
Alternative Implementations of Two-Level Adaptive Branch Prediction

Tse-Yu Yeh and Yale N. Patt
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

Abstract

As the issue rate and depth of pipelining of high perfor-
mance Superscalar processors increase, the importance
of an excellent branch predictor becomes more vital to
delivering the potential performance of a wide-issue,
deep pipelined microarchitecture. We propose a new
dynamic branch predictor (Two-Level Adaptive Branch
Prediction) that achieves substantially higher accuracy
than any other scheme reported in the literature. The
mechanism uses two levels of branch history information
to make predictions, the history of the last L branches
encountered, and the branch behavior for the last s oc-
currences of the specific pattern of these k branches. We
have identified three variations of the Two-Level Adap-
tive Branch Prediction, depending on how finely we re-
solve the history information gathered. We compute the
hardware costs of implementing each of the three varia-
tions, and use these costs in evaluating their relative ef-
fectiveness. We measure the branch prediction accuracy
of the three variations of Two-Level Adaptive Branch
Prediction, along with several other popular proposed
dynamic and static prediction schemes, on the SPEC
benchmarks. We show that the average prediction ac-
curacy for TwoLevel Adaptive Branch Prediction is 97
percent, while the other known schemes achieve at most
94.4 percent average prediction accuracy. We measure
the effectiveness of different prediction algorithms and
different amounts of history and pattern information.
We measure the costs of each variation to obtain the
same prediction accuracy.

1 Introduction

As the issue rate and depth of pipelining of high per-
formance Superscalar processors increase, the amount
of speculative work due to branch prediction becomes
much larger. Since all such work must be thrown away
if the prediction is incorrect, an excellent branch pre-
dictor is vital to delivering the potential performance of
a wide-issue, deep pipelined microarchitecture. Even a

Perm~won to copy wlrhour Ice ail or parr of this mnterlol 111 granted
pmwded that Ihe copses arc not made or dlstrlbu!ed Ibr dlrcct commercial
advantage. Ihc ACM copyrIght nouce and the title of the pubhcnuon and
IIS dale appear. and not~cc 15 gwen lhai copyrng I!, by pcrm~rs~on of Q
Assoc~ac~on lor Compulmg Machmcp. To copy otherww. or to rcpublkh.
rcquwes a FCC and/or spccltic perm~won.

prediction miss rate of 5 percent results in a substantial
loss in performance due to the number of instructions
fetched each cycle and the number of cycles these in-
structions are in the pipeline before an incorrect branch
prediction becomes known.

The literature is full of suggested branch prediction
schemes [6, 13, 14, 171. Some are static in that they use
opcode information and profiling statistics to make pre-
dictions. Others are dynamic in that they use run-time
execution history to make predictions. Static schemes
can be as simple as always predicting that the branch
will be taken, or can be based on the opcode, or on the
direction of the branch, as in “if the branch is backward,
predict taken, if forward, predict not taken” [17]. This
latter scheme is effective for loop intensive code, but
does not work well for programs where the branch be-
havior is irregular. Also, profiling [6, 131 can be used to
predict branches by measuring the tendency of a branch
on sample data sets and presetting a static prediction
bit in the opcode according to that tendency. Unfor-
tunately, branch behavior for the sample data may be
very different from the data that appears at run-time.

Dynamic branch prediction also can be as simple as in
keeping track only of the last execution of that branch
instruction and predicting the branch will behave the
same way, or it can be elaborate as in maintaining
very large amounts of history information. In all cases,
the fact that the dynamic prediction is being made on
the basis of run-time history information implies that
substantial additional hardware is required. J. Smith
[17] proposed utilizing a branch target buffer to store,
for each branch, a two-bit saturating up-down counter
which collects and subsequently bases its prediction on
branch history information about that branch. Lee and
A. Smith proposed [14] a Static Training method which
uses statistics gathered prior to execution time coupled
with the history pattern of the last k run-time execu-
tions of the branch to make the next prediction as to
which way that branch will go. The major disadvantage
of Static Training methods has been mentioned above
with respect to profiling; the pattern history statistics
gathered for the sample data set may not be applicable
to the data that appears at run-time.

In this paper we propose a new dynamic branch pre-
dictor that achieves substantially higher accuracy than
any other scheme reported in the literature. The mech-
anism uses two levels of branch history information to
make predictions. The first level is the history of the

0 1992 ACM O-89791 -509~7192/0005/0124 $1 SO

451

last k branches encountered. (Variations of our scheme
reflect whether this means the actual last k branches en-
countered. or the last k occurrences of the same branch
instruction.) The second level is the branch behavior
for the last s occurrences of the specific pattern of these
k branches. Prediction is based on the branch behavior
for the last s occurrences of the pattern in question.

For example, suppose, for k = 8, the last k branches
had the behavior 11100101 (where 1 represents that the
branch was taken, 0 that the branch was not taken).
Suppose further that s = 6, and that in each of the last
six times the previous eight branches had the pattern
11100101, the branch alternated between taken and not
taken. Then the second level would contain the history
101010. Our branch predictor would predict “taken.”

The history information for level 1 and the pattern
information for level 2 are collected at run time, elimi-
nating the above mentioned disadvantages of the Static
Training method. We call our method Two-Level Adap-
tive Branch Prediction. We have identified three vari-
ations of Two-Level Adaptive Branch Prediction, de-
pending on how finely we resolve the history informa-
tion gathered. We compute the hardware costs of im-
plementing each of the three variations, and use these
costs in evaluating their relative effectiveness.

Using trace-driven simulation of nine of the ten SPEC
benchmarks ‘, we measure the branch prediction ac-
curacy of the three variations of Two-Level Adaptive
Branch Prediction, along with several other popular
proposed dynamic and static prediction schemes. We
measure the effectiveness of different prediction algo
rithms and different amounts of history and pattern
information. We measure the costs of each variation
to obtain the same prediction accuracy. Finally we
compare the Two-Level Adaptive branch predictors to
the several popular schemes available in the literature.
We show that the average prediction accuracy for Two-
Level Adaptive Branch Prediction is about 97 percent,
while the other schemes achieve at most 94.4 percent
average prediction accuracy.

This paper is organized in six sections. Section two
introduces our Two-Level Adaptive Branch Prediction
and its three variations. Section three describes the cor-
responding implementations and computes the associ-
ated hardware costs. Section four discusses the Simula-
tion model and traces used in this study. Section five
reports the simulation results and our analysis. Section
six contains some concluding remarks.

2 Definition of Two-Level Adaptive Branch
Prediction

2.1 Overview

Two-Level Adaptive Branch Prediction uses two levels
of branch history information to make predictions. The
first level is the history of the last k branches encoun-
tered . (Variations of our scheme reflect whether this

‘The Nma7 benchmark was not simuiated because this bench-
mark consists of seven independent loops. It takes too long to
simulate the branch behavior of these seven kernels, so we omit-
ted these loops.

means the actual last k branches encountered, or the
last A: occurrences of the same branch instruction.) The
second level is the branch behavior for the last s oc-
currences of the specific pattern of these k bran&m.
Prediction is based on the branch behavior for the 1st
s occurrences of the pattern in question.

To maintain the two levels of information, Two-Level
Adaptive Branch Prediction uses two major data struc-
tures, the branch history register (HR) and the pattern
history table (PHT), see Figure 1. Instead of accumu-
lating statistics by profiling programs, the information
on which branch predictions are based is collected at
run-time by updating the contents of the history regis-
ters and the pattern history bits in the entries of the
pattern history table depending on the outcomes of the
branches. The history register is a k-bit shift register
which shifts in bits representing the branch results of
the most recent k branches.

Figure 1: Structure of Tw+Level Adaptive Branch Pre-
diction.

If the branch was taken, then a “1” is recorded; if
not, a “0” is recorded. Since there are k bits in the
history register, at most 2’ different patterns appear in
the history register. For each of these 2’ patterns, there
is a corresponding entry in the pattern history table
which contains branch results for the last s times the
preceding k branches were represented by that specific
content of the history register.

When a conditional branch B is being predicted,
the content of its history register, HR, denoted as
&-k&-k+ ,...... &-I, is used to address the pattern
history table. The pattern history bits S, in the ad-
dressed entry PHTR,-,R~-,+, ._.... R,,, in the pattern his
tory table are then used for predicting the branch. The
prediction of the branch is

=c = WC), (1)

where X is the prediction decision function.
After the conditional branch is resolved, the out-

come R, is shifted left into the history register HR
in the least significant bit position and is also used
to update the pattern history bits in the pattern his-
tory table entry PHTR,-,R,-,+ ,....., R,,~. After being

452

updated, the content of the history register becomes
R R e-L+1 c-k+z......Re and the state represented by the
pattern history bits becomes SC+*. The transition of the
pattern history bits in the pattern history table entry
is done by the state transition function 6 which takes
in the old pattern history bits and the outcome of the
branch as inputs to generate the new pattern history
bits. Therefore, the new pattern history bits &+I be-
come

s c+l = 6(Sc, Rd. (2)
A straightforward combinational logic circuit is used to
implement the function 6 to update the pattern history
bits in the entries of the pattern history table. The tran-
sition function 6, predicting function X, pattern history
bits S and the outcome R of the branch comprise a
finite-state Moore machine, characterized by equations
1 and 2.

State diagrams of the finite-state Moore machines
used in this study for updating the pattern history in
the pattern history table entry and for predicting which
path the branch will take are shown in Figure 2. The
automaton Last- Time stores in the pattern history only
the outcome of the last execution of the branch when
the history pattern appeared. The next time the same
history pattern appears the prediction will be what hap-
pened last time. Only one bit is needed to store that
pattern history information. The automaton Al records
the results of the last two times the same history pat-
tern appeared. Only when there is no taken branch
recorded, the next execution of the branch when the
history register has the same history pattern will be
predicted as not taken; otherwise, the branch will be
predicted as taken. The automaton A2 is a saturating
updown counter, similar to the automaton used in J.
Smith’s branch target buffer design for keeping branch
history [17].

Figure 2: State diagrams of the finite-state Moore ma-
chines used for making prediction and updating the pat-
tern history table entry.

In J. Smith’s design the ‘L-bit saturating up-down
counter keeps track of the branch history of a certaiin
branch. The counter is incremented when the branch

is taken and is decremented when the branch is not
taken. The branch path of the next execution of the
branch will be predicted as taken when the counter value
is greater than or equal to two; otherwise, the branch
will be predicted as not taken. In Two-Level Adap-
tive Branch Prediction, the 2-bit saturating up-down
counter keeps track of the history of a certain history
pattern. The counter is incremented when the result of
a branch, whose history register content is the same as
the pattern history table entry index, is taken; other-
wise, the counter is decremented. The next time the
branch has the same history register content which ac-
cesses the same pattern history table entry, the branch is
predicted taken if the counter value is greater or equal
to two; otherwise, the branch is predicted not taken.
Automata A3 and A4 are variations of A2.

Both Static Training [14] and Two-Level Adaptive
Branch Prediction are dynamic branch predictors, be-
cause their predictions are based on run-time informa-
tion, i.e. the dynamic branch history. The major dif-
ference between these two schemes is that the pattern
history information in the pattern history table changes
dynamically in Two-Level Adaptive Branch Prediction
but is preset in Static Training from profiling. In Static
Training, the input to the prediction decision function,
X, for a given branch history pattern is known before
execution. Therefore, the output of X is determined be-
fore execution for a given branch history pattern. That
is, the same branch predictions are made if the same
history pattern appears at different times during execu-
tion. Two-Level Adaptive Branch Prediction, on the
other hand, updates the pattern history information
kept in the pattern history table with the actual results
of branches. As a result, given the same branch his-
tory pattern, different pattern history information can
be found in the pattern history table; therefore, there
can be different inputs to the prediction decision func-
tion for Two-Level Adaptive Branch Prediction. Predic-
tions of Two-Level Adaptive Branch Prediction change
adaptively as the program executes.

Since the pattern history bits change in Two-Level
Adaptive Branch Prediction, the predictor can adjust to
the current branch execution behavior of the program to
make proper predictions. With these run-time updates,
TweLevel Adaptive Branch Prediction can be highly
accurate over many different programs and data sets.
Static Training, on the contrary, may not predict well
if changing data sets brings about different execution
behavior.

2.2 Alternative Implementations of Two-Level
Adaptive Branch Prediction

There are three alternative implementations of the Two-
Level Adaptive Branch Prediction, as shown in Figure
3. They are differentiated as follows:

Two-Level Adaptive Branch Prediction Using a
Global History Register and a Global Pattern
History Table (GAg)
In GAg, there is only a single global history regis-
ter (GHR) and a single global pattern history table
(GPHT) used by the Two-Level Adaptive Branch Pre-

PAP

P--

Figure 3: Global view of three variations of Two-Level
Adaptive Branch Prediction.

diction. All branch predictions are based on the same
global history register and global pattern history table
which are updated after each branch is resolved. This
variation therefore is calied Global Two-Level Adaptive
Branch Prediction using a global pattern history table
(GM

Since the outcomes of different branches update the
same history register and the same pattern history table,
the information of both branch history and pattern his
tory is influenced by results of different branches. The
prediction for a conditional branch in this scheme is ac-
tually dependent on the outcomes of other branches.

Two-Level Adaptive Branch Prediction Using a
Per-address Branch History Table and a Global
Pattern History Table (PAg)
In order the reduce the interference in the first level
branch history information, one history register is as-
sociated with each distinct static conditional branch to
collect branch history information individually. The his-
tory registers are contained in a per-address branch his-
tory table (PBHT) in which each entry is accessible by
one specific static branch instruction and is accessed by
branch instruction addresses. Since the branch history
is kept for each distinct static conditional branch indi-
vidually and ail history registers access the same global
pattern history table, this variation is called Per-address
Tw+Levei Adaptive Branch Prediction using a global
pattern history table (PAg).

The execution results of a static conditional branch
update the branch’s own history register and the global
pattern history table. The prediction for a conditional
branch is based on the branch’s own history and the
pattern history bits in the global pattern history table
entry indexed by the content of the branch’s history
register. Since all branches update the same pattern
history table, the pattern history interference still exists.

Two-Level Adaptive Branch Prediction Using
Per-address Branch History Table and Per-
address Pattern History Tables (PAP)

In order to completely remove the interference in both
levels, each static branch has its own pattern history ta-
ble a set of which is called a per-address pattern history
table (PPHT). Therefore, a per-address history register
and a per-address pattern history table are associated
with each static conditional branch. All history regis-
ters are grouped in a per-address branch history table.
Since this variation of Two-Level Adaptive Branch Pre-
diction keeps separate history and pattern information
for each distinct static conditional branch, it is called
Per-address TwoLevel Adaptive Branch Prediction us-
ing Per-address pattern history tables (PAP).

3 Implementation Considerations

3.1 Pipeline Timing of Branch Prediction and
Information Update

Two-Level Adaptive Branch Prediction requires two se-
quential table accesses to make a prediction. It is dif-
ficult to squeeze the two accesses into one cycle. High
performance requires that prediction be made within
one cycle from the time the branch address is known.
To satisfy this requirement, the two sequential accesses
are performed in two different cycles as follows: When a
branch result becomes known, the branch’s history reg-
ister is updated. In the same cycle, the pattern history
table can be accessed for the next prediction with the
updated history register contents derived by appending
the result to the old history. The prediction fetched
from the pattern history table is then stored along with
the branch’s history in the branch history table. The
pattern history can also be updated at that time. The
next time that branch is encountered, the prediction is
available as soon as the branch history table is accessed.
Therefore, only one cycle latency is incurred from the
time the branch address is known to the time the pre-
diction is available.

Sometimes the previous branch results may not be
ready before the prediction of a subsequent branch takes
place. If the obsolete branch history is used for making
the prediction, the accuracy is degraded. In such a case,
the predictions of the previous branches can be used to
update the branch history. Since the prediction accu-
racy of Two-Level Adaptive Branch Prediction is very
high, prediction is enhanced by updating the branch his-
tory speculatively. The update timing for the pattern
history table, on the other hand, is not as critical as that
of the branch history; therefore, its update can be de-
layed until the branch result is known. With speculative
updating, when a misprediction occurs, the branch his-
tory can either be reinitialized or repaired depending on
the hardware budget available to the branch predictor.
Also, if two instances of the same static branch occur
in consecutive cycles, the latency of prediction can be
reduced for the second branch by using the prediction
fetched from the pattern history table directly.

3.2 Target Address Caching

After the direction of a branch is predicted, there is
still the possibility of a pipeline bubble due to the time
it takes to generate the target address. To eliminate

454

this bubble, we cache the target addresses of branches.
One extra field is required in each entry of the branch
history table for doing this. When a branch is predicted
taken, the target address is used to fetch the following
instructions; otherwise, the fall-through address is used.

Caching the target addresses makes prediction in con-
secutive cycles possible without any delay. This also
requires the branch history table to be accessed by the
fetching address of the instruction block rather than by
the address of the branch in the instruction block being
fetched because the branch address is not known until
the instruction block is decoded. If the address hits in
the branch history table, the prediction of the branch
in the instruction block can be made before the instruc-
tions are decoded. If the address misses in the branch
history table, either there is no branch in the instruction
block fetched in that cycle or the branch history infor-
mation is not present in the branch history table. In this
case, the next sequential address is used to fetch new in-
structions. After the instructions are decoded, if there is
a branch in the instruction block and if the instruction
block address missed in the branch history table, static
branch prediction is used to determine whether or not
the new instructions fetched from the next sequential
address should be squashed.

3.3 Per-address Branch History Table Imple-
mentation

PAg . and PAp branch predictors all use per-address
Dranch history tables in their structure. It is not fea-
sible to have a branch history table large enough to
hold all branches’ execution history in real implemen-
tations. Therefore, a practical approach for the per-
address branch history table is DroDosed here.

The per-address b&ch hi&y ‘table can be imple-
mented as a set-associative or direct-mapped cache. A
fixed number of entries in the table are grouped together
as a set. Within a set, a Least-Recently-Used (I+RU) al-
gorithm is used for replacement. The lower part of a
branch address is used to index into the table and the
higher part is stored as a tag in the entry associated
with that branch. When a conditional branch is to be
predicted, the branch’s entry in the branch history ta-
ble is located first. If the tag in the entry matches the
accessing address, the branch information in the entry
is used to predict the branch. If the tag doea not match
the address, a new entry is allocated for the branch.

In this study, both the above practical approach and
an Ideal Branch History Table (IBHT), in which there
is a history register for each static conditional branch,
were simulated for Two-Level Adaptive Branch Predic-
tion. The branch history table was simulated with four
configurations: 4-way set-associative 512-entry, 4-way
set-associative 256-entry, direct-mapped 512-entry and
direct-mapped 256-entry caches. The IBHT simulation
data is provided to show the accuracy loss due to the
history interference in a practical branch history table
implementations.

3.4 Hardware Cost Estimates

The chip area reqLired for a run-time branch predic-
tion mechanism is not inconsequential. The following
hardware cost estimates are proposed to characterize
the relative costs of the three variations. The branch
history table and the pattern history table are the two
major parts. Detailed items include storage space for
keeping history information, prediction bits, tags, and
LRU bits and the accessing and updating logic of the
tables. The accessing and updating logic consists of
comparators, MUXes, LRU bits incrementors, and ad-
dress decoders for the branch history table, and address
decoders and pattern history bit update circuits for the
pattern history table. The storage space for caching tar-
get addresses is not included in the following equations
because it is not required for the branch predictor.

Assumptions of these estimates are:

There are a address bits, a subset of which is used
to index the branch history table and the rest are
stored as a tag in the indexed branch history table
entry.

In an entry of the branch history table, there are
fields for branch history, an address tag, a predic-
tion bit, and LRU bits.

The branch history table size is h.

The branch history table is 2j-way set-associative.

Each history register contains k bits.

Each pattern history table entry contains s bits.

Pattern history table set size is p. (In PAP, p is
equal to the size of the branch history table, h, while
in GAg and PAg, p is always equal to one.)

C,, Cd, Ce, Cm, C#h, Ci, and C, are the constant
base costs for the storage, the decoder, the com-
parator, the multiplexer, the shifter, the incremen-
tor, and the finite-state machine.

Furthermore, i is equal to logzh and is a non-negative
integer. When there are k bits in a history register, a
pattern history table always has 2’ entries.

The hardware cost of Two-Level Adaptive Branch
Prediction is as follows:

= COStam(h, j, C) + p x COS~PHT(~‘, a)
= {BHTstorope-space + BHT~csar.,n+wic +

B~Tupdo~,np-Lop,s} + p x { PHTscoropc-spoo. +
PHT~cca.,mg-~opic + PHTupcicasng-togd

= {[h X (Tag(,-,+,)-b,, + H&-blr + Prediction-Bitl-b,r
+LRU-Bita,~a,r)] +

[l x Addreaa-DecoderiJ,r + 2’ x

Comparatora(,_,+,)_b;I + 1 X 2’Xl-M~Xk,b,r]+

[h x Shiftert-b,l + 2’ x LRU_incrementors,4,Il) +

p X {[2” X Hiatosy-k?ita,-t.,r] -t
(1 x Addreas-Decoderkh,r] + [State-l/pdoter,_b,(]}

455

= {h x [(a - i + j) + k -I- I + j] x C, +
[h x Cd + 2’ x (a - i+1)xCc+2’ xkxC,,,]+

[h x k x csh + 2’ x j x C,]) + p x {[‘Zk x 9 x C,] +

[2k x Cd] + [s x 2’+’ x C.]}, a+j>i. (3)

In GAg, only one history register and one global pat-
tern history table are used, so h and p are both equal to
one. No tag and no branch history table accessing logic
are necessary for the single history register. Besides,
pattern history state updating logic is small compared
to the other two terms in the pattern history table cost.
Therefore, cost estimation function for GAg can be sim-
plified from Function 3 to the following Function:

cost~~~(BHT(l, , k), 1 x PHT(2k,s))

= CostgHT(l, , k) + 1 x Cosfp~~(2~,9)
z ([k+l]xC,+kxC,h]+

(2” x (9 x c, + cd)} (4)

It is clear to see that the cost of GAg grows exponen-
tially with respect to the history register length.

In PAg, only one pattern history table is used, so p
is equal to one. Since j and s are usually small com-
pared to the other variables, by using Function 3, the
estimated cost for PAg using a branch history table is
as follows:

COS~P,J~(BHT(~,J, k), 1 x PHT(Zk, 9))
= CostgHT(h, j, k) + 1 x Costp~~(2~,9)
N {hx[(a+2xj9k+l-i)xCs+Cd+

k x CA]} +

(2’ x (9 x c, + cd)}, a+jLi. (5)

The cost of a PAg scheme grows exponentially with
respect to the history register length and linearly with
respect to the branch history table size.

In a PAp scheme using a branch history table as de-
fined above, h pattern history tables are used, so p is
equal to h. By using Function 3, the estimated cost for
PAp is as follows:

Costp,+,(BHT(h, j, k), h x PHT(2’, 9))

= CosfgHT(h, j, k) + h x COS~PHT(~~,S)
zz {hx[(a+2xj+k+l-i)xCIfCd+

k X c,h]] +

hx(2kx(Sxc3+cd)), a+j>i. (6)
When the history register is sufficiently large, the cost

of a PAp scheme grows exponentially with respect to the
history register length and linearly with respect to the
branch history table size. However, the branch history
table size becomes a more dominant factor than it is in
a PAg scheme.

4 Simulation Model

Trace-driven simulations were used in this study. A Mo-
torola 68100 instruction level simulator is used for gen-
erating instruction traces. The instruction and address
traces are fed into the branch prediction simulator which
decodes instructions, predicts branches, and verifies the
predictions with the branch results to collect statistics
for branch prediction accuracy.

4.1 Description of Traces

Nine benchmarks from the SPEC benchmark suite are
used in this branch prediction study. Five are float-
ing point benchmarks and four are integer benchmarks.
The floating point benchmarks include doduc, fpppp,
matrix300, spice2g6 and tomcatv and the integer ones
include eqntott, espresso, gee, and li. Nasa7 is not in-
cluded because it takes too long to capture the branch
behavior of all seven kernels.

,Among the five floating point benchmarks, fpppp,
matrix300 and tomcatv have repetitive loop execution;
thus, a very high prediction accuracy is attainable, in-
dependent of the predictors used. Doduc. spice2g6 and
the integer benchmarks are more interesting. They have
many conditional branches and irregular branch behav-
ior. Therefore, it is on the integer benchmarks where a
branch predictor’s mettle is tested.

Since this study of branch prediction focuses on the
prediction for conditional branches, all benchmarks
were simulated for twenty million conditional branch
instructions except gee which finished before twenty
million conditional branch instructions are executed.
Fpppp, matrix300, and tomcatv were simulated for 100
million instruction because of their regular branch be-
havior through out the programs. The number of static
conditional branches in the instruction traces of the
benchmarks are listed in Table 1. History register hit
rate usually depends on the number of static branches
in the benchmarks. The testing and training data sets
for each benchmark used in this study are listed in Table
2.

Benchmark Number ol Benchmark Number of
Static Static

Name Cnd. Br. Name Cnd. Br.
eqntott 277 espresso 556

WC 6922 Ii 489
doduc 1149 fPPPP 653
matrix300 213 spiceZg6 606
tomcatv 370 1

Table 1: Number of static conditional branches in each
benchmark.

-
Benchmark
Name
eqntott
espresso
v-c

1

AP
doduc
fPPPP
matrix300
spice2g6
comcacv

Training
Data Set
=NA
Cps
cexp.i
tower of hanoi
tiny dodwin
NA
NA
short greycode.in
NA

Testing
Data Set
int-prl-3.eqn
bca
dbxout.i
eight queens
doducin
natoms
Built-in
greycode.in
Built-in

Table 2: naining and testing data sets of benchmarks.

456

In the traces generated with the testing data sets,
about 24 percent of the dynamic instructions for the
integer benchmarks and about 5 percent of the dy-
namic instructions for the floating point benchmarks
are branch instructions. Figure 4 shows about 80 per-
cent of the dynamic branch instructions are conditional
branches; therefore, the prediction mechanism for con-
ditional branches is the most important among the pre-
diction mechanisms for different classes of branches.

Figure 4: Distribution of dynamic branch instructions.

4.2 Characterization of Branch Predictors

The three variations of Two-Level Adaptive Branch
Prediction were simulated with several configura-
tions. Other known dynamic and static branch
predictors were also simulated. The configura-
tions of the dynamic branch predictors are shown
in Table 3. In order to distinguish the different
schemes we analyzed, the following naming conven-
tion is used: Scheme(History(Size, Associativity,
Entry-Content), Pattern-Table-Set-Sire x Pattern(
Size, Entry-Content), Context-Switch). If a predictor
does not have a certain feature in the naming conven-
tion, the corresponding field is left blank.

Scheme specifies the scheme, for example, GAg,
PAg, PAp or Branch Target Buffer design (BTB)
[17]. In History(S’ zze, Associatiuity, Entry-Content),
History is the entity used to keep history information
of branches, for example, HR (A single history register),
IBHT, or BHT. Size specifies the number of entries in
that entity, Associatiuity is the sssociativity of the ta-
ble, and Entry-Content specifies the content in each
branch history table entry. When Associativity is set
to 1, the branch history table is direct-mapped. The
content of an entry in the branch history table can be
any automaton shown in Figure 2 or simply a history
register.

In Pattern-Table-Set-Sire x Pattern(
Size, Entry-Content), Pattern-Table-Set-Sire is the
number of pattern history tables used in the scheme,
Pattern is the implementation for keeping pattern his-
tory information, Size specifies the number of entries in
the implementation, and Entry-Content specifies the

content in each entry. The content of an entry in the
pattern history table can be any automaton shown in
Figure 2. For Branch Target Buffer designs, the Pattern
part is not included, because there is no pattern history
information kept in their designs. Context-Switch is
a flag for context switches. When Context-Switch is
specified as c, context switches are simulated. If it is
not specified, no context switches are simulated.
e Since there are more taken branches than not taken
branches according to our simulation results, a history
register in the branch history table is initialized to all l’s
when a miss on the branch history table occurs. After
the result of the branch which causes the branch history
table miss is known, the result bit is extended through-
out the history register. A context switch results in
flushing and reinitialization of the branch history table.

aAg(HR(L. ,r-.c,,
Ix PHTW .Aa).lcl)

PA‘(a”T(2l&l.r-.r,.
LX PHT(1’,A2).lc])

PA‘(BHT(2s**4,r-*r).
I I PHT(I’.A2).lc])

PAr(S”T(St2.i.v-.r).
1 x PttT(2’.A2).lcl)

PAr(BHT(srl.r...sr).
I X PHT(1’ .At).lcl)

PA~(EWT(W2...r..r).
I X PHT(3’ .AZ).lc])

PA‘(S”T(sIl.4.e.r).
Ix PHT(D’.AS).lcl)

PA~(aHT(~Ia.4..-a.),
1 X PHT(1’.Al),lel)

PAS(sHT(812.4.r.m.).
I X PHT(1’.LT).l.I)

PAg(IBHT(imI, ,r-at),
I I PHT(2’.AW.lcI)

PAp(BHT(sI2.4.r.*r).
~I~IPHT(~‘.A~).IcJ)
0!3d”R,L. .I-.*)*

1-i PHif?f ,Pa).lc))
PS#(SHT(sU.4.r-or).

1 x PRTW .PE).lcl)
BTB(BHT(s~~...A~).

.kl)
BTB(EHT(SI2.4.LT).

I

4

I

4

4

4

4

4

Asc - Table Set-Associotavsty, Atm - Automaton, BHT - Branch

History Table, BTB - Branch Target Euger Design, Con%g. -

Configuratton, Entr. - Entries, GAg - Global Two-Level Adoptwe
Bmnch PredIctson Using a Global Pattern History Table, GSg -

Global Stotrc Trauung Urmg a Preset Global Pattern Hartory Ta.

bls, IBHT - Ideal Branch Hutory Table, inf - Infiwte, LT - Loat-

Time, PAg - Per-address Two-Level Adoptwe Branch Predactmn

Uasng a Global Pattern Hartory Table, PAp - Per-address Two-

Level Adoptwe Branch Predsctton Urtng Per-address Pattern Hir-

tory Tables, PB - Preset PredictIon Bit, PSg - Per-address Stotrc

tiwwag Uswag a Preset Global Pattern History Table, PHT - Pat-

tern History Table, sr - Shift Register.

Table 3: Configurations of simulated branch predictors.

The pattern history bits in the pattern history table
entries are also initialized at the beginning of execution.
Since taken branches are more likely for those pattern
history tables using automata Al, A2, A3, and A4, all
entries are initialized to state 3. For Last-Time, all en-
tries are initialized to state 1 such that the branches at

457

the beginning of execution will be more likely to be pre-
dicted taken. It is not necessary to reinitialize pattern
history tables during execution.

In addition to the Two-Level Adaptive schemes, Lee
and A. Smith’s Static Training schemes, Branch Tar-
get Buffer designs, and some dynamic and static branch
prediction schemes were simulated for comparison pur-
poses. Lee and A. Smith’s Static Training scheme is sim-
ilar in structure to the Per-address TwoLevel Adaptive
scheme with an IBHT but with the important difference
that the prediction for a given pattern is pre-determined
by profiling. In this study, Lee and A. Smith’s Static
‘IXning is identified as PSg, meaning per-address Static
‘&aining using a global preset pattern history table.
Similarly, the scheme which has a similar structure to
GAg but with the difference that the second-level pat-
tern history information is collected from profiling is
abbreviated PSg, meaning Global Static Training using
a preset global pattern history table. Per-address Static
Training using per-address pattern history tables (PSp)
is another application of Static Training to a different
structure; however, this scheme requires a lot of storage
to keep track of pattern behavior of all branches stati-
cally. Therefore, no PSp schemes were simulated in this
study. Lee and A. Smith’s Static Training schemes were
simulated with the same branch history table configu-
rations as used by the Two-Level Adaptive schemes for
a fair comparison. The cost to implement Static Train-
ing is not less expensive than the cost to implement the
Two-Level Adaptive Scheme because the branch history
table and the pattern history table required by both
schemes are similar. In Static Training, before program
execution starts, extra time is needed to load the preset
pattern prediction bits into the pattern history table.

Branch Target Buffer designs were simulated with
automata A2 and Last-Time. The static branch pre-
diction schemes simulated include the Always Taken,
Backward Taken and Forward Not Taken, and a pro-
filing scheme. Always Taken scheme predicts taken for
all branches. Backward Taken and Forward Not Taken
(BTFN) scheme predicts taken if a branch branches
backward and not taken if the branch branches for-
ward. The BTFN scheme is effective for loop-bound
programs, because it mispredicts only once in the exe-
cution of a loop. The profiling scheme counts the fre-
quency of taken and not-taken for each static branch
in the profiling execution. The predicted direction of
a branch is the one the branch takes most frequently.
The profiling information of a program executed with a
training data set is used for branch predictions for the
program executed with testing data sets, thus calculat-
ing the prediction accuracy.

5 Branch Prediction Simulation Results

Figures 5 through 11 show the prediction accuracy of
the branch predictors described in the previous session
on the nine SPEC benchmarks. “Tot GMean” is the ge-
ometric mean across all the benchmarks, “Int GMean”
is the geometric mean across all the integer benchmarks,
and “FP GMean” is the geometric mean across all the
floating point benchmarks. The vertical axis shows the

prediction accuracy scaled from 76 percent to I66 per-
cent.

5.1 Evaluation of the Parameters of the Two-
Level Adaptive Branch Prediction Branch
Prediction

The three variations of Two-Level Adaptive Branch
Prediction were simulated with different history regis-
ter lengths to assess the effectiveness of increasing the
recorded history length. The PAg and PAp schemes
were each simulated with an ideal branch history ta-
ble (IBHT) and with practical branch history tables to
show the effect of the branch history table hit ratio.

5.1.1 Effect of Pattern History Table Automa-
ton

Figure 5 shows the efficiency of using different finite-
state automata. Five automata Al, A2, A3, A4, and
Last-Time were simulated with a PAg branch predic-
tor, having 12-bit history registers in a four-way set-
associative 512-entry BHT. Al, A2, A3, and A4 all per-
form better than Last-Time. The four-state automata
Al, A2, A3, and A4 maintain more history information
than Last-Time which only records what happened the
last time; they are therefore more tolerant to the devi-
ations in the execution history. Among the four-state
automata, Al performs worse than the others. The per-
formance of A2, A3, and A4 are very close to each other;
however, A2 usually performs best. In order to show
the following figures clearly, each Two-Level Adaptive
Scheme is shown with automaton A2.

Figure 5: Comparison of Two-Level Adaptive Branch
Predictors using different finite-state automata.

5.1.2 Effect of History Register Length

Three variations using history registers of the
same length
Figure 6 shows the effects of history register length on
the prediction accuracy of Two-Level Adaptive schemes.
Every scheme in the graph was simulated with the same
history register length. Among the variations, PAp per-
forms the best, PAg the second, and GAg the worst.

458

GAg is not effective with g-bit history registers, because
every branch updates the same history register, causing
excessive interference. PAg performs better than GAg,
because it has a branch history table which reduces the
interference in branch history. PAp predicts the best,
because the interference in the pattern history is re-
moved.

,..___.,..__.....~ ___._._..___, i..! ,.........:
1
t:’ :

.\ ;

’ i

! ‘* :

,.... A& .___._.....____...._ :‘........ :* :....;

! ‘, :
: (: i

. :; ;. ?.,f . . .

: 6 : :
b

Figure 6: Comparison of the Two-Level Adaptive
schemes using history registers of the same length.

Effects of various history register lengths
To further investigate the effect of history register
length, Figure 7 shows the accuracy of GAg with var-
ious history register lengths. There is an increase of 9
percent in accuracy by lengthening the history register
from 6 bits to 18 bits. The effect of history register
length is obvious on GAg schemes. The history regis-
ter length has smaller effect on PAg schemes and even
smaller effect on PAp schemes because of the less inter-
ference in the branch history and pattern history and
their effectiveness with short history registers.

Figure 7: Effect of various history register lengths on
GAg schemes.

5.1.3 Hardware Cost Efficiency of Three Vari-
ations

In Figure 6, prediction accuracy for the schemes with
the same history register length were compared. How-
ever, the various Two-Level Adaptive schemes have dif-
ferent costs. PAp is the most expensive, PAg the second,
and GAg the least, as you would expect. When evaluat-
ing the three variations of Two-Level Adaptive Branch
Prediction, it is useful to know which variation is the
least expensive when they predict with approximately
the same accuracy.

Figure 8 illustrates three schemes which achieve about
97 percent prediction accuracy. One scheme is chosen
for each variation to show the variation’s configuration
requirements to obtain that prediction accuracy. To
achieve 97 percent prediction accuracy, GAg requires an
l&bit history register, PAg requires 12-bit history regis-
ters, and PAp requires 6-bit history registers. According
to our cost estimates, PAg is the cheapest among these
three. GAg’s pattern history table is expensive when a
long history register is used. PAp is expensive due to
the required multiple pattern history tables.

t.** -

,,y !.~;&?&!2

1 ‘i ~ (,I* <............_......... y 1’.
c /

,

Y
I ‘.-
I

I......... sT,y

a ,y ..
I

Figure 8: The Two-Level Adaptive schemes achieve
about 97 percent prediction accuracy.

5.1.4 Effect of Context Switch

Since Two-Level Adaptive Branch Prediction uses the
branch history table to keep track of branch history, the
table needs to be flushed during a context switch. Fig-
ure 9 shows the difference in the prediction accuracy
for three schemes simulated with and without context
switches. During the simulation, whenever a trap oc-
curs in the instruction trace or every 500,000 instruc-
tions if no trap occurs, a context switch is simulated.
After a context switch, the pattern history table is not
re-initialized, because the pattern history table of the
saved process is more likely to be similar to the current
process’s pattern history table than to a re-initialized
pattern history table. The value 500,000 is derived
by assuming that a 50 MHz clock is used and context
switches occur every 10 ms in a 1 IPC machine. The
average accuracy degradations for the three schemes are

459

all less than 1 percent. The accuracy degradations for
gee when PAg and PAp are used are much greater than
those of the other programs because of the large num-
ber of traps in gee. However, the excessive number of
traps do not degrade the prediction accuracy of the GAg
scheme, because an initialized global history register can
be refilled quickly. The prediction accuracy of fpppp
using GAg actually increases when context switches are
simulated. There are very few conditional branches in
fpppp and all the conditional branches have regular be-
havior; therefore, initializing the global history register
helps clear out the noise.

: : : :

Figure 9: Effect of context switch on prediction accu-
racy.

5.1.5 Effect of Branch History Table Imple-
mentation

Figure 10 illustrates the effects of the size and associa-
tivity of the branch history table in the presence of con-
text switches. Four practical branch history table imple-
mentations and an ideal branch history table were sim-
ulated. The four-way set-associative 512”entry branch
history table’s performance is very close to that of the
ideal branch history table, because most branches in the
programs can fit in the table. Prediction accuracy de-
creases as table miss rate increases, which is also seen
in the PAp schemes.

5.2 Comparison of Two-Level Adaptive Branch
Prediction and Other Prediction schemes

Figure 11 compares the branch prediction schemes. The
PAg scheme which achieves 97 percent prediction ac-
curacy is chosen for comparison with other well-known
schemes, because it costs the least among the three vari-
ations of Two-Level Adaptive Branch Prediction.

The 4-way set-associative 512”entry BHT is selected
to be used by all schemes which keep the first-level
branch history information, because it is simple enough
to be implemented. The Two-Level Adaptive scheme
and the Static Training scheme were chosen on the ba-
sis of similar costs.

The top curve is achieved by the Two-Level Adaptive
scheme whose prediction accuracy is about 97 percent.

Figure 10: Effect of branch history table implementa-
tion on PAg schemes.

Since the data for the Static Training schemes are not
complete due to the unavailability of appropriate data
sets, the data points for eqntott, fpppp, mntric300, and
tomcatu are not graphed. PSg is about 1 to 4 percent
lower than the top curve for the benchmarks that are
available and GSg is about 4 to 19 percent lower with av-
erage prediction accuracy of 94.4 percent and 89 percent
individually. Note that their accuracy depends greatly
on the similarities between the data sets used for train-
ing and testing. The prediction accuracy for the branch
target buffer using P-bit saturating up-down counters
[17j is around 93 percent. The Profiling scheme achieves
about 91 percent prediction accuracy. The branch tar-
get buffer using Last-Time achieves about 89 percent
prediction accuracy. Most of the prediction accuracy
curves of BTFN and Always Taken are below the base
line (76 percent). BTFN’s average prediction accuracy
is about 68.5 percent and Always Taken’s is about 62.5
percent. In this figure, the Two-Level Adaptive scheme
is superior to the other schemes by at least 2.6 percent.

I.“”
-4---

Figure 11: Comparison of branch prediction schemes.

460

6 Concluding Remarks

In this paper we have proposed a new dynamic branch
predictor (Two-Level Adaptive Branch Prediction) that
achieves substantially higher accuracy than any other
scheme that we are aware of. We computed the hard-
ware costs of implementing three variations of this
scheme and determined that the most effective imple-
mentation of Two-Level Adaptive Branch Prediction
utilizes a per-address branch history table and a global
pattern history table.

We have measured the prediction accuracy of the
three variations of Two-Level Adaptive Branch Pre-
diction and several other popular proposed dynamic
and static prediction schemes using trace-driven sim-
ulation of nine of the ten SPEC benchmarks. We have
shown that the average prediction accuracy for Two-
Level Adaptive Branch Prediction is about 97 percent,
while the other known schemes achieve at most 94.4
percent average prediction accuracy.

We have measured the effects of varying the param-
eters of the Two-Level Adaptive predictors. We noted
the sensitivity to k, the length of the history register,
and s, the size of each entry in the pattern history ta-
ble. We reported on the effectiveness of the various
prediction algorithms that use the pattern history table
information. We showed the effects of context switch-
ing.

Finally, we should point out that we feel our 97 per-
cent prediction accuracy figures are not good enough
and that future research in branch prediction is still
needed. High performance computing engines in the
future will increase the issue rate and the depth of
the pipeline, which will combine to increase further the
amount of speculative work that will have to be thrown
out due to a branch prediction miss. Thus, the 3 per-
cent prediction miss rate needs improvement. We are
examining that 3 percent to try to characterize it and
hopefully reduce it.

Acknowledgments The authors wish to acknowl-
edge with gratitude the other members of the HPS re-
search group at Michigan for the stimulating environ-
ment they provide, and in particular, for their comments
and suggestions on this work. We are also grateful to
Motorola Corporation for technical and financial sup-
port, and to NCR Corporation for the gift of an NCR
Tower, Model No. 32, which was very useful in our
work.

References

[I] T-Y Yeh and Y.N. Patt, “Two-Level Adaptive Branch
Prediction”, Technical Report CSE- TR-117-91, Com-
puter Science and Engineering Division, Department
of EECS, The University of Michigan, (Nov. 1991).

(2) T-Y Yeh and Y.N. Patt, “Two-Level Adaptive Branch
Prediction”, The 24th ACM/IEEE International Sym-
posium and Workshop on Microarchitecture , (Nov.
1991), pp. 51-61.

[3] M. Butler, T-Y Yeh, Y.N. Patt, M. ALsup, II. Scales,
and M. Shebanow, ‘Instruction Level Parallelism is

[41

‘[51

161

[‘I

PI

PI

WI

WI

WI

P31

1141

1151

WI

1171

WI

Greater Than Two”, Proceedings of the 18th Inter-
national Symposcum on Computer Architecture, (May.
1991), pp. 276-286.

D. R. KaeIi and P. G. Emma, ‘Branch History Table
Prediction of Moving Target Branches Due to Subrou-
tine Returns” , Proceedings of the 18th Internaliond
Symposium on Computer Architecture, (May 1991), pp.
3442.

Motorola Inc., “MS8100 User’s Manual”, Phocniz, Ari-
zona, (March 13, 1989).

W.W. Hwu, T.M.Conte, and P.P.Chang, “Comparing
Software and Hardware Schemes for Reducing the Cost
of Branches”, Proceedings of the 16th International

Symposium on Computer Architecture, (May 1989).

N.P. Jouppi and D. WaII, “Available Instruction-Level
Parallelism for Superscalar and Superpipelined Ma-
chines.“, Proceedings of the Third International Con-
ference on Architectural Support for Progmmming Lan-
guages and Opemting Systems, (April 1989), pp. 272-
282.

D. J. Lilja, “Reducing the Branch Penalty in Pipelined
Processors =, IEEE Computer, (July 1988), pp.47-55.

W.W. Hwu and Y.N. Patt, “Checkpoint Repair for
Out-of-order Execution Machines”, IEEE Transactions
on Computers, (December 1987), pp.1496-1514.

P. G. Emma and E. S. Davidson, “Characterization of
Branch and Data Dependencies in Programs for Eval-
uating Pipeline Performance” , IEEE Transactionr on
Computers, (July 1987), pp.859-876.

J. A. DeRosa and H. M. Levy, “An Evaluation of
Branch Architectures n, Proceedings of the 14th Inter-
national Symposium on Computer Architectun, (June
1987), pp.lO-16.

D.R. Ditzel and H.R. McLeilan, “Branch Folding in
the CRISP Microprocessor: Reducing Branch Delay to
Zero”, Proceedings of the 14th International Symporcum
on Computer Architecture, (June 1987), pp.2-9.

S. McFariing and J. Hennessy, “Reducing the Cost of
Branches”, Proceedings of the 13th Inlemational Sym-
podium on Computer Architecture, (1986), pp.396403.

J. Lee and A. J. Smith, “Branch Prediction Strategies
and Branch Target Buffer Design”, IEEE Computer,
(January 1984), pp.6-22.

T.R. Gross and J. Hennessy, “Optimizing Delayed
Branches”, Proceedings of the 15th Annual Workrhop
on Microprogmmming, (Oct. 1982), pp.114-120.

D.A. Patterson and C.H. Sequin, URISC-I: A Reduced
Instruction Set VLSI Computer”, Proceedings of the
8th International Symposium on Computer Architec-
ture, (May. 1981), pp.443-458.

J.E. Smith, “A Study of Branch Prediction Strate-
gies”, Proceedings of the 8th International Symposium
on Computer Architecture, (May. 1981), pp.135-148.

T. C. Chen, “Paralleiism, Pipelining and Computer Ef-
ficiency”, Computer Design, Vol. 10, No. 1, (Jan. 1971),
pp.69-74.

