
Alternative Implementations of Two-Level Adaptive Branch Prediction 

Tse-Yu Yeh and Yale N. Patt 
Department of Electrical Engineering and Computer Science 

The University of Michigan 
Ann Arbor, Michigan 48109-2122 

Abstract 

As the issue rate and depth of pipelining of high perfor- 
mance Superscalar processors increase, the importance 
of an excellent branch predictor becomes more vital to 
delivering the potential performance of a wide-issue, 
deep pipelined microarchitecture. We propose a new 
dynamic branch predictor (Two-Level Adaptive Branch 
Prediction) that achieves substantially higher accuracy 
than any other scheme reported in the literature. The 
mechanism uses two levels of branch history information 
to make predictions, the history of the last L branches 
encountered, and the branch behavior for the last s oc- 
currences of the specific pattern of these k branches. We 
have identified three variations of the Two-Level Adap- 
tive Branch Prediction, depending on how finely we re- 
solve the history information gathered. We compute the 
hardware costs of implementing each of the three varia- 
tions, and use these costs in evaluating their relative ef- 
fectiveness. We measure the branch prediction accuracy 
of the three variations of Two-Level Adaptive Branch 
Prediction, along with several other popular proposed 
dynamic and static prediction schemes, on the SPEC 
benchmarks. We show that the average prediction ac- 
curacy for TwoLevel Adaptive Branch Prediction is 97 
percent, while the other known schemes achieve at most 
94.4 percent average prediction accuracy. We measure 
the effectiveness of different prediction algorithms and 
different amounts of history and pattern information. 
We measure the costs of each variation to obtain the 
same prediction accuracy. 

1 Introduction 

As the issue rate and depth of pipelining of high per- 
formance Superscalar processors increase, the amount 
of speculative work due to branch prediction becomes 
much larger. Since all such work must be thrown away 
if the prediction is incorrect, an excellent branch pre- 
dictor is vital to delivering the potential performance of 
a wide-issue, deep pipelined microarchitecture. Even a 
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prediction miss rate of 5 percent results in a substantial 
loss in performance due to the number of instructions 
fetched each cycle and the number of cycles these in- 
structions are in the pipeline before an incorrect branch 
prediction becomes known. 

The literature is full of suggested branch prediction 
schemes [6, 13, 14, 171. Some are static in that they use 
opcode information and profiling statistics to make pre- 
dictions. Others are dynamic in that they use run-time 
execution history to make predictions. Static schemes 
can be as simple as always predicting that the branch 
will be taken, or can be based on the opcode, or on the 
direction of the branch, as in “if the branch is backward, 
predict taken, if forward, predict not taken” [17]. This 
latter scheme is effective for loop intensive code, but 
does not work well for programs where the branch be- 
havior is irregular. Also, profiling [6, 131 can be used to 
predict branches by measuring the tendency of a branch 
on sample data sets and presetting a static prediction 
bit in the opcode according to that tendency. Unfor- 
tunately, branch behavior for the sample data may be 
very different from the data that appears at run-time. 

Dynamic branch prediction also can be as simple as in 
keeping track only of the last execution of that branch 
instruction and predicting the branch will behave the 
same way, or it can be elaborate as in maintaining 
very large amounts of history information. In all cases, 
the fact that the dynamic prediction is being made on 
the basis of run-time history information implies that 
substantial additional hardware is required. J. Smith 
[17] proposed utilizing a branch target buffer to store, 
for each branch, a two-bit saturating up-down counter 
which collects and subsequently bases its prediction on 
branch history information about that branch. Lee and 
A. Smith proposed [14] a Static Training method which 
uses statistics gathered prior to execution time coupled 
with the history pattern of the last k run-time execu- 
tions of the branch to make the next prediction as to 
which way that branch will go. The major disadvantage 
of Static Training methods has been mentioned above 
with respect to profiling; the pattern history statistics 
gathered for the sample data set may not be applicable 
to the data that appears at run-time. 

In this paper we propose a new dynamic branch pre- 
dictor that achieves substantially higher accuracy than 
any other scheme reported in the literature. The mech- 
anism uses two levels of branch history information to 
make predictions. The first level is the history of the 
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last k branches encountered. (Variations of our scheme 
reflect whether this means the actual last k branches en- 
countered. or the last k occurrences of the same branch 
instruction.) The second level is the branch behavior 
for the last s occurrences of the specific pattern of these 
k branches. Prediction is based on the branch behavior 
for the last s occurrences of the pattern in question. 

For example, suppose, for k = 8, the last k branches 
had the behavior 11100101 (where 1 represents that the 
branch was taken, 0 that the branch was not taken). 
Suppose further that s = 6, and that in each of the last 
six times the previous eight branches had the pattern 
11100101, the branch alternated between taken and not 
taken. Then the second level would contain the history 
101010. Our branch predictor would predict “taken.” 

The history information for level 1 and the pattern 
information for level 2 are collected at run time, elimi- 
nating the above mentioned disadvantages of the Static 
Training method. We call our method Two-Level Adap- 
tive Branch Prediction. We have identified three vari- 
ations of Two-Level Adaptive Branch Prediction, de- 
pending on how finely we resolve the history informa- 
tion gathered. We compute the hardware costs of im- 
plementing each of the three variations, and use these 
costs in evaluating their relative effectiveness. 

Using trace-driven simulation of nine of the ten SPEC 
benchmarks ‘, we measure the branch prediction ac- 
curacy of the three variations of Two-Level Adaptive 
Branch Prediction, along with several other popular 
proposed dynamic and static prediction schemes. We 
measure the effectiveness of different prediction algo 
rithms and different amounts of history and pattern 
information. We measure the costs of each variation 
to obtain the same prediction accuracy. Finally we 
compare the Two-Level Adaptive branch predictors to 
the several popular schemes available in the literature. 
We show that the average prediction accuracy for Two- 
Level Adaptive Branch Prediction is about 97 percent, 
while the other schemes achieve at most 94.4 percent 
average prediction accuracy. 

This paper is organized in six sections. Section two 
introduces our Two-Level Adaptive Branch Prediction 
and its three variations. Section three describes the cor- 
responding implementations and computes the associ- 
ated hardware costs. Section four discusses the Simula- 
tion model and traces used in this study. Section five 
reports the simulation results and our analysis. Section 
six contains some concluding remarks. 

2 Definition of Two-Level Adaptive Branch 
Prediction 

2.1 Overview 

Two-Level Adaptive Branch Prediction uses two levels 
of branch history information to make predictions. The 
first level is the history of the last k branches encoun- 
tered . (Variations of our scheme reflect whether this 

‘The Nma7 benchmark was not simuiated because this bench- 
mark consists of seven independent loops. It takes too long to 
simulate the branch behavior of these seven kernels, so we omit- 
ted these loops. 

means the actual last k branches encountered, or the 
last A: occurrences of the same branch instruction.) The 
second level is the branch behavior for the last s oc- 
currences of the specific pattern of these k bran&m. 
Prediction is based on the branch behavior for the 1st 
s occurrences of the pattern in question. 

To maintain the two levels of information, Two-Level 
Adaptive Branch Prediction uses two major data struc- 
tures, the branch history register (HR) and the pattern 
history table (PHT), see Figure 1. Instead of accumu- 
lating statistics by profiling programs, the information 
on which branch predictions are based is collected at 
run-time by updating the contents of the history regis- 
ters and the pattern history bits in the entries of the 
pattern history table depending on the outcomes of the 
branches. The history register is a k-bit shift register 
which shifts in bits representing the branch results of 
the most recent k branches. 

Figure 1: Structure of Tw+Level Adaptive Branch Pre- 
diction. 

If the branch was taken, then a “1” is recorded; if 
not, a “0” is recorded. Since there are k bits in the 
history register, at most 2’ different patterns appear in 
the history register. For each of these 2’ patterns, there 
is a corresponding entry in the pattern history table 
which contains branch results for the last s times the 
preceding k branches were represented by that specific 
content of the history register. 

When a conditional branch B is being predicted, 
the content of its history register, HR, denoted as 
&-k&-k+ ,...... &-I, is used to address the pattern 
history table. The pattern history bits S, in the ad- 
dressed entry PHTR,-,R~-,+, ._.... R,,, in the pattern his 
tory table are then used for predicting the branch. The 
prediction of the branch is 

=c = WC), (1) 

where X is the prediction decision function. 
After the conditional branch is resolved, the out- 

come R, is shifted left into the history register HR 
in the least significant bit position and is also used 
to update the pattern history bits in the pattern his- 
tory table entry PHTR,-,R,-,+ ,....., R,,~. After being 

452 



updated, the content of the history register becomes 
R R e-L+1 c-k+z......Re and the state represented by the 
pattern history bits becomes SC+*. The transition of the 
pattern history bits in the pattern history table entry 
is done by the state transition function 6 which takes 
in the old pattern history bits and the outcome of the 
branch as inputs to generate the new pattern history 
bits. Therefore, the new pattern history bits &+I be- 
come 

s c+l = 6(Sc, Rd. (2) 
A straightforward combinational logic circuit is used to 
implement the function 6 to update the pattern history 
bits in the entries of the pattern history table. The tran- 
sition function 6, predicting function X, pattern history 
bits S and the outcome R of the branch comprise a 
finite-state Moore machine, characterized by equations 
1 and 2. 

State diagrams of the finite-state Moore machines 
used in this study for updating the pattern history in 
the pattern history table entry and for predicting which 
path the branch will take are shown in Figure 2. The 
automaton Last- Time stores in the pattern history only 
the outcome of the last execution of the branch when 
the history pattern appeared. The next time the same 
history pattern appears the prediction will be what hap- 
pened last time. Only one bit is needed to store that 
pattern history information. The automaton Al records 
the results of the last two times the same history pat- 
tern appeared. Only when there is no taken branch 
recorded, the next execution of the branch when the 
history register has the same history pattern will be 
predicted as not taken; otherwise, the branch will be 
predicted as taken. The automaton A2 is a saturating 
updown counter, similar to the automaton used in J. 
Smith’s branch target buffer design for keeping branch 
history [17]. 

Figure 2: State diagrams of the finite-state Moore ma- 
chines used for making prediction and updating the pat- 
tern history table entry. 

In J. Smith’s design the ‘L-bit saturating up-down 
counter keeps track of the branch history of a certaiin 
branch. The counter is incremented when the branch 

is taken and is decremented when the branch is not 
taken. The branch path of the next execution of the 
branch will be predicted as taken when the counter value 
is greater than or equal to two; otherwise, the branch 
will be predicted as not taken. In Two-Level Adap- 
tive Branch Prediction, the 2-bit saturating up-down 
counter keeps track of the history of a certain history 
pattern. The counter is incremented when the result of 
a branch, whose history register content is the same as 
the pattern history table entry index, is taken; other- 
wise, the counter is decremented. The next time the 
branch has the same history register content which ac- 
cesses the same pattern history table entry, the branch is 
predicted taken if the counter value is greater or equal 
to two; otherwise, the branch is predicted not taken. 
Automata A3 and A4 are variations of A2. 

Both Static Training [14] and Two-Level Adaptive 
Branch Prediction are dynamic branch predictors, be- 
cause their predictions are based on run-time informa- 
tion, i.e. the dynamic branch history. The major dif- 
ference between these two schemes is that the pattern 
history information in the pattern history table changes 
dynamically in Two-Level Adaptive Branch Prediction 
but is preset in Static Training from profiling. In Static 
Training, the input to the prediction decision function, 
X, for a given branch history pattern is known before 
execution. Therefore, the output of X is determined be- 
fore execution for a given branch history pattern. That 
is, the same branch predictions are made if the same 
history pattern appears at different times during execu- 
tion. Two-Level Adaptive Branch Prediction, on the 
other hand, updates the pattern history information 
kept in the pattern history table with the actual results 
of branches. As a result, given the same branch his- 
tory pattern, different pattern history information can 
be found in the pattern history table; therefore, there 
can be different inputs to the prediction decision func- 
tion for Two-Level Adaptive Branch Prediction. Predic- 
tions of Two-Level Adaptive Branch Prediction change 
adaptively as the program executes. 

Since the pattern history bits change in Two-Level 
Adaptive Branch Prediction, the predictor can adjust to 
the current branch execution behavior of the program to 
make proper predictions. With these run-time updates, 
TweLevel Adaptive Branch Prediction can be highly 
accurate over many different programs and data sets. 
Static Training, on the contrary, may not predict well 
if changing data sets brings about different execution 
behavior. 

2.2 Alternative Implementations of Two-Level 
Adaptive Branch Prediction 

There are three alternative implementations of the Two- 
Level Adaptive Branch Prediction, as shown in Figure 
3. They are differentiated as follows: 

Two-Level Adaptive Branch Prediction Using a 
Global History Register and a Global Pattern 
History Table (GAg) 
In GAg, there is only a single global history regis- 
ter (GHR) and a single global pattern history table 
(GPHT) used by the Two-Level Adaptive Branch Pre- 



PAP 

P-- 

Figure 3: Global view of three variations of Two-Level 
Adaptive Branch Prediction. 

diction. All branch predictions are based on the same 
global history register and global pattern history table 
which are updated after each branch is resolved. This 
variation therefore is calied Global Two-Level Adaptive 
Branch Prediction using a global pattern history table 
(GM 

Since the outcomes of different branches update the 
same history register and the same pattern history table, 
the information of both branch history and pattern his 
tory is influenced by results of different branches. The 
prediction for a conditional branch in this scheme is ac- 
tually dependent on the outcomes of other branches. 

Two-Level Adaptive Branch Prediction Using a 
Per-address Branch History Table and a Global 
Pattern History Table (PAg) 
In order the reduce the interference in the first level 
branch history information, one history register is as- 
sociated with each distinct static conditional branch to 
collect branch history information individually. The his- 
tory registers are contained in a per-address branch his- 
tory table (PBHT) in which each entry is accessible by 
one specific static branch instruction and is accessed by 
branch instruction addresses. Since the branch history 
is kept for each distinct static conditional branch indi- 
vidually and ail history registers access the same global 
pattern history table, this variation is called Per-address 
Tw+Levei Adaptive Branch Prediction using a global 
pattern history table (PAg). 

The execution results of a static conditional branch 
update the branch’s own history register and the global 
pattern history table. The prediction for a conditional 
branch is based on the branch’s own history and the 
pattern history bits in the global pattern history table 
entry indexed by the content of the branch’s history 
register. Since all branches update the same pattern 
history table, the pattern history interference still exists. 

Two-Level Adaptive Branch Prediction Using 
Per-address Branch History Table and Per- 
address Pattern History Tables (PAP) 

In order to completely remove the interference in both 
levels, each static branch has its own pattern history ta- 
ble a set of which is called a per-address pattern history 
table (PPHT). Therefore, a per-address history register 
and a per-address pattern history table are associated 
with each static conditional branch. All history regis- 
ters are grouped in a per-address branch history table. 
Since this variation of Two-Level Adaptive Branch Pre- 
diction keeps separate history and pattern information 
for each distinct static conditional branch, it is called 
Per-address TwoLevel Adaptive Branch Prediction us- 
ing Per-address pattern history tables (PAP). 

3 Implementation Considerations 

3.1 Pipeline Timing of Branch Prediction and 
Information Update 

Two-Level Adaptive Branch Prediction requires two se- 
quential table accesses to make a prediction. It is dif- 
ficult to squeeze the two accesses into one cycle. High 
performance requires that prediction be made within 
one cycle from the time the branch address is known. 
To satisfy this requirement, the two sequential accesses 
are performed in two different cycles as follows: When a 
branch result becomes known, the branch’s history reg- 
ister is updated. In the same cycle, the pattern history 
table can be accessed for the next prediction with the 
updated history register contents derived by appending 
the result to the old history. The prediction fetched 
from the pattern history table is then stored along with 
the branch’s history in the branch history table. The 
pattern history can also be updated at that time. The 
next time that branch is encountered, the prediction is 
available as soon as the branch history table is accessed. 
Therefore, only one cycle latency is incurred from the 
time the branch address is known to the time the pre- 
diction is available. 

Sometimes the previous branch results may not be 
ready before the prediction of a subsequent branch takes 
place. If the obsolete branch history is used for making 
the prediction, the accuracy is degraded. In such a case, 
the predictions of the previous branches can be used to 
update the branch history. Since the prediction accu- 
racy of Two-Level Adaptive Branch Prediction is very 
high, prediction is enhanced by updating the branch his- 
tory speculatively. The update timing for the pattern 
history table, on the other hand, is not as critical as that 
of the branch history; therefore, its update can be de- 
layed until the branch result is known. With speculative 
updating, when a misprediction occurs, the branch his- 
tory can either be reinitialized or repaired depending on 
the hardware budget available to the branch predictor. 
Also, if two instances of the same static branch occur 
in consecutive cycles, the latency of prediction can be 
reduced for the second branch by using the prediction 
fetched from the pattern history table directly. 

3.2 Target Address Caching 

After the direction of a branch is predicted, there is 
still the possibility of a pipeline bubble due to the time 
it takes to generate the target address. To eliminate 
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this bubble, we cache the target addresses of branches. 
One extra field is required in each entry of the branch 
history table for doing this. When a branch is predicted 
taken, the target address is used to fetch the following 
instructions; otherwise, the fall-through address is used. 

Caching the target addresses makes prediction in con- 
secutive cycles possible without any delay. This also 
requires the branch history table to be accessed by the 
fetching address of the instruction block rather than by 
the address of the branch in the instruction block being 
fetched because the branch address is not known until 
the instruction block is decoded. If the address hits in 
the branch history table, the prediction of the branch 
in the instruction block can be made before the instruc- 
tions are decoded. If the address misses in the branch 
history table, either there is no branch in the instruction 
block fetched in that cycle or the branch history infor- 
mation is not present in the branch history table. In this 
case, the next sequential address is used to fetch new in- 
structions. After the instructions are decoded, if there is 
a branch in the instruction block and if the instruction 
block address missed in the branch history table, static 
branch prediction is used to determine whether or not 
the new instructions fetched from the next sequential 
address should be squashed. 

3.3 Per-address Branch History Table Imple- 
mentation 

PAg . and PAp branch predictors all use per-address 
Dranch history tables in their structure. It is not fea- 
sible to have a branch history table large enough to 
hold all branches’ execution history in real implemen- 
tations. Therefore, a practical approach for the per- 
address branch history table is DroDosed here. 

The per-address b&ch hi&y ‘table can be imple- 
mented as a set-associative or direct-mapped cache. A 
fixed number of entries in the table are grouped together 
as a set. Within a set, a Least-Recently-Used (I+RU) al- 
gorithm is used for replacement. The lower part of a 
branch address is used to index into the table and the 
higher part is stored as a tag in the entry associated 
with that branch. When a conditional branch is to be 
predicted, the branch’s entry in the branch history ta- 
ble is located first. If the tag in the entry matches the 
accessing address, the branch information in the entry 
is used to predict the branch. If the tag doea not match 
the address, a new entry is allocated for the branch. 

In this study, both the above practical approach and 
an Ideal Branch History Table (IBHT), in which there 
is a history register for each static conditional branch, 
were simulated for Two-Level Adaptive Branch Predic- 
tion. The branch history table was simulated with four 
configurations: 4-way set-associative 512-entry, 4-way 
set-associative 256-entry, direct-mapped 512-entry and 
direct-mapped 256-entry caches. The IBHT simulation 
data is provided to show the accuracy loss due to the 
history interference in a practical branch history table 
implementations. 

3.4 Hardware Cost Estimates 

The chip area reqLired for a run-time branch predic- 
tion mechanism is not inconsequential. The following 
hardware cost estimates are proposed to characterize 
the relative costs of the three variations. The branch 
history table and the pattern history table are the two 
major parts. Detailed items include storage space for 
keeping history information, prediction bits, tags, and 
LRU bits and the accessing and updating logic of the 
tables. The accessing and updating logic consists of 
comparators, MUXes, LRU bits incrementors, and ad- 
dress decoders for the branch history table, and address 
decoders and pattern history bit update circuits for the 
pattern history table. The storage space for caching tar- 
get addresses is not included in the following equations 
because it is not required for the branch predictor. 

Assumptions of these estimates are: 

There are a address bits, a subset of which is used 
to index the branch history table and the rest are 
stored as a tag in the indexed branch history table 
entry. 

In an entry of the branch history table, there are 
fields for branch history, an address tag, a predic- 
tion bit, and LRU bits. 

The branch history table size is h. 

The branch history table is 2j-way set-associative. 

Each history register contains k bits. 

Each pattern history table entry contains s bits. 

Pattern history table set size is p. (In PAP, p is 
equal to the size of the branch history table, h, while 
in GAg and PAg, p is always equal to one.) 

C,, Cd, Ce, Cm, C#h, Ci, and C, are the constant 
base costs for the storage, the decoder, the com- 
parator, the multiplexer, the shifter, the incremen- 
tor, and the finite-state machine. 

Furthermore, i is equal to logzh and is a non-negative 
integer. When there are k bits in a history register, a 
pattern history table always has 2’ entries. 

The hardware cost of Two-Level Adaptive Branch 
Prediction is as follows: 

= COStam(h, j, C) + p x COS~PHT(~‘, a) 
= {BHTstorope-space + BHT~csar.,n+wic + 

B~Tupdo~,np-Lop,s} + p x { PHTscoropc-spoo. + 
PHT~cca.,mg-~opic + PHTupcicasng-togd 

= {[h X (Tag(,-,+,)-b,, + H&-blr + Prediction-Bitl-b,r 
+LRU-Bita,~a,r)] + 

[l x Addreaa-DecoderiJ,r + 2’ x 

Comparatora(,_,+,)_b;I + 1 X 2’Xl-M~Xk,b,r]+ 

[h x Shiftert-b,l + 2’ x LRU_incrementors,4,Il) + 

p X {[2” X Hiatosy-k?ita,-t.,r] -t 
(1 x Addreas-Decoderkh,r] + [State-l/pdoter,_b,(]} 
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= {h x [(a - i + j) + k -I- I + j] x C, + 
[h x Cd + 2’ x (a - i+1)xCc+2’ xkxC,,,]+ 

[h x k x csh + 2’ x j x C,]) + p x {[‘Zk x 9 x C,] + 

[2k x Cd] + [s x 2’+’ x C.]}, a+j>i. (3) 

In GAg, only one history register and one global pat- 
tern history table are used, so h and p are both equal to 
one. No tag and no branch history table accessing logic 
are necessary for the single history register. Besides, 
pattern history state updating logic is small compared 
to the other two terms in the pattern history table cost. 
Therefore, cost estimation function for GAg can be sim- 
plified from Function 3 to the following Function: 

cost~~~(BHT(l, , k), 1 x PHT(2k,s)) 

= CostgHT(l, , k) + 1 x Cosfp~~(2~,9) 
z ([k+l]xC,+kxC,h]+ 

(2” x (9 x c, + cd)} (4) 

It is clear to see that the cost of GAg grows exponen- 
tially with respect to the history register length. 

In PAg, only one pattern history table is used, so p 
is equal to one. Since j and s are usually small com- 
pared to the other variables, by using Function 3, the 
estimated cost for PAg using a branch history table is 
as follows: 

COS~P,J~(BHT(~,J, k), 1 x PHT(Zk, 9)) 
= CostgHT(h, j, k) + 1 x Costp~~(2~,9) 
N {hx[(a+2xj9k+l-i)xCs+Cd+ 

k x CA]} + 

(2’ x (9 x c, + cd)}, a+jLi. (5) 

The cost of a PAg scheme grows exponentially with 
respect to the history register length and linearly with 
respect to the branch history table size. 

In a PAp scheme using a branch history table as de- 
fined above, h pattern history tables are used, so p is 
equal to h. By using Function 3, the estimated cost for 
PAp is as follows: 

Costp,+,(BHT(h, j, k), h x PHT(2’, 9)) 

= CosfgHT(h, j, k) + h x COS~PHT(~~,S) 
zz {hx[(a+2xj+k+l-i)xCIfCd+ 

k X c,h]] + 

hx(2kx(Sxc3+cd)), a+j>i. (6) 
When the history register is sufficiently large, the cost 

of a PAp scheme grows exponentially with respect to the 
history register length and linearly with respect to the 
branch history table size. However, the branch history 
table size becomes a more dominant factor than it is in 
a PAg scheme. 

4 Simulation Model 

Trace-driven simulations were used in this study. A Mo- 
torola 68100 instruction level simulator is used for gen- 
erating instruction traces. The instruction and address 
traces are fed into the branch prediction simulator which 
decodes instructions, predicts branches, and verifies the 
predictions with the branch results to collect statistics 
for branch prediction accuracy. 

4.1 Description of Traces 

Nine benchmarks from the SPEC benchmark suite are 
used in this branch prediction study. Five are float- 
ing point benchmarks and four are integer benchmarks. 
The floating point benchmarks include doduc, fpppp, 
matrix300, spice2g6 and tomcatv and the integer ones 
include eqntott, espresso, gee, and li. Nasa7 is not in- 
cluded because it takes too long to capture the branch 
behavior of all seven kernels. 

,Among the five floating point benchmarks, fpppp, 
matrix300 and tomcatv have repetitive loop execution; 
thus, a very high prediction accuracy is attainable, in- 
dependent of the predictors used. Doduc. spice2g6 and 
the integer benchmarks are more interesting. They have 
many conditional branches and irregular branch behav- 
ior. Therefore, it is on the integer benchmarks where a 
branch predictor’s mettle is tested. 

Since this study of branch prediction focuses on the 
prediction for conditional branches, all benchmarks 
were simulated for twenty million conditional branch 
instructions except gee which finished before twenty 
million conditional branch instructions are executed. 
Fpppp, matrix300, and tomcatv were simulated for 100 
million instruction because of their regular branch be- 
havior through out the programs. The number of static 
conditional branches in the instruction traces of the 
benchmarks are listed in Table 1. History register hit 
rate usually depends on the number of static branches 
in the benchmarks. The testing and training data sets 
for each benchmark used in this study are listed in Table 
2. 

Benchmark Number ol Benchmark Number of 
Static Static 

Name Cnd. Br. Name Cnd. Br. 
eqntott 277 espresso 556 

WC 6922 Ii 489 
doduc 1149 fPPPP 653 
matrix300 213 spiceZg6 606 
tomcatv 370 1 

Table 1: Number of static conditional branches in each 
benchmark. 

- 
Benchmark 
Name 
eqntott 
espresso 
v-c 

1 

AP 
doduc 
fPPPP 
matrix300 
spice2g6 
comcacv 

Training 
Data Set 
=NA 
Cps 
cexp.i 
tower of hanoi 
tiny dodwin 
NA 
NA 
short greycode.in 
NA 

Testing 
Data Set 
int-prl-3.eqn 
bca 
dbxout.i 
eight queens 
doducin 
natoms 
Built-in 
greycode.in 
Built-in 

Table 2: naining and testing data sets of benchmarks. 
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In the traces generated with the testing data sets, 
about 24 percent of the dynamic instructions for the 
integer benchmarks and about 5 percent of the dy- 
namic instructions for the floating point benchmarks 
are branch instructions. Figure 4 shows about 80 per- 
cent of the dynamic branch instructions are conditional 
branches; therefore, the prediction mechanism for con- 
ditional branches is the most important among the pre- 
diction mechanisms for different classes of branches. 

Figure 4: Distribution of dynamic branch instructions. 

4.2 Characterization of Branch Predictors 

The three variations of Two-Level Adaptive Branch 
Prediction were simulated with several configura- 
tions. Other known dynamic and static branch 
predictors were also simulated. The configura- 
tions of the dynamic branch predictors are shown 
in Table 3. In order to distinguish the different 
schemes we analyzed, the following naming conven- 
tion is used: Scheme( History( Size, Associativity, 
Entry-Content), Pattern-Table-Set-Sire x Pattern( 
Size, Entry-Content), Context-Switch). If a predictor 
does not have a certain feature in the naming conven- 
tion, the corresponding field is left blank. 

Scheme specifies the scheme, for example, GAg, 
PAg, PAp or Branch Target Buffer design (BTB) 
[17]. In History( S’ zze, Associatiuity, Entry-Content), 
History is the entity used to keep history information 
of branches, for example, HR (A single history register), 
IBHT, or BHT. Size specifies the number of entries in 
that entity, Associatiuity is the sssociativity of the ta- 
ble, and Entry-Content specifies the content in each 
branch history table entry. When Associativity is set 
to 1, the branch history table is direct-mapped. The 
content of an entry in the branch history table can be 
any automaton shown in Figure 2 or simply a history 
register. 

In Pattern-Table-Set-Sire x Pattern( 
Size, Entry-Content), Pattern-Table-Set-Sire is the 
number of pattern history tables used in the scheme, 
Pattern is the implementation for keeping pattern his- 
tory information, Size specifies the number of entries in 
the implementation, and Entry-Content specifies the 

content in each entry. The content of an entry in the 
pattern history table can be any automaton shown in 
Figure 2. For Branch Target Buffer designs, the Pattern 
part is not included, because there is no pattern history 
information kept in their designs. Context-Switch is 
a flag for context switches. When Context-Switch is 
specified as c, context switches are simulated. If it is 
not specified, no context switches are simulated. 
e Since there are more taken branches than not taken 
branches according to our simulation results, a history 
register in the branch history table is initialized to all l’s 
when a miss on the branch history table occurs. After 
the result of the branch which causes the branch history 
table miss is known, the result bit is extended through- 
out the history register. A context switch results in 
flushing and reinitialization of the branch history table. 

aAg(HR(L. ,r-.c,, 
Ix PHTW .Aa).lcl) 

PA‘(a”T(2l&l.r-.r,. 
LX PHT(1’,A2).lc]) 

PA‘(BHT(2s**4,r-*r). 
I I PHT(I’.A2).lc]) 

PAr(S”T(St2.i.v-.r). 
1 x PttT(2’.A2).lcl) 

PAr(BHT(srl.r...sr). 
I X PHT(1’ .At).lcl) 

PA~(EWT(W2...r..r). 
I X PHT(3’ .AZ).lc]) 

PA‘(S”T(sIl.4.e.r). 
Ix PHT(D’.AS).lcl) 

PA~(aHT(~Ia.4..-a.), 
1 X PHT(1’.Al),lel) 

PAS(sHT(812.4.r.m.). 
I X PHT(1’.LT).l.I) 

PAg(IBHT(imI, ,r-at), 
I I PHT(2’.AW.lcI) 

PAp(BHT(sI2.4.r.*r). 
~I~IPHT(~‘.A~).IcJ) 
0!3d”R,L. .I-.*)* 

1-i PHif?f ,Pa).lc)) 
PS#(SHT(sU.4.r-or). 

1 x PRTW .PE).lcl) 
BTB(BHT(s~~...A~). 

.kl) 
BTB(EHT(SI2.4.LT). 

I 

4 

I 

4 

4 

4 

4 

4 

Asc - Table Set-Associotavsty, Atm - Automaton, BHT - Branch 

History Table, BTB - Branch Target Euger Design, Con%g. - 

Configuratton, Entr. - Entries, GAg - Global Two-Level Adoptwe 
Bmnch PredIctson Using a Global Pattern History Table, GSg - 

Global Stotrc Trauung Urmg a Preset Global Pattern Hartory Ta. 

bls, IBHT - Ideal Branch Hutory Table, inf - Infiwte, LT - Loat- 

Time, PAg - Per-address Two-Level Adoptwe Branch Predactmn 

Uasng a Global Pattern Hartory Table, PAp - Per-address Two- 

Level Adoptwe Branch Predsctton Urtng Per-address Pattern Hir- 

tory Tables, PB - Preset PredictIon Bit, PSg - Per-address Stotrc 

tiwwag Uswag a Preset Global Pattern History Table, PHT - Pat- 

tern History Table, sr - Shift Register. 

Table 3: Configurations of simulated branch predictors. 

The pattern history bits in the pattern history table 
entries are also initialized at the beginning of execution. 
Since taken branches are more likely for those pattern 
history tables using automata Al, A2, A3, and A4, all 
entries are initialized to state 3. For Last-Time, all en- 
tries are initialized to state 1 such that the branches at 
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the beginning of execution will be more likely to be pre- 
dicted taken. It is not necessary to reinitialize pattern 
history tables during execution. 

In addition to the Two-Level Adaptive schemes, Lee 
and A. Smith’s Static Training schemes, Branch Tar- 
get Buffer designs, and some dynamic and static branch 
prediction schemes were simulated for comparison pur- 
poses. Lee and A. Smith’s Static Training scheme is sim- 
ilar in structure to the Per-address TwoLevel Adaptive 
scheme with an IBHT but with the important difference 
that the prediction for a given pattern is pre-determined 
by profiling. In this study, Lee and A. Smith’s Static 
‘IXning is identified as PSg, meaning per-address Static 
‘&aining using a global preset pattern history table. 
Similarly, the scheme which has a similar structure to 
GAg but with the difference that the second-level pat- 
tern history information is collected from profiling is 
abbreviated PSg, meaning Global Static Training using 
a preset global pattern history table. Per-address Static 
Training using per-address pattern history tables (PSp) 
is another application of Static Training to a different 
structure; however, this scheme requires a lot of storage 
to keep track of pattern behavior of all branches stati- 
cally. Therefore, no PSp schemes were simulated in this 
study. Lee and A. Smith’s Static Training schemes were 
simulated with the same branch history table configu- 
rations as used by the Two-Level Adaptive schemes for 
a fair comparison. The cost to implement Static Train- 
ing is not less expensive than the cost to implement the 
Two-Level Adaptive Scheme because the branch history 
table and the pattern history table required by both 
schemes are similar. In Static Training, before program 
execution starts, extra time is needed to load the preset 
pattern prediction bits into the pattern history table. 

Branch Target Buffer designs were simulated with 
automata A2 and Last-Time. The static branch pre- 
diction schemes simulated include the Always Taken, 
Backward Taken and Forward Not Taken, and a pro- 
filing scheme. Always Taken scheme predicts taken for 
all branches. Backward Taken and Forward Not Taken 
(BTFN) scheme predicts taken if a branch branches 
backward and not taken if the branch branches for- 
ward. The BTFN scheme is effective for loop-bound 
programs, because it mispredicts only once in the exe- 
cution of a loop. The profiling scheme counts the fre- 
quency of taken and not-taken for each static branch 
in the profiling execution. The predicted direction of 
a branch is the one the branch takes most frequently. 
The profiling information of a program executed with a 
training data set is used for branch predictions for the 
program executed with testing data sets, thus calculat- 
ing the prediction accuracy. 

5 Branch Prediction Simulation Results 

Figures 5 through 11 show the prediction accuracy of 
the branch predictors described in the previous session 
on the nine SPEC benchmarks. “Tot GMean” is the ge- 
ometric mean across all the benchmarks, “Int GMean” 
is the geometric mean across all the integer benchmarks, 
and “FP GMean” is the geometric mean across all the 
floating point benchmarks. The vertical axis shows the 

prediction accuracy scaled from 76 percent to I66 per- 
cent. 

5.1 Evaluation of the Parameters of the Two- 
Level Adaptive Branch Prediction Branch 
Prediction 

The three variations of Two-Level Adaptive Branch 
Prediction were simulated with different history regis- 
ter lengths to assess the effectiveness of increasing the 
recorded history length. The PAg and PAp schemes 
were each simulated with an ideal branch history ta- 
ble (IBHT) and with practical branch history tables to 
show the effect of the branch history table hit ratio. 

5.1.1 Effect of Pattern History Table Automa- 
ton 

Figure 5 shows the efficiency of using different finite- 
state automata. Five automata Al, A2, A3, A4, and 
Last-Time were simulated with a PAg branch predic- 
tor, having 12-bit history registers in a four-way set- 
associative 512-entry BHT. Al, A2, A3, and A4 all per- 
form better than Last-Time. The four-state automata 
Al, A2, A3, and A4 maintain more history information 
than Last-Time which only records what happened the 
last time; they are therefore more tolerant to the devi- 
ations in the execution history. Among the four-state 
automata, Al performs worse than the others. The per- 
formance of A2, A3, and A4 are very close to each other; 
however, A2 usually performs best. In order to show 
the following figures clearly, each Two-Level Adaptive 
Scheme is shown with automaton A2. 

Figure 5: Comparison of Two-Level Adaptive Branch 
Predictors using different finite-state automata. 

5.1.2 Effect of History Register Length 

Three variations using history registers of the 
same length 
Figure 6 shows the effects of history register length on 
the prediction accuracy of Two-Level Adaptive schemes. 
Every scheme in the graph was simulated with the same 
history register length. Among the variations, PAp per- 
forms the best, PAg the second, and GAg the worst. 
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GAg is not effective with g-bit history registers, because 
every branch updates the same history register, causing 
excessive interference. PAg performs better than GAg, 
because it has a branch history table which reduces the 
interference in branch history. PAp predicts the best, 
because the interference in the pattern history is re- 
moved. 
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Figure 6: Comparison of the Two-Level Adaptive 
schemes using history registers of the same length. 

Effects of various history register lengths 
To further investigate the effect of history register 
length, Figure 7 shows the accuracy of GAg with var- 
ious history register lengths. There is an increase of 9 
percent in accuracy by lengthening the history register 
from 6 bits to 18 bits. The effect of history register 
length is obvious on GAg schemes. The history regis- 
ter length has smaller effect on PAg schemes and even 
smaller effect on PAp schemes because of the less inter- 
ference in the branch history and pattern history and 
their effectiveness with short history registers. 

Figure 7: Effect of various history register lengths on 
GAg schemes. 

5.1.3 Hardware Cost Efficiency of Three Vari- 
ations 

In Figure 6, prediction accuracy for the schemes with 
the same history register length were compared. How- 
ever, the various Two-Level Adaptive schemes have dif- 
ferent costs. PAp is the most expensive, PAg the second, 
and GAg the least, as you would expect. When evaluat- 
ing the three variations of Two-Level Adaptive Branch 
Prediction, it is useful to know which variation is the 
least expensive when they predict with approximately 
the same accuracy. 

Figure 8 illustrates three schemes which achieve about 
97 percent prediction accuracy. One scheme is chosen 
for each variation to show the variation’s configuration 
requirements to obtain that prediction accuracy. To 
achieve 97 percent prediction accuracy, GAg requires an 
l&bit history register, PAg requires 12-bit history regis- 
ters, and PAp requires 6-bit history registers. According 
to our cost estimates, PAg is the cheapest among these 
three. GAg’s pattern history table is expensive when a 
long history register is used. PAp is expensive due to 
the required multiple pattern history tables. 
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Figure 8: The Two-Level Adaptive schemes achieve 
about 97 percent prediction accuracy. 

5.1.4 Effect of Context Switch 

Since Two-Level Adaptive Branch Prediction uses the 
branch history table to keep track of branch history, the 
table needs to be flushed during a context switch. Fig- 
ure 9 shows the difference in the prediction accuracy 
for three schemes simulated with and without context 
switches. During the simulation, whenever a trap oc- 
curs in the instruction trace or every 500,000 instruc- 
tions if no trap occurs, a context switch is simulated. 
After a context switch, the pattern history table is not 
re-initialized, because the pattern history table of the 
saved process is more likely to be similar to the current 
process’s pattern history table than to a re-initialized 
pattern history table. The value 500,000 is derived 
by assuming that a 50 MHz clock is used and context 
switches occur every 10 ms in a 1 IPC machine. The 
average accuracy degradations for the three schemes are 
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all less than 1 percent. The accuracy degradations for 
gee when PAg and PAp are used are much greater than 
those of the other programs because of the large num- 
ber of traps in gee. However, the excessive number of 
traps do not degrade the prediction accuracy of the GAg 
scheme, because an initialized global history register can 
be refilled quickly. The prediction accuracy of fpppp 
using GAg actually increases when context switches are 
simulated. There are very few conditional branches in 
fpppp and all the conditional branches have regular be- 
havior; therefore, initializing the global history register 
helps clear out the noise. 

: : : : 

Figure 9: Effect of context switch on prediction accu- 
racy. 

5.1.5 Effect of Branch History Table Imple- 
mentation 

Figure 10 illustrates the effects of the size and associa- 
tivity of the branch history table in the presence of con- 
text switches. Four practical branch history table imple- 
mentations and an ideal branch history table were sim- 
ulated. The four-way set-associative 512”entry branch 
history table’s performance is very close to that of the 
ideal branch history table, because most branches in the 
programs can fit in the table. Prediction accuracy de- 
creases as table miss rate increases, which is also seen 
in the PAp schemes. 

5.2 Comparison of Two-Level Adaptive Branch 
Prediction and Other Prediction schemes 

Figure 11 compares the branch prediction schemes. The 
PAg scheme which achieves 97 percent prediction ac- 
curacy is chosen for comparison with other well-known 
schemes, because it costs the least among the three vari- 
ations of Two-Level Adaptive Branch Prediction. 

The 4-way set-associative 512”entry BHT is selected 
to be used by all schemes which keep the first-level 
branch history information, because it is simple enough 
to be implemented. The Two-Level Adaptive scheme 
and the Static Training scheme were chosen on the ba- 
sis of similar costs. 

The top curve is achieved by the Two-Level Adaptive 
scheme whose prediction accuracy is about 97 percent. 

Figure 10: Effect of branch history table implementa- 
tion on PAg schemes. 

Since the data for the Static Training schemes are not 
complete due to the unavailability of appropriate data 
sets, the data points for eqntott, fpppp, mntric300, and 
tomcatu are not graphed. PSg is about 1 to 4 percent 
lower than the top curve for the benchmarks that are 
available and GSg is about 4 to 19 percent lower with av- 
erage prediction accuracy of 94.4 percent and 89 percent 
individually. Note that their accuracy depends greatly 
on the similarities between the data sets used for train- 
ing and testing. The prediction accuracy for the branch 
target buffer using P-bit saturating up-down counters 
[17j is around 93 percent. The Profiling scheme achieves 
about 91 percent prediction accuracy. The branch tar- 
get buffer using Last-Time achieves about 89 percent 
prediction accuracy. Most of the prediction accuracy 
curves of BTFN and Always Taken are below the base 
line (76 percent). BTFN’s average prediction accuracy 
is about 68.5 percent and Always Taken’s is about 62.5 
percent. In this figure, the Two-Level Adaptive scheme 
is superior to the other schemes by at least 2.6 percent. 

I.“” 
-4--- 

Figure 11: Comparison of branch prediction schemes. 
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6 Concluding Remarks 

In this paper we have proposed a new dynamic branch 
predictor (Two-Level Adaptive Branch Prediction) that 
achieves substantially higher accuracy than any other 
scheme that we are aware of. We computed the hard- 
ware costs of implementing three variations of this 
scheme and determined that the most effective imple- 
mentation of Two-Level Adaptive Branch Prediction 
utilizes a per-address branch history table and a global 
pattern history table. 

We have measured the prediction accuracy of the 
three variations of Two-Level Adaptive Branch Pre- 
diction and several other popular proposed dynamic 
and static prediction schemes using trace-driven sim- 
ulation of nine of the ten SPEC benchmarks. We have 
shown that the average prediction accuracy for Two- 
Level Adaptive Branch Prediction is about 97 percent, 
while the other known schemes achieve at most 94.4 
percent average prediction accuracy. 

We have measured the effects of varying the param- 
eters of the Two-Level Adaptive predictors. We noted 
the sensitivity to k, the length of the history register, 
and s, the size of each entry in the pattern history ta- 
ble. We reported on the effectiveness of the various 
prediction algorithms that use the pattern history table 
information. We showed the effects of context switch- 
ing. 

Finally, we should point out that we feel our 97 per- 
cent prediction accuracy figures are not good enough 
and that future research in branch prediction is still 
needed. High performance computing engines in the 
future will increase the issue rate and the depth of 
the pipeline, which will combine to increase further the 
amount of speculative work that will have to be thrown 
out due to a branch prediction miss. Thus, the 3 per- 
cent prediction miss rate needs improvement. We are 
examining that 3 percent to try to characterize it and 
hopefully reduce it. 
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