work- 
load: this microbenchmark consists of a single loop in which each 
processor transmits a “ping” message to another node. selected ran- 
domly. The other node responds with an acknowledgment message. 
In this experiment. almost all of the network traffic (measured by 
the horizontal axis) consists of user data. The vertical axis mea- 
sures the average latency of half of a ping/ack round-trip (including 
both hardware and software delays). The highest bisection traffic 
achieved with random pmg destinations is 1.2 Gbits/sec. over 40% 
of the maximum possible bandwidth. This traffic corresponds to the 
right-most point on the graph. with 1024-byte messages and a 100 
rcseclmessage latency. The lowest latency is 7.0 use&or 32 byte 
messages. 

Contrasting Figures 6(a) and 6(b) shows the benefits of each mech- 
anism. Shared memory provides a fast. convenient abstraction for 
orchestrating interprocessor communication. but message passing 
makes more efficient use of bandwidth. 

3.4 Fine-grain synchroniqation 

The primary advantage of fine-grain synchronization is that more 
parallelism can be exposed to the underlying hardware or software 
system than if coarse-grain synchronization techniques, such as bar- 
rien. were employed. For example. a thread synchrontztng at a 
barrier has to wait for the arrival of all other synchronizing threads 
before proceeding. regardless of whether that thread depends on re- 
sults computed by the other threads. By synchronizing on exactly 
the data words to be consumed, fine-grain synchronization elimi- 
nates false dependencies and allows a thread to proceed as soon as 
the data it needs is available. 

The Alewife machine provides both hardware and software sup- 
port for fine-grain synchronization. Hardware support consists of 
a full/empty bit[29] for each 32-bit data word. To access these 
bits. colored load and store instructions are provided that perform 
full/empty test-and-set operations. Table 5 presents a sample of 
Alewife data-access instructions. All of these instructions return the 
original full/empty bit in the coprocessor status word. Two Sparcte 
instructions. bempty (branch on empty) and bfull (branch on 
full), can then be used to examine this bit. 

In Alewife. the odd data width introduced by full/empty bits does 
not impact DRAM. cache, or network data widths. At memory side. 

fulVempty bits arc stored in the bottom four bits of the coherence 
directory entry (see Figure 4). At cache side. they are stored as an 
extra field in the cache tags. In data packets. they are transmitted in 
the bottom four bits of the address. and take advantage of the I b-byte 
cache-line width. 

The system provides several language extensions for hnc-gram 

Name ( Meanmg I 
ldn j Load and examme full/empty btt. 
stn / Store and exnmme full/empty brt. 
lden ) Load. set empty. examme ongmal value. 1 
stfn I Store. set full. examine original value. 1 

ldet 1 Load. set empty. and trap if already empty. / 
stf t 1 Store. set full. and trap if already full. 

Table 5: Examples of Alewife’s data-access instructions. 

Table 6: Costs in cycles of fine-grain. producer-consumer syn- 
chronization in Alewife. “hw” represents the use of full hardware 
suppott; “SW” represents explicit checking in software. 

synchronization in the form of J-structures and L-structures. Pat- 
terned after I-structures(6], J-structures support producer-consumer 
style synchronization on vector elements. with full/empty bits asso- 
ciated with each vector element. A J-structure read waits until the 
element is full before returning its value. A J-structure write updates 
the element and sets it to full. An L-structure supports mutual- 
exclusion style synchronization on vector elements with full/empty 
bits associated with each vector element. L-structures support 3 
operations: a locking read. an unlocking write. and a non-locking 
read. 

Table 6 compares the costs (in cycles)of implementing J-structure 
read and write operations, with and without hardware support. The 
hardware implementation (hw) relies on traps to signal a failed read. 
and uses a separate. centralized waiting queue. It allows successful 
reads and writes to proceed at the speed of normal Sparcle loads 
and stores. The software-based implementation (SW) uses an addi- 
tional memory word to emulate a fulUempty bit for each I-structure 
element. 

35 Latency tolerance 

Latency tolerance in Alewife takes two forms: block multithreadmg 
and non-binding software prefetching. By supporting both block 
multithreading and prefetching. Alewife provides a platform for di- 
rectly comparing these two latency tolerance mechanisms. 

Three different mechanisms in the Alewife CMMU help sup- 
pon block multithreading. First. the CMMU takes advantage of as 
much parallelism as possible when servtcing a remote cache miss 
by generating a context-switch trap in parallel with message gener- 
ation. Second. the CMMU implements lockup-free caches. Third. 
the CMMU implements a livelock avoidance techntque. to prevent 
the livelock that can arise when cache-coherent shared memory is 
coupled with context switching and LimitLESS. 

Software prefetch is implemented in Alewife as two different 
colored load instructions. one for read prefetch and the other for 
wnte prefetch: the value returned from the prefetch mstntctions is 
tgnorcd. Prcfetchcd data IS returned in the transaction huffcr 
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Figure 7: Effectiveness of latency tolerance mechanisms. 

To measure the benefit of latency tolerance using context switch- 
ing and prefetchmg. an experiment runs a small loop on one processor 
[hat adds numbers fetched from the memory of another processor. 
Figure 7 shows the number of cycles per loop iteration as a function 
of the number of outstanding requests. As expected. one outstanding 
request incurs the same overhead using either prefetching or context 
switching. As the prefetch depth is increased. the performance im- 
proves until the limit of network bandwidth is reached. For context 
switching, the limiting factor is the overhead of the mechanism, not 
bandwidth. Because the loop performs remote reads which have a 
relatively low latency (-40 cycles). the 14 cycle context switch time 
hides all of the latency with two contexts. For longer remote latencies 
that can occur in real programs. three contexts may be beneficial. 

Although the absolute performance of prefetching is better due to 
low overhead. its use is limited to places where cache-miss behavior 
can be predicted statically. Results in Section 4 show that context 
switching can increase the performance of a parallel application, 
even when prefetching has been carefully used. 

4 Application Performance 

This section presents the performance of a number of applications 
and demonstrates the efficacy of the mechanisms in the machine. 
It starts by summarizing the performance of a dozen applications 
written in a shared-memory style. The following subsection com- 
pares the performance of an application written in a message-passing 
style on Alewife and on the Thinking Machines’ CM-5 multiproces- 
sor. The last two subsections present details of two application case 
studies. MP3D and MlCCC3D. 

4.1 Shared memory performance 

Shared-memory applications perform well on Alewife. proving the 
viability of both the software-extended coherence mechanism and 
the low-dimensional communication substrate provided by the mesh 
network. Table 7 summarizes the main characteristics of the applica- 
tions evaluated on Alewife. The first five applications shown in the 
!able are from the SPLASH suite[28]. the three following ones are 
from the NAS parallel benchmarks(7J. the next four are engineering 
kernels. and the last solves a numerical problem. 

Table 8 presents the running time and speedup performance of 

1 Choleskv Barnes-Hut 
LocusRoute ! 38 I7 wues. 20 routmg channels (Pnmary?) 

3948 x 3948 I6k floats. bodies. 56934 4 Iterations non-zeros (TK 15) 
. Water 

ApPbt 
Multigrid 

729 molecules. 5 iterations 
20 x 20 x 20 floats 
56 x 56 x 56 floats 

CC 
EM3D 

1 1400 x 14OOdoubles. 78148 non-zeros ’ 
20000 nodes. 20% remote neighbors 

Gauss 

I 

512 x 512Roats 
FFr 8Ok floats I 
SOR 5 I2 x 5 I2 floats. 50 iterations 

MICCG3D 1 32 x 32 x 32 and 64 x 64 x 64 floats 

Table 7: Main application characteristics. 

these applications on Alewife. The table includes results for “Mod 
MP3D”. which is a version of the original MP3D application that 
eliminates some useless code and improves locality by modifying 
the mapping of particles to processors. Section 4.3 discusses both 
the original and modified versions of MP3D in detail. 

All the speedups presented in Table 8 are based on the parallel 
implementation of each program running on one processor except 
those that are marked in the table with asterisks and the different 
versions of MICCG3D. These exceptions ran with input sizes that 
do not fit on a single node’s memory’. The experiments with an 
asterisk assume that the speedup is linear at the smallest number 
of nodes that can hold the data set. The MICCG3D speedups are 
computed using a best sequential running time that is obtained by 
assuming sequential running time grows linearly with problem size. 
The Alewife compiler. used for all applications, produces code with 
a sequential running time that is within 10% of gee at the “-02” 
level of optimization. 

The results show that Alewife usually achieves good application 
performance, especially for the computational kernels. even for rel- 
atively small input sizes. In particular. MP3D (an application with a 
difficult shared-memory workload) achieves extremely good results. 
In contrast, a comparison between the two entries for Cholesky in 
the table demonstrates the importance of the input size for the per- 
formance of this application: a 5-fold input size increase leads to a 
significant improvement in speedup. The modest speedups of CG 
and Multigtid result from load imbalance and bad cache behavior, 
which can be addressed by using larger input sizes and the latency 
tolerance mechanisms in Alewife. 

Table 8 presents the performance of the 32x32~32 and 
64x64~64 input sizes for MICCG3D (labelled MICCC3D-32 and 
MICCG3D-64, respectively) using coarse-grain and fine-grain syn- 
chronization. The speedups appear low because they are measured 
against the best sequential implementation of the application, rather 
than a uniprocessor run of the parallel algorithm. The performance 
of MICCG3D will be explained in detail in Section 4.4. 

As a whole, experience with porting a variety of applications in a 
short period of time shows that Alewife provides a good environment 
for applications written in a shared-memory style. Programs can be 
easily ported to the machine and can achieve good performance. 

‘Barnes-Hur was run with 32k bodies as Input, while Cholesky was run 
with five times as many non-zeros as the base Input size. 



Running Time I Mcycles) 
I 

Speedup 
Program IP 1 2P 4P 8P l6P 32P IP(?P JP XP 16P 32P 

Orig MP3D 67.6 41.7 24.8 13.9 7.4 4.3 1.0 1.6 2.7 4.‘) Y.2 15.7 
Mod MP3D 47.4 24.5 12.4 6.9 3.5 2.2 I .o I .Y 3.8 6.9 13.4 21.9 
Barnes-Hut 9144.6 1776.5 2486.9 1319.4 719.6 434.2 I.0 1.9 3.7 6.9 12.7 21.1 
Barnes-Hut * 10423.6 5401.6 2873.3 1568.4 908.5 - 2.0 3.9 7.3 13.3 22.9 
LocusRoute 1796.0 919.9 474. I 249.5 147.0 97.1 I.0 2.0 3.8 7.2 12.2 18.5 
Cholesky 2748. I 1567.3 010.5 545.8 407.7 398. I 1.0 I.8 3.0 5.0 6.7 6.9 
Cholesky * 2282.2 132b.8 880.9 681.1 - - 4.0 6.9 10.4 13.4 
Water 12592.0 6370.8 3320.9 1705.5 897.5 451.3 I.0 2.0 3.8 7.4 14.0 27.9 
NW 4928.3 2617.3 1360.5 704.7 389.7 223.7 1.0 I.‘) 3.6 7.0 12.6 22.0 
Multigrid 2792.0 1 1415.6 709.1 406.2 252.9 165.5 I.0 2.0 3.9 6.9 I I.0 16.9 
CC 1279.2 724.9 498.0 31 I.1 179.0 124.9 I.0 1.8 2.6 4.1 7.1 10.2 
EM3D 33 I .7 192.1 95.5 46.8 22.4 10.7 I.0 1.7 3.5 7.1 14.8 31.1 
Gauss 1877.0 938.9 465.8 226.4 115.7 77.8 I.0 2.0 4.0 8.3 16.2 24.1 
FFr 1731.8 928.0 491.8 261.6 136.7 71.8 I.0 I.9 3.5 6.6 12.7 24.1 
SOR 1066.2 535.7 268.8 134.9 68. I 32.3 I.0 2.0 4.0 7.9 15.7 33.0 
MICCG3D-32-Coarse - 36.6 21.7 Il.7 6.9 4.4 - 0.5 0.8 1.5 2.5 3.9 
MICCG3D-32-Fine - - 11.7 5.8 2.9 I.5 - 3.0 5.9 I I.5 
MICCG3D-64-Coarse - - - - - 32.2 - 

/ - ’ I.5 
- - - - 4.3 

MICCG3D-64-Fine - - - - - 12.5 - -I- - - I I.1 

Table 8: Performance of shared-memory applications on Alewife. 
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Figure 8: Performance of a message-passing implementation of the 
sparse triangular matrix solver. 

4.2 Message-passing performance 

This section compares Alewife’s support for short messages with 
that of the CM-5. It shows that for a sparse matrix application with 
irregular. fine-grain communication requirements. Alewife delivers 
performance that is comparable to the CM-5 under polling and su- 
perior under interrupts. The application is a power grid benchmark 
from a sparse matrix suite [I I] which uses the techniques of [IO]. 

Figure 8 presents speedups of message-passing implementations 
of this application on Alewife and the CM-5. under both polling’ 
and interrupts. Speedups are computed based on the running time 
(in cycles)of an optimized sequential code running on a single CM-5 
node. The difference between the two polling implementations is 
10%. and can be entirely attributed to the use of an experimental 
compiler on Alewife. 

2Unlike Ihe CM-S. user polling on AlewIfe allows rysrem messages KJ 
conrmue IO generate mvxrup~s while user messages are received w pollmg. 

4 32’ ;: 

P + Ideal ,’ 
,’ 

$ 26. 
Orfg MP30 PC+PF ,' - ,’ 

u) 

0 4 8 12 16 20 24 28 32 
Number of Processors 

Figure 9: Speedups for various versions of MP3D: single-context 
(IC), two contexts (2C). and prefetching (PFI. 

More importantly, the difference between polling and interrupt 
versions on Alewife is only 16%. Since this application has ex- 
tremely fine-grainedcommunication (one or two floating-point num- 
bers per message), this implies that intermpcdriven message passing. 
which excels at unpredictable message traffic, is more than sufi’icient 
for coarser-grained applications. In contrast, the interrupt-driven 
version of this application on the CM-5 suffers more than a factor of 
three degradation over the polling version. This illustrates the bene- 
fits of Alewife’s fast interrupt handling, discussed in Section 3.2. In 
summary, these results show that message passing on Alewife has 
comparable performance to the CM-5 for small messages while han- 
dling a wider variety of message traffic (including DMA) efficiently. 

4.3 MP3D 

On Alewife. MP3D achieves the largest speedup ever reported for 
this applicauon. There are IWO reasons tor this result. First. most ot 
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Figure IO: Orig and Mod MP3D runnmg times. with costs. 

the communtcation traffic in the benchmark is caused by migratory 
data. and Alewife’s coherence protocol is optimized for this type 
of data, Second. Alewife has relatively low (-60~cycle) latency 
for 3-party remote read transactions. which results from Alewife’s 
pipelined memory system and its simple. flat network hierarchy. This 
tow latency pays off when the whole hierarchy must be traversed 
frequently. 

MP3D also serves as a good vehicle for assessing the performance 
of Alewife’s latency tolerance mechanisms. The original MP3D 
code is a good candidate for latency tolerance. since improvements 
m locality for this program are difficult to obtain without significant 
code restructuring. Accordingly. this section considers the effect of 
using multiple contexts. software prefetching. and a combination of 
these two. Figure 9 presents the speedups of different versions of 
MP3D. All speedups in this graph are computed with respect to the 
non-prefetching parallel implementation running on one processor. 

In order to investigate the maximum possible benefit of prefetch- 
ing, software prefetching was inserted by hand. The prefetch in- 
structions concentrate on the data causing the majority of the cache 
misses in MP3D. As seen in Figure 9, prefetching achieves a 23% 
improvement in speedup at 32 processors over the non-prefetching 
version. 

Block multithreading allows MP3D to perform marginally bet- 
ter than hand-crafted software prefetching (26% vs 23%). proving 
that context swttching can help applications achieve performance 
comparable IO versions generated by sophisticated compilers and/or 
programmers. An interesting observation is that the combination of 
prefetching and multithreading for MP3D approaches the speedup 
performance of the hand-optimized version of the application, Mod 
MP3D (see Table 8). One possible explanation for this effect is 
that multithreading can tolerate the latency of replacement cache 
misses. which are difficult to predict when implementing software 
pmfetching. 

Figure 10 presents the cost breakdown (measured by the Alewife 
statistics hardware) for MP3D and Mod MP3D for 8. 16, and 32 pro- 
cessors. As shown in this figure. Mod MP3D significantly reduces 
both the busy time and the memory wait overhead of MP3D. An- 
other interesting observation is that the overhead of handling widely 
shared cache blocks in software (the LimitLESS component) and the 
scheduler costs (the system component) are always negligible for 
the two programs. In fact. none of the shared-memory applications 
suffers significantly from these two types of overhead. 

ABCD ABCD ABCD ABCD 
32X32x32 32X32r32 32r3zr32 6.xux64 
4pmcs 16 Plccs 32 procs 

Figure I I : MICCG3D running times. Coarse-gr$$?). Fine-grain: 
no hw (B), f/e bits with SW checks (C). and full hw support ID). 

4.4 MICCG3D 

MICCG3D solves Laplace’s equation on a three-dimensional grid 
using a preconditioned conjugate gradient method. A central op- 
eration in this method has been difficult to parallelize, due to the 
computation’s complex data dependencies. This section reports re- 
sults for a single itcrauon of four different parallel implementations 
of MICCG3D. The first is coarse-gram: the data is block partitioned. 
and each partition is assigned to a single thread. The data blocks and 
threads are statically placed in the mesh, and barriers sequence the 
computation. 

The other three implementations are all fine-grain. and allocate 
shared data in J-structures. They differ in the way they implement 
the J-structures. In the first, J-structures consist of two separate 
arrays: one for data. and one for synchronization variables. On each 
J-structure reference, software checks the synchronization variable. 
The second eliminates the need for the synchronization array by 
using full/empty bits as provided in Alewife. Checkingthe bit at each 
reference is still done in software. The last implementation uses the 
full capability of Alewife’s full/empty bits, checkingsynchronization 
state in hardware. (For additional information. see [3 I]). 

Figure I I shows a cost breakdown of various MICCG3D execu- 
tion times. The system and LimitLESS components are negligible 
and are not visible on the graph. Synchronization overhead in the 
coarse-grain implementation is the time spent waiting in barriers; in 
the fine-grain implementations. it is the time spent both in J-structure 
operations and in waiting for pending J-structure values. For each 
problem size and machine size, the figure shows breakdowns for all 
four implementations of MICCC3D. Results for 4. 16. and 32 pro- 
cessorsare shown for a 32~32~32grid; 32 pmcessorresultsare also 
shown for a 64 x 64 x 64 grid. A large difference in synchronization 
waiting time is apparent between the coarse-grain and fine-grain im- 
plementations. Synchronization overhead continues to be significant 
with increasing machine size in the coarse-grain implementation for 
several reasons. The amount of useful work between barbers de- 
creases as more of the parallelism is exploited. As the number of 
processors increases. the number of barriers increases to enforce the 
data dependencies, and each barrier itself is more expensive since 
barriers require global communication. The fine-gram implemen- 
tations do not suffer from these effects because J-structures require 
synchronization only where data dependencies occur. 

The three fine-gram implementatrons show the impact of hard- 
ware support for fine-grain synchronization on performance. The 

518 



lmplementauon wnh only software suppon has the highest memory 
overhead and synchromzation overhead. The tine-grain implemen- 
tation that uses software checking of full/empty bits has similiar 
synchronization overhead. but has a lower memory overhead. The 
comparison shows that full/empty bits afford compact storage and 
commumcation of synchronization state. resulting in lower demands 
on memory and network bandwidth. The implementation with full 
hardware suppon for fine-grain synchronization shows the smallest 
memory overhead. 

In addition. usmg hardware to check synchronization state lowers 
synchronization overhead. However. the reduction in synchroniza- 
tion overhead is not as significant as the reduction in memory over- 
head. In Figure I I. the “Memory” segments (in the B bars versus 
C bars) are reduced by a greater amount due to full/empty hits than 
the “Synch” segments (in the C bars versus D bars) due to hardware 
checking. Hardware checking in the MICCG3D application still has 
a significant impact on overall performance because the software 
checking code increases register pressure. resulting in more register 
spilling. This is reflected by smaller “User” segments in the D bars. 
For codes with low register pressure, the overall gains from hard- 
ware checking of full/empty bits would be much less than the gains 
of having full/empty bits in the first place. 

This study leads to two conclusions about fine-grain computation. 
First. the ability to express synchronization at a fine granularity has 
a tirst-order impact on performance for the MICCG3D application: 
providing support for the fine-grain synchronization primitives in 
hardware or software is a second-ordereffect. Second. the reduction 
in memory and network bandwidth due to full/empty bits impacts 
performance more significantly than hardware checking. In general. 
the degree to which full/empty bits are more important than hardware 
checking depends on register usage in the application code. 

5 Related Work 

A number of other systems provide a shared address space entirely in 
hardware. DASH [20] is a cache-coherent multiprocessor that uses 
a full-map directory-based cache coherence protocol. It includes 
prefetching and a mechanism for depositing data directly in another 
processor’s cache. The KSRI and DDM [ 12) provide a shared 
address space through cache-only memory. These machines also 
allow prefetching. The Scalable Coherent Interface [5] also specifies 
mechanisms for implementing large, sharedaddress spaces. 

Both the J-machine [24] and the CM-5 export hardware message- 
passing interfaces directly to the user. These interfaces differ from 
the Alewife interface in several ways. First, in Alewife, messagesare 
normally delivered via an interrupt and dispatched in software, while 
in the J-machine. messages are queued and dispatched in sequence 
hy the hardware. On the CM-5. message delivery through interrupts 
is expensive enough that polling is normally used to access the net- 
work. Second. neither the J-machine. nor the CM-5 allow network 
messages to be transferred through DMA. Third, the J-machine does 
not provide an atomic message send like Alewife does; this omission 
complicates the sharing of a single network interface between user 
code and interrupt handlers. 

The Cray T3D integrates message passing and hardware support 
for a shared address space. Message passing in the T3D is flexible 
and includes extensive support for DMA. However. the T3D does 
not provide cache coherence. 

Several recently proposed architectures are based on the inte- 

gration of shared memory and message passing in some form. 
FLASH [ 191 includes a microcoded. kernel-level coprocessor for mes- 
sage handling including shared-memory protocol messages. Bulk 
transfers in FLASH avoid using the receiving processor. but require 
pre-negotiating memory allocation. FLASH provides a multi-user 
environment. Typhoon [26] offers user-level message handling and 
cache coherence. using a second processor dedicated to the network 
interface. The *T [23] architecture uses a memory coprocessor 
model as well. 

A few architectures incorporate multiple contexts. pioneered by 
the HEP (291. switching on every instruction. These machines. in- 
cluding Monsoon [2.5] and Tera [4]. do not have caches and rely 
on a large number of contexts to hide remote memory latency. In 
contrast, Alewife’s block multithreading technique switches only on 
synchronization faults and cache misses to remote memory. permit- 
ting good single-thread performance and requiring less aggressive 
hardware multithreading support. A number of architectures - in- 
cluding HEP. Tera, Monsoon, and the J-machine - also provide 
support for fine-grain synchronization in the form of full/empty bits 
or tags. 

6 Conclusion 

Alewife represents a step in the maturation of multiprocessing tech- 
nology. Specifically. it augurs the end of the religious war between 
proponents of the shared-memory and message-passing models of 
parallel computation. The working machine demonstrates that both 
models permit efficient and scalable implementations: moreover. the 
two models may - and should - be integrated into a unified mul- 
timodel framework. Although previous systems have implemented 
some of Alewife’s mechanisms independently, Alewife is unique in 
its combination of coherent caches for shared memory. integrated 
message passing, support for fine-grained computation. and latency 
tolerance. These four mechanisms provide an integrated solution 
to the problems of communication and synchronization in panllel 
systems. 

This integration of architectural features results in a multipmces- 
sor that is both programmable and scalable. The case-study using the 
MP3D application illustrates this conclusion: it was easy to port this 
demanding workload to the architecture. and the application worked 
and realized acceptable speedups almost immediately. Subsequent 
performance tuning and invoking Alewife’s latency tolerance mech- 
anisms significantly improved MP3D’s performance. 

Experience with a variety of other workloads confirms this anec- 
dotal evidence. More broadly, experience with applications indicates 
thata globally shared address space.cache coherence-and a message- 
based runtime system is instrumental in the quick development of 
working applications that perform well. Latency tolerance mecha- 
nisms. fine-grain synchronization. and explicit message passing help 
improve performance further. 

At this time. effort is underway to respin the CMMU and to build a 
12%node machine. Although Alewife addresses many of the issues 
of large-scale multiprocessing. it is essentially a single-usermachine. 
Our future work will investigate mechanisms for protection and vir- 
tual memory in multimode1 multiprocessors. Implemenung a virtual 
machine model in the face of streamlined user-level communication 
mechanisms is challenging. and forms the basis of the new FUGU 
architecture [2l). 
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