
Dynamic Instruction Reuse

Avinash Sodani and Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706 USA
{sodani,sohi}@cs.wisc.edu

Abstract

This paper introduces the concept of dynamic instruction reuse.
Empirical observations suggest that many instructions, and
groups of instructions, having the same inputs, are executed
dynamically. Such instructions do not have to be executed repeat-
edly - their results can be obtainedj?om a buffer where they were
saved previously. This paper presents three hardware schemes for
exploiting the phenomenon of dynamic instruction reuse, and eval-
uates their effectiveness using execution-driven simulation. We
find that in some cases over 50% of the instructions can be reused.
The speedups so obtained, t/lough less striking than the percent-
age of instructions reused, are still quite significant.

1 Introduction

There are three parameters that influence the execution time
of a program. Microarchitecture has concentrated on two of
them: (i) the number of instructions executed per clock cycle,
i.e., the IPC, and (ii) the clock cycle time. The third parameter:
(iii) the total number of instructions, has been considered the
domain of software. In this paper we address the following ques-
tion: “Can we develop microarchitectural techniques to reduce
the number of instructions that have to be executed dynamically,
and what are the potential benefits of such techniques?”

Just as caches reduce the number of memory accesses made
dynamically if a memory location is going to be accessed repeat-
edly, the number of instructions executed dynamically can be
reduced if an instruction is going to produce the same value
repeatedly. We have observed many instructions, and groups of
instructions, having the same inputs (consequently producing the
same output) when executed dynamically. This observation can
be exploited to reduce the number of instructions executed
dynamically as follows: by buffering the previous result of the
instruction, future dynamic instances of the same static instruc-
tion can use the result by establishing that the input operands in
both cases are the same. We call this dynamic instruction reuse.

Dynamic instruction reuse can benefit performance in two
main ways. First, by not having to pass through all the phases of
execution (e.g., issue, execute, result bypass) dynamically, utili-
zation of machine resources could be reduced, alleviating
resource conflicts. Second, and more important, the outcome of
an instruction can be known much earlier, allowing instructions

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-69791-901-7/97/0006...$3.50

COrlW

path

Dynamic
instruction
strenm

Figure 1. Scenario where execution on the (mis)predictedpath
converges with the execution on the correct path. In such cases
certain instructionsfrom part (C) need not be re-executed when
encountered on the correct path.

that are dependent upon the outcome to proceed sooner. As WC
shall see, the results of chains of dependent instructions could all
be generated in a single cycle, short-circuiting depcndcncc
chains, and reducing the lengths of critical paths of execution,

This paper is concerned with exploiting the phenomenon of
dynamic instruction reuse. Towards this end, WC develop
microarchitectural mechanisms that allow the outcome of an
instruction to be known earlier than it would had the instruction
have to pass through all the phases of its execution. We dcscdbc
the concept of dynamic instruction reuse in section 2, and
present scenarios to illustrate why it occurs and why might it bc
a useful phenomenon to exploit. In section 3, we present three
different schemes for instruction reuse. Each scheme employs a
reuse buffer, a buffer of previous outcomes of instruction CXCCU-

tion. In section 4 we show how a reuse buffer can bc incorpo-
rated into a generic superscalar processor. In section 5 WC
provide a quantitative evaluation, and in section 6 WC discuss
related work. Finally section 7 presents some concluding
remarks.

2 Scenarios for Dynamic Instruction Reuse

Before developing mechanisms to allow dynamic instruction
reuse, we need to understand why this phenomenon occurs.
What causes instructions to be executed with the same input
operands’? Why are such instructions in the program in the first
place? Are such instructions needed? Why might it be better to
obtain the outcome of an instruction from a buffer rather than
recompute it? In order to answer these questions, we look at a
couple of scenarios

The first scenario involves speculative execution in a dynam-
ically scheduled processor. As illustrated in Figure 1, when a
branch instruction is encountered, its outcome is predicted, and
instructions from the predicted basic block (block A) am CXC-

cuted speculatively. In addition to executing instructions from

main-func(a, b, c) I

. . .

func\(a, list, size);

int funcbc, list, size) E 1 i=O

int i; 2 if(i >= size) jum9 out
/

for(i=O; hake; i++) 3 p = list + i
/

if(x==list[il) return i; 4 val = Memory Cpl /

*1

l 2
l 3
*4

5
l 6
l 7

*2

*3
*4

5
l 6

if(i >= size) jump out

p = list + i

val = MemorYbl
if(a == val) jump found
i.++
jump 2
if(i >= size) jump out

9 = list + i

val = MeriOryIRl

if(a == val) jump found
i++

*1

l 2
l 3
*4

5
*6
*7
*2

*3
*4

5
*6

i=O

if(i >= size) jump out

p = list + i
val = Memory[p]
if(b == vall jump found

Figure 2. Scenario illustrating that
in&actions ofren pe$onn the same compu-
tation reueatedlv. The dynamic instructions

i++ mr&,’ kw would peg& the same com-
j-9 2 putation for both the calls to function f unc
if (i >= size) jump out shown in thefigure.

9 = list + i

val = Memory[p]

if(b == val) jump found

. . .
63

i++

1..

(e)

block A, the processor may execute instructions from another
block (C), which is control independent of the branch. If the
branch was mispredicted, instructions executed from both blocks
A and C are discarded, execution resumes at block B, from
where it proceeds to block C. Instructions in block C that were
discarded, but whose operands are not affected by instructions in
either blocks A or B, would end up being re-executed. If the
results of such instructions were buffered, and we could detect
that their operands values are the same, their results could be
reused, thereby reducing the squash penalty. We term this sce-
nario as squash reuse.

Our initial goal for developing an instruction reuse mecha-
nism was to reduce the branch m&prediction penalty, especially
for short forward branches, as described above. However, when
we were studying the effectiveness of the mechanisms that we
developed for the above case, we discovered that the concept
was much more powerful. Other scenarios where instructions
can be reused dynamically also arise frequently. These scenarios
are a result of two important artifacts of how the dynamic com-
putation is expressed statically. First, programs are written to be
generic, i.e., operate upon a variety of input data sets-we don’t
write programs that operate on only a single input data set. Start-
ing out with a single static program, different inputs will cause
different instructions to be executed dynamically, resulting in a
different dynamic operation stream for each input data set. For a
particular input set, operands for some of the instructions may
not change dynamically (they would in another execution with a
different input data set). Second, programs are written to express
a desired computation in a concise manner. For example, the
computation to carry out operations on each element of a lOOO-
element data structure is expressed using a loop structure; we
don’t write separate instructions for each element of the data
structure. In the process of recreating the dynamic sequence of
operations from the static representation, many operations may
be repeated, as we shall see shortly.

195

The above situations are best illustrated by an example. Con-
sider the example of Figure 2. The function f unc searches for a
value in a list of a particular size. The function
main-func calls func several times, searching for a different
element in the same list with each call. When func is called, it
iterates through the 1 is t, element by element, searching for the
value until the end of the 1 is t, exiting when the value is found.
Instructions corresponding to the loop in func are shown in
Figure 2(b). Figure 2(d) shows the dynamic instances of these
instructions which are generated by the first call to func. In
each iteration of the loop, the instruction 2 is dependent upon the
size parameter, the instructions 3 and 4 are dependent upon the
list parameter, instruction 5 is dependent upon both the list
as well as the value being searched for, and instruction 6 is
dependent on the induction variable. If func is called again
(Figure2(e)) on the same list (and same size), but with a
different search key, then all the different dynamic instances of
instructions 1-4 and 6 produce the same outcomes as they did the
last time the function was called (a total of size dynamic
instances of instructions 2-4 and 6). Only the dynamic instances
of instruction 5 produce results that might be different from what
they were in the previous call to func. This “reuse” of the
results of the dynamic instances of instructions l-4 and 6 is
directly attributable to the fact that func was written to be a
generic list search function, but in this particular case, only one
of its parameters changed between different calls to it. Even if
func was called with all its parameters being different for each
call, the different dynamic instances of the instruction 6 (i=O,
i=l, i=2, ..) in the second call to func would end up producing
the same values as they did in the first call to func, a conse-
quence of using loops to express the desired computation in a
concise manner. (Actually, if the size parameter was also dif-
ferent, then only min(size1, size2) dynamic instances of
instruction 6 would produce the same values.)

How might performance benefit if we buffered the (size)

dynamic instances of instructions l-4 and 6 in the above exam-
ple, and reused them? First, the dynamic instances of instruc-
tions 1-4 and 6 do not have to pass through all the different
phases of execution (ALU, issue, result bus, etc.), thereby reduc-
ing the demand for processor resources. (In the above case,
accesses to the data cache are also eliminated - these end up
becoming accesses to the buffer which holds previous instruction
results.) Second, the critical path to carry out the total computa-
tion involved in func can be reduced considerably. Without
dynamic instruction reuse, the critical path through the computa-
tion, as expressed above, would be size+3 steps (assuming that
the loop executes all size iterations), size steps to generate
all the dynamic instances for the induction variable i, plus 3
steps to execute instructions 3,4, and 5 of each iteration (which
form a dependence chain). In other words, the height of the data-
flow graph for the above computation is size+3 steps. With
instruction reuse, in the best case, the critical path, i.e., the
height of the dataflow graph through the computation, is reduced
to only 1 step. This is because the outcomes of all the dynamic
instances of instructions l-4 are already known, and all the
dynamic instances, being independent of one another, could all
execute at the same time. In other words, dynamic instruction
reuse allows us to exceed the dutujow limit that is “inherent” in
the program. Of course, in an actual execution other constraints
will prevent us from achieving the dataflow limit in either case, but
concentrating on the dataflow limit illustrates the potential power
of the concept. We call this second scenario general reuse.

The above example shows that the potential for instructions
to be reused dynamically exists. As we shall see in section 5, in
some cases over 50% of all executed instructions produce results
that they produced earlier, suggesting a need to exploit the phe-
nomenon. Our objective is to develop dynamic techniques to
exploit repetitive behavior of the above type. While not impossi-
ble, doing the same statically in the compiler would require a tre-
mendous (and very likely impractical) effort in the above case:
constant propagation, function in-lining, loop unrolling size
times, common sub-expression elimination, all carried out glo-
bally (and possibly inter-procedurally), sufficient registers to
store size elements, as well as alias analysis to allow register
allocation of the list elements. In the above example, to achieve
the same effect as dynamic instruction reuse, the compiler would
essentially have to end up putting the size elements of list in
registers, and in-lining func as a sequence of size static
instructions, each of which compares value with a register. This
is a tall order, given the current state of the art. Accordingly we
concentrate on developing dynamic schemes for instruction
reuse.

3 Schemes for Instruction Reuse

In this section, we describe three hardware schemes to imple-
ment dynamic instruction reuse. To reuse an instruction we need
to determine that its outcome is going to be the same as a previ-
ous outcome, and reuse the previous outcome. The reuse
schemes described in this section implement this determination
in different ways. In each scheme we store the result(s) of a pre-
viously-executed instruction in a hardware structure called Reuse
Buffer (RB) (Figure 3).’ When an instruction is encountered, the
RB is queried to see if it contains a reusable result for the
instruction. Three issues need to be dealt with: (i) how the infor-

196

mation in the RB is accessed, (ii) how we know that the acccsscd
RB entry (or entries) has reusable information, and (iii) how the
buffer is managed.

The first issue is easily dealt with: the program counter (PC)
of the instruction provides a convenient index for searching the
RB. The RB could be organized with any degree of associativity,
the larger the associativity, the larger the number of dynamic
instances of an instruction that can be held in the RB at a given
time.

To deal with the second issue, we need to develop a reuse test
which checks information accessed from the RB to see if them is

a reusable result. Details of the test depend upon the reuse
scheme, as we describe shortly.

There are two aspects to RB management: (i) deciding WMCII

instructions get placed in the buffer, and (ii) maintaining the
consistency of the buffer. The decision as to what to place in the
buffer can range from no policy, i.e., place all recently exccutcd
instructions in this buffer (if they aren’t already present), to a
more judicious policy that filters out instructions that aren’t
likely to be reused.2 Maintaining the consistency of information
in the RB depends upon the reuse scheme, as we see shortly.

Next, we present details of three schemes for reusing instruc-
tions. These schemes mainly differ in the way in which reusable
results are identified. The first scheme (Sv) tracks operand val-
ues for each instruction, the second scheme (S,) tracks only
operand names (register identifiers), and the third scheme (S,+u)
tracks dependence relationships among the instructions. For
each scheme, we discuss the following issues:

l What information is stored in the RB?
l How is the reuse test performed?
l How is the information in the RB updated/invalidated’?

In practice, the reuse schemes would be implemented in a
variety of different ways. In this paper we concentrate on the
functionalities required by each reuse scheme instead of their
implementations.

Reuse Buffer

Reused inst.

Figure 3. Generic Reuse Bluffer. It is indexed by the PC and it
has mechanism for selectively invalidating en!ries based on
some event.

1. Depending upon the buffer mapping and management policy, the RB could ~011.

tin the outcomes of many previous dynnmic instnnces of the same instrucdon.
For example. in Figure2. the buffer could conttdn nil the size dynnmlo
instances of the instruction updating the induction vndnble, with cnch dynamlo
instance producing B different value.

2. In this paper, we do not explore this nspect of the problem-in our discussions
and experiments we assume that all recently executed instructions NO plnccd In
thcRl3.

_______ r _L---- add

cc>
Figure 4. RB entry (a) Scheme S,(b) Scheme S, (c) Scheme S,+d

3.1 Scheme S,: Reuse based upon operand vah~es

Scheme S, is a straightforward implementation of the reuse
concept. The operand values of an instruction are stored along
with its result, Since the reuse test is based on operand values, as
we will see shortly, we call this scheme S,, where ‘v’ stands for
value.

When an instruction is decoded, its current operand values
are compared with those stored in the RB. If they are the same,
then the result stored in the RB is reused. Loads, being a two-
operation instruction, need special handling. Address-calculation
can be reused if the operands for the address calculation did not
change. However, the actual outcome of the load can only be
reused if the addressed memory location was not written into by
a store instruction. Information in the RB has to distinguish
between the two. Likewise, stores are also special. While reusing
the address calculation part of a store presents no problems (we
treat it no differently from the address calculation for a load) we
make no attempt to reuse the actual memory write - the mem-
ory write could have side effects outside the domain of the pro-
cessing node (similar restrictions would apply to other
instructions with side effects, e.g. loads in the I/O space).

l RB entry: An entry in RB for this scheme is shown in
Figure 4(a). The tag field stores part of the PC. The result, oper-
and valuel, and operand value2 store the result and the operand
values of the instruction. These fields are used to identify the
instruction (or address calculation in case of a load/store) that
can be reused. The memvalid bit and the address field are used to
determine if the actual memory access for a load instruction can
be reused; the memvalid bit indicates whether the value loaded
from memory (present in the result field) is valid, and the
address field stores the memory address (i.e., the outcome of the
address calculation).

l Reuse test: For testing reuse, the operands of an instruc-
tion are compared with the values in the operand value fields of
the RB entry. A match indicates that result is valid (for non-load/
store instructions) or address is valid (for loads and stores), For
loads, in addition to testing the validity of the address bits, we
also need to test the memvalid bit to see if the outcome of the
load (in the result field) can be reused. If the operand values are
not known at the time of the reuse test then the instruction is not
reused.

l Invalidation: For non-load operations, the reuse test
works because the operands uniquely determine the result and
therefore invalidations are not needed to maintain the integrity of

the test. For loads, a store to the same address invalidates the
value in the result field. Accordingly, on a store the address field
of each RB entry is searched for a matching address, and the
memvalid bit reset for matching entries.

Note that the address field, memvalid field, and the associa-
tive search for invalidations are required only to maintain the
integrity of load values. The RB can be split into two buffers:
one for storing load values and another, the main RB, for storing
everything except the load values (including entries for load
addresses). This RB organization has two advantages: first,
address and memvalid fields need not be maintained for entries
storing non-load instructions, reducing the overall storage
required for the reuse scheme; second, the main RB need not
have invalidation logic, this logic would only be present in the
buffer for load values, which probably would be much smaller
compared to the main RB. Nevertheless, since our goal is to
demonstrate the potential of instruction reuse, and not to com-
pare the merits of different implementations, we assume a uni-
fied RB for our experiments presented in this paper.

3.2 Scheme S,: Reuse based upon register names

In scheme S,, we attempt to trivialize the reuse test (and also
to reduce the size of each RB entry). Rather than store operand
values, we store operand (architectural) register identifiers in the
RR. When an instruction writes into a register, all instructions
with a matching (source) register identifier in the RB are invali-
dated. Since the reuse test is based on operand names (and not
value), we call this scheme S,, where ‘n’ stands for name. The
remaining details are:

l RB entry : An RB entry for this scheme is shown in
Figure 4(b). Differences from scheme S, are: (i) the operand1
and operand2 fields contain register names of the operands
instead of actual operand values, (ii) there is a resultvalid bit,
which indicates whether the result is valid. (This bit was not
required in scheme S, because the reuse test detected the stale
results). This bit is set when an entry is first inserted into theRl3.

l Reuse test: The reuse test is as simple as testing the state
of resultvalid and memvalid bits. Address calculation for load/
store instructions and results for all other instructions can be
reused if the resultvalid bit is set; the result of a load instruction
can be reused if both resultvalid and memvalid are set.

l Invalidations: As before, stores invalidate the loads
from the same address (memvalid bit is reset). Moreover, when a
register is written, the RB is searched for entries whose operand
field matches the name of the register. The entries which match
are marked invalid (resultvalid bit is reset).

Note that the effect of invalidations (which is to purge stale
results) can be obtained in other ways too, e.g., using time-
stamps for the operands. As mentioned earlier, in this paper we
focus on the required functionality and leave the task of explor-
ing different implementations as a future work.

3.3 Scheme Sn+a: Reuse using register aames and
dependence chains

Scheme Sri+++ extends scheme S, by attempting to establish
chains of dependent instructions, and to track the reuse status of
such instruction chains. Since in this scheme the reuse status of

197

. .

-.
-. ~. . . --’ _ ?. -. ,a,. .,*-LL-,~csi~- ,. .

an instruction in the RB is established based on its operand
names and/or its dependence information, we call this scheme
Sad (the letters ‘n’ and ‘d’ stand for name and dependence
respectively).

Figure 5(a) motivates scheme Sn+& The figure shows a
dynamic stream of instructions on the left and the contents of the
RB at different point in time on the right. I, J, K is a chain of
dependent instructions; It, J1, K1 and 12, Jz, K2 are the dynamic
instances of this instruction chain. With scheme S,, only instruc-
tion I, could reuse the result of 11, because results of Jt and K1
are invalidated by instruction R. Scheme S,,+d instead tries to
establish the fact that instruction 52 (J1) depends solely upon
instruction 12 (11), and instruction K2 (K1) depends solely upon
instructions I2 and J2 (It and J1) (Figure 5(b)). If instruction 12
can be reused, so can instructions J2 and K2. Furthermore, if 12,
J2, and K2 are all fetched simultaneously from the RB, the reuse
status of all three could be established simply by establishing the
reuse status of 12, and verifying the dependence relationship (as
we elaborate below). This is tantamount to obtaining the result(s)
of chains of dependent operations in a single cycle. Scheme S,,
which does not maintain instruction dependence relationships,
can’t establish the reuse status of a dependence chain as easily.
In our example, the reuse status of 12 would have to be estab-
lished; the result of 12 would be needed to establish the reuse sta-
tus of J2; and Jz’s result would be needed th establish the reuse
status of K2

For the ensuing discussions we define the following terms

Dynamic instruction
stream

time

I
RB contents

4 : rl c- 0

JI : r2 + rl + 4

KI : r3 + rl + r2
0
:

R : rl <- 4
0
: .

.h : r2 <- rl + 4
Kz : r3 <- rl + r2

(4

Dynamic instruction
stream

time RB contents

I

II : rl <- 0

4 : r2 <- rl + 4
Kl : r3 x- rl + r2

: 0
R : rl s- 4

Figure 5. Dependent sequence of instructions (a) not handled in
Scheme S,,, but (b) handled in Scheme S,,,&

-
rl + 0

- Independent
Source . -

-*. LtlFsib B 1-2 +-r1+4

r3 t r1 + r2 1 2. Dependent

Figure 6. Instructions with data dependence links, The arrows
pointji-om the instruction using the value to the instruction pro-
ducing the value.

(illustrated in Figure 6). Instructions that produce values used by
other instructions in the chain are called source instructions (c.g.
A and B in the figure). Instructions whose source instructions arc
not in the chain, which implies that their data dependence infor-
mation is not available, are called independent instructions (e.g.
A). Finally, instructions whose source instructions are in the
chain are called the dependent instructions (e.g. B and C).

Dependence chains are created as entries are inserted into the
RB. To facilitate this process, we use a mapping table called a
Register Source Table (RST). The RST has an entry for each
architectural register; it tracks the RB entry which has (or will
have) the latest result for that register. When an entry is rcscrvcd
in the RB for an instruction, the RST entry for its destination
register is updated to point to the reserved entry. If the instruc-
tion which is the latest producer of a register is not in the RB,
then the RST entry for that register is set to invalid. The RST is
similar in spirit to the rename map used in register renaming, In
essence, the RST is used to link a consumer instruction to the lat-
est producer instruction by pointing to the “physical register” (RB
entry) of the producer. Accordingly, another way of looking at
scheme S,,+d is to consider it as a “physical register” version of
scheme S,, which tracks dependences using architectural regls-
ters. We now present details of this scheme’s operation.

l RB entry: An RB entry (shown in Figure 4(c)) is similar
to that of scheme S,, except for the addition of a src-index field,
The dependence links are created by storing the RB index of the
source instructions in this field. An invalid value is inserted in
this field if the source doesn’t exist in the RB.

l Reuse test: The reuse status of independent instructions
is established as it was in scheme S, (resultvalid bit is set; mem-
valid is set in the case of load instructions). A dependent instruc-
tion is reused if its source instructions (in the RB), as indicated
by the src-index field of its operands, are indeed the latest pro-
ducers for its operands. This fact is established with the help of
the RST, as we shall illustrate below with the help of an example
(Figure 7).

l State updates: As in schemes S, and S,, stores invali-
date the loads to the same address (memvalid is reset). AS in
scheme S,, independent instructions are invalidated when their
operands registers are overwritten (resultvalid is reset). Dcpcn-
dent instructions need not be invalidated on operand overwrites
because their reuse status can be established using their dcpcn-
dence information. Instead, they are invalidated when their
source instructions are evicted from RB, i.e., when the depcn-
dence information is losL3 To perform this operation the RB
needs to be searched for entries whose src-index field matches
the index (in RB) of the source instruction being evicted, Tha
entries which result in a match are invalidated (resultvalid bit is

198

Dynamic instruction
stream

I

If: rl +- 0
J1: r2trl +4
K,: t3~ri it2

R: rl& 4

12: rl 2 0
J2: ti+-rl+4
K2: r3trl+r2

(a) State when I2 is
encountered

(b) Reusing J2 (c) Reusing K2

Figure 7. Illustrating the reuse test for dependent instructions. (a) State when 12 is encountered. (b) Testing t2 C- r7 +4 for reusability.
(c) Testing t3 c- t-1 + t2for reusability. (Instruction R is not shown in Z?B for clariv).

reset).

We illustrate the working of this scheme using the example
shown in Figure 7 with the same dynamic stream of instructions
as in Figure 5. Figure 7(a) shows the state of the RB and RST at
the time when I2 is encountered in the dynamic instruction
stream. At this time, the results of instructions 11, J1 and K1 are
present in the RB with appropriate data dependence information
(indicated by the links in RB and the index values in the src-
index field). Since instructions Jt and Kt are stored in the RB as
dependent instructions, their results are not invalidated by
instruction R (unlike scheme S,). Instruction 12 reuses the result
of It (since it is independent and valid) and the RST entry for rZ
is updated to point to RB entry 10 (the latest producer for
rZ)(Figure 7(b)). To establish the reusability of J2, the src-index
field for rl is compared with the RST entry for rZ (Figure 7(b)).
The match indicates that the source for rl in the dependence
chain (which is II) is also the current producer for rZ; hence the
result is reusable. Instruction K2 gets reused in a similar fashion
(Figure 7 (c)). The instructions 12, J2, K2 can be reused simulta-
neously if encountered in the same cycle. While performing the
reuse test on each one, interdependence among them needs to be
considered. The interdependence check is similar to what is done
while renaming registers for multiple dependent instructions in
the same cycle.

4 Microarchitecture with a Reuse Buffer

Figure8 shows a generic microarchitecture with an RB.
Except for the RB (and the datapaths associated with it), the rest
of the rnicroarchitecure is similar to what is found in a generic
dynamically-scheduled superscalar processor.

The Znstntction Fetch Unit fetches and places the instructions
in the Instruction Queue. Instruction decode and register renam-
ing is done in the Decode and Rename Unit. At this point, the RB
is accessed to see if a reusable result for the instruction can be
found. If a reusable result is found, the instruction does not need
to be operated upon any further; it bypasses the Znstntction Win-
dow (IW), and proceeds directly to the Reorder Bu@r (ROB)

3. An optimization to this approach is to check whether the source instmction is the
cumnt producer for its destination register (this can be done using the RST); if
so. then the dependent inshuctions are not invalidated, instead they am treated as
independent instruction thereafter. In OUT simulations we implemented this opti-
mization.

[8]. Loads bypass the IW only if both micro-operations, address
calculation and the actual memory operation, can be reused. If a
reusable result is not found in the RB, an entry is reserved in the
RB where the result of the instruction will be placed after it is
executed, setting it up for future reuse (in scheme Sn+,+ the RST
has to be updated accordingly). Once in the IW, instructions pro-
ceed as they would in any generic superscalar processor. After
an instruction has executed, its results are stored in the reserved
RB entry. In scheme S,, the operand values are also stored in the
entry at this time. When an instruction commits, depending on
the reuse scheme, it invalidates appropriate results in the RB.

Since the RB contains state that will determine the outcome
of future instructions, it needs to be maintained precisely (just
like a register file). The straightforward way to do this is to
update the RB only when an instruction is committed. However,
this approach prevents speculatively-executed instructions from
being entered into the RB, making it ineffective for one of our
purposes, that of recovering squashed work. Accordingly, we
must allow the RB to be updated speculatively, and take neces-
sary actions (depending upon the reuse scheme) to ensure correct
behavior. For scheme S,, inserting instructions into the RB spec-
ulatively requires no special actions -the reuse test ensures that
the correct result is obtained. For scheme Sn+d, the RST controls
the reusability of instructions. Just like the rename map in a
superscalar processor, checkpoints of the RST have to be taken
when a speculation decision is made, and it has to be repaired in
the case of an incorrect speculation.

Other issues, such as interlocks to ensure correct operations,
flushing on context switches, etc., are fairly routine, and we
don’t discuss them further.

Though in all previous discussions we assumed that an RI3

Figure 8. Generic microarchitecture with a reuse buffer.

access takes a single cycle, there is no need for this timing con-
straint since accesses may be pipelined. For example, the access
can begin in the fetch stage of the pipeline after the PC of the
instruction is available (since only the PC is required for indexing
the RB, the RB access can begin as early as in fetch stage); then
only the reuse test needs to be performed in the decode stage.
Other operations, like invalidations, evicting entries to make
way for new instructions etc., can be pipelined as well. For
example, when the RB gets full, entries can be freed for future
inserts. This will ensure that free RB entries are always avail-
able, eliminating the search for a victim entry from the critical
path. Thus, despite its size, the RB seems unlikely to be the
structure that determines the cycle time.

5 Experimental Evaluation

Our simulator is built on top of the SimpleScalar toolset [l],
an execution-driven simulator based upon the MIPS-I ISA. The
base simulator models in detail a Cway dynamically-scheduled
processor with its first level of instruction and data cache mem-
ory. The parameters for the base out-of-order simulator are listed
in Table 1. We extended this base simulator to incorporate the
RB and the three instruction reuse schemes described earlier.
The RB is integrated with the processor pipeline as described in
section 4. In our simulations, the RB is capable of supporting 4
reads, 4 writes, and 4 independent invalidations simultaneously.
We also assume that all RB accesses - read, write or invalidate
- complete in one cycle, and that, like scheme Sn+d, scheme S,
can reuse multiple dependent results in a single cycle (the maxi-
mum length of a dependence chain reused in a cycle is equal to
the read bandwidth of RB, which is 4 in the simulated configura-
tion). This configuration of the RB, though aggressive, allows us
to study the concept of instruction reuse without been limited by
any particular implementation.

5.1 Benchmarks

The benchmark programs analyzed are listed in Table 2 along
with their inputs and number of dynamic instructions executed
on the timing simulator. There are five integer programs from
SPEC ‘92 benchmark suite (gee, compress eqnrott, espresso,
xlisp) and five integer programs from the SPEC ‘95 benchmark
suite (go, m88ksim, vortex ijpeg and perl). Other integer pro-

TabIe 2: Benchmark programs, inputs and instruction cormt,

grams analyzed are: YucrZ, a VLSI channel router roudng a
channel with 230 terminals, and Mpeg, a mpeg decoder which
decodes a mpeg file with 71 frames. Except for go, m88ksim,
vortex and ijpeg, all programs were run to completion. These
four programs were run for first 1 billion instructions on a func-
tional simulator (so that we do not do all our measurement in the
initialization phases) and for the next 500 million cycles (or
completion) on the timing simulator. The exact number of
instructions simulated in a fixed number of cycles is dependent
on the microarchitectural enhancements applied. Thus, for these
programs (except ijpeg which ran to completion) in Table 2 WC
show the approximate number of instructions executed on the
timing simulator. All the benchmark programs were compiled
using GNU gee (version 2.6.3), gas (version 2.5.2) and gld (vcr-
sion 2.5) with maximum optimizations (-03).

5.2 Experiments and ResuIts

We performed several experiments to evaluate the concept of
dynamic instruction reuse. Being the first paper on the concept
(and mechanisms to exploit it), an exhaustive evaluntion of all
interesting cases is not possible. Furthermore, we also don’t
evaluate the concept in the abstract. Rather, we concentratc on

Ins’ &‘-- r-r-ti
i per cycle. Aggressive: can fetch beyond multiple branches and across cache line

‘zruCUon reLc‘l ’
4 instruction!

(boundaries. Fetch stops onlv on I-cache misses. I

Instruction cache

Branch predictor

_ -.
16K bytes, direct mapped, 32 byte cache line, 6 cycles miss latency

2048 BTB entries with 2-bit saturating counters.

n rlative execution
Out of order issue/commit of 4 operations per cycle, 32 entry reorder butter, 32 entry 1oa(Yslore

mechanism
queue. Maximum of 8 unresolved branches. Loads execute only after all the preceding store
addresses are known. Values bypassed to loads from matching stores ahead in load/store queue. -*

Architected Registers 32 integer, hi, lo, 32 floating point, fee.

Functional units Cinteger ALUs, Zload/store units, 4-FP adders, l-integer MULTIDIV, I-FP MULT/DIV

Functional unit latency integer ALU-l/l, load/store l/l, integer MULT 3/l, integer DIV 20/19, FP adder 2/l, FP MULT
I .2/12, FP SQRT 24124.

t

(total/issue) jLul,FPDIV 1

Data cache
16K Zway set associative, 32 bytes block, 6 cycles miss latency. Dual ported, non-blocking
interface, one outstanding miss per register.

some key initial results for some sample configurations of the
proposed mechanisms: how much dynamic reuse of instructions
is there (as captured by our reuse schemes), what types of
instructions are reused, how does it vary with RB size, and how
much speedup results. We categorize total instruction reuse into
squash reuse and general reuse, and show the contribution of
either category to total speedup. We also evaluate the impact of
associativity and the effectiveness of instruction reuse in allevi-
ating dependences.

For most of our experiments we use fully-associative RBs of
three different sizes: 32, 128, and 1024 entries with a FIFO
replacement policy. As mentioned earlier, we make no attempt to
be selective about what instructions get inserted into the RB; that
will be the subject of future work. We expect that with clever RB
management policies, small RBs will be able to achieve the same
performance as the larger RBs presented in the next several sec-
tions.

5.2.1 Instructions Reused
Figure 9 shows the percentage of total dynamic instructions

reused for the three different schemes, with 3 different RB sizes
for each scheme. The harmonic mean (EM) over all benchmarks
for each RB size is also shown in the figure. All the analyzed
benchmarks exhibit significant instruction reuse, especially for
the larger buffer sizes. For scheme S, with 1024 entries the per-
centage of instructions reused are 63% for eqntott, 39% for
espresso, 76% for yacd and 34% for xlisp. Even for small RB
sizes the instructions reused are significant (21% for eqntott,
24% for espresso, 26% for yacr2). For other benchmarks and for
other reuse schemes the percentage of instruction reuse is also
appreciable.

For larger RB sizes, scheme S, does not reuse as many
instructions as schemes S, and S,,+,+ This is because invalida-
tions are more frequent in scheme S, (being done every time a
register or memory location is written), which limit the number
of reusable instructions irrespective of the RB size (for large RB
sizes). Frequent invalidations help small size RBs (32 entries);
the instructions which are more likely to be reused remain in the
RB, resulting in better utilization. Thus, S, performs better than
other two schemes for RB with 32 entries.

In scheme S,, invalidations are infrequent: only stores that
match loads cause invalidations. Accordingly, larger buffers are
able to retain more reusable instructions, resulting in S, perform-
ing better than S, and Sri+++ for RB with 1024 entries. The smaller
number of invalidations also means that instructions which are
not likely to be reused remain in RB. This phenomenon results in
scheme S, performing worse than S, and S,M for an RB size of
32 entries.

Since scheme S a+,j uses selective invalidations (only indepen-
dent instructions are invalidated), the frequency of invalidations
is reduced while still retaining the ability to purge unusable
instructions from the RB. Thus, Sad not only continues to bene-
fit as the RB size is increased to 1024 entries but also out per-
forms other two schemes for RB with 128 entries.

To study the reuse characteristics of different instruction
types, we divide the instructions into the following broad catego-
ries: loads, address calculations, control and integer. The cate-
gory address calculations consists of loads and stores for which
only the address calculation part is reused. (As noted earlier, for

201

Figure 9. Percentage of instructions reusedfor RB sizes: 32,128
and 1024 entries. The RB in these experiments wasjidly associa-
tive. (a) Scheme S,, (b) Scheme S,, (c) Scheme S,,+b Hi14 stands for
harmonic mean.

stores we reuse only address calculation, and not the actual
memory operation). The integer instructions are further divided
into three subcategories based on the type of operands: two reg
operands, one reg operands and immediate. Table 3 shows the
percentage of instructions reused (average over all benchmarks)
from each category using a 1024 entry RB (e.g. 36.9% of all
integer instructions with two register operands are reused). As
expected, most computation involving immediate constants is
reused, Likewise, reuse of address calculation is also not very
surprising. Somewhat surprising is that a large number of load
instructions could be reused (an average of 21.2% for scheme
S,). This reduces the demand for data cache bandwidth, which

can possibly be exploited by reducing the number of data cache
ports.

Figure 10 shows the contribution of each instruction cate-
gory to the total instruction reuse (averaged over all bench-
marks), for 3 different RB sizes. We observe that each
instruction category makes a measurable contribution to the total
instruction reuse; reuse is not limited to some particular instruc-
tion type. However, it is worth noting that almost 40-50% of the
reuse comes from the load instructions (about 15%) and address
calculations (25-35%).

5.2.2 Speedups
Figure 11 shows the speedups (IPC,it&lPCwi~ou~)

obtained with the different reuse schemes for varying RB sizes.
The harmonic mean (HM) over all the benchmarks for each RB
size is also shown in the figure. The speedups are not as impres-
sive as the percentage of instructions reused, however, they are
still significant in many cases; they range from no speedup to
19% for a 32 entry RB, from 2% to 28% for a 128 entry RB, and
from 3% to 43% for a 1024 entry RB. The speedups are not as
impressive because there are many other parameters that contrib-
ute to overall performance (e.g., cache misses) and reducing the
instruction execution component of the execution time may not
result in a proportionate decrease in the overall time. With more
ideal system parameters (for which instruction issuing and/or the
lengths of dependence paths are more important), the speedups

I immediate 1 51.0 1 98.1 1 90.4

Table 3: Percent reuse per instruction categoryfor a 1024 entry
RB

100

90

80

70

60

SO

1

40

30

20

10

0

integer: immediite

integer : one ng

integer : two reg

control

addrulc

loab

Figure 10. Contribution of each instruction category to total
reuse. These numbers are average over all benchmarks for jidl
associative RB.

wiIl mirror the percentage of instructions reused more closely,

Comparing the harmonic means of the speedups we can see
that S, performs best (among the three schemes) for a 32 entry
RB (harmonic mean 4.3), S,,+d performs best for a 128 entry RB
(harmonic mean 7.2), S, works best for a 1024 entry RB (har-
monic mean 14.9). Comparing percent instruction reuse
(section5.2.1) with the resulting speedups, we see that the
scheme that reuses more instructions also delivers better overall
speedup.

32 RD cnklcr WM - 4dl

Schema Sn : Speedups

Mnohmarlu

@I

32 Ro cnukr (MM - 3.8)

Scheme Sri+++ : Speedups

Mnchmarlu

(c)

Figure 11. Speedups obtained due to instruction reuse, The
numbers are presented for RB entries 32, 128 and 1024. (a)
Scheme S, (b) Scheme S,, (c) Scheme S,,J. HM stands for har-
monic mean.

202

5.2.3 Squash Reuse vs. General Reuse
Figure 12 gives a break down of the number of instructions

reused into two categories: squash reuse and general reuse.
Squash reuse and general reuse have been illustrated in Figure 1
and Figure2 respectively. Due to a lack of space, we do not
present the breakdown for all three schemes; Figure 12 contains
the information only for scheme Sn+d. The figure suggests that,
as one might expect (with a couple of exceptions), smaller RB
sizes have a larger percentage of squash reuse. This is also true
for the other schemes.

Figure 13 separates the performance obtained by squash
reuse from that obtained by general reuse for each benchmark for
scheme &,-J with the three different RB sizes. Observe that the
fraction of the speedup attributed to squash reuse is greater than
the contribution of squash reuse to the total number of instruc-
tions reused (compare with Figure 12). This suggests that squash
reuse is more time critical than general reuse - the squash pen-
alty impacts the bottom line more than the latency of an instruc-
tion (or a set of instructions), especially in a dynamically
scheduled processor.

5.2.4 Set Associative RB
Figure 14 presents the results for a Cway set associative, 128

entry RB, for scheme S,. (Figure 14(a) presents the instruction
reuse and Figure 14(b) presents the speedups.) Other schemes

80

z 60
E
lx 40

20

0
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
1oE -4-a w mm Ir.wkdm Urn

-PM -P- m-2 P P* vortex
an-

Figure 12. Reuse break down in terms of general and squash
reuse using scheme Sn+d. Bar ‘A’ stands for a 32 entry RB, ‘B’
Stan& for a 128 entry RB, and ‘C’ stands for a 1024 entry RB.

Figure 13. Pe$ormance break down in terms of general and
squash reuse using scheme S,,+d. Bar ‘A’ for a 32 entry RB, ‘B’
for a I28 entry RB, and ‘C’ for a 1024 entry RB

203

and buffer sizes show similar results. As we can see, the perfor-
mance is comparable in either case. For some programs (e.g.,
eqntott, espresso, and compress) set associativity actually
improves performance. This is due to the fact that the FIFO
replacement policy that we use does not discriminate between
reusable and not reusable instructions. Reusable entries are
evicted even though non-reusable entries are present (the non-
reusable entries are evicted in the set-associative case because of
limited choice).

5.2.5 Early resolution of data dependence
We now evaluate the effectiveness of instruction reuse in

reducing the length of dependence chains. To do so, we measure
the average number of cycles an instruction spends waiting for
its operands to be ready (this is called the data dependence reso-
lution latency [5]). Figure 15 plots the data dependence resolu-
tion latency with instruction reuse, normalized to that without
instruction reuse. The data in the figure is for Cway set associa-
tive RFJ implementing reuse scheme S,. As is evident from the
figure, instruction reuse causes significant reduction in operand
waiting times. For eqntott and espresso, the waiting time is cut
down by 40% and 320/o, respectively, for an RB size of 128
entries, suggesting that dynamic instruction reuse is quite effec-
tive in collapsing true dependences.

50

1

Reuse : Full vs. Cway SSOE : RB 128 cnuicr

40
$# Fuuy-assoc.

II 4-wayseta.wc.

50

1

40
pI Fully-arsoc.

n 4-waysctassoc.

Speedups : Full vs. 4-my BSSOC : RB l28 entries

Figure 14. Comparison of 4-way set associative RB against@&-
associative RR. (a) Percentage instruction reused, (b) Speedups.
The results are for RB with I28 entries using Scheme S,

_-

,

.

!

;
,

I

\
,

I

,

,

)

I’ ,‘,, ,, .:*i;LI-.ji.A.
_-- ---

Figure 15. Data dependence resolution latency with instruc-
tion reuse normalized to that without instruction reuse. The
result is shown for scheme S, using I-way set associative RLIs of
three direrent sizes.

6 Related Work and Discussion

The idea of not having to redo computation is not a new one
- it has been used before in several different contexts. A tech-
nique called memoization has been used for functional and logic
programs. The outcome of a function (or a rule) is saved in a
table. If the function or the rule is encountered again with the
same parameters then the result from the table is used instead of
re-evaluation. Memoization is also used to reduce the running
time of optimizing compilers, where the same data dependence
test is carried out repeatedly.

Harbison in [2][3] proposes a stack-oriented architecture, the
Tree Machine, which uses a hardware mechanism, the value
cache, for eliminating common subexpressions and loop invari-
ant expressions. He keeps the result of a computation (called a
phrase) in the value cache. A bit vector, called a dependency set,
is associated with each result in the value cache to indicate the
variables used in computing the result; the bit positions are
determined by the address of the variables. When an address is
overwritten, all the results in the value cache which have the bit
set for that address are invalidated. If a phrase is encountered
again, recomputation is avoided by reading the result from the
value cache. This approach is similar to our second reuse
scheme, scheme S,. Both perform reuse based on the architec-
tural names of the operands (scheme S, uses the register speci-
fier, while the value cache uses the memory address). The
differences are highlighted later in this section.

Richardson [7] introduces the notion of redundant computa-
tion, which is computation that produces the same result repeat-
edly because it gets the same value for its operands. In this work,
the results of floating point operations are stored in a cache,
called result cache. The index of the cache is obtained by hash-
ing the operand values. The result cache is accessed in parallel
with executing an floating point operation. If the result is found
in the result cache then the operation is halted.

In [6], Oberman and Flynn, propose the use of division
caches and reciprocal caches for capturing the redundancy in the
division and square root computation. The division caches are
similar to Richardson’s result cache, but for divisions only. The
reciprocal caches hold the reciprocals of the divisors. They help
convert the high latency division operation to relatively low
latency multiply operation. These caches are accessed using the

204

bits from the mantissa of the operands.

There are several differences between our work and the work
mentioned above. First, the above techniques are more special
purpose. The value cache [2][3] approach is tailored for an archl-
tecture which expresses computation in the form of parse trees
(J’ree Machine). The result caches [7], and the division and
reciprocal caches[6] target only floating point operations, Our
approach is general purpose in that it does not assume any spe-
cial architecture, and it captures reuse of any type of instruction
(except stores). Second, the techniques referred to above ~CCCSS
their respective result buffers (value cache in [3], result cache in
[7] and division and reciprocal caches in [6]) by using either the
operand address [3] or operand values [7][6], which arc only
available later in the pipeline. Thus, the result buffer access is
delayed till the execute stage, which restricts the usefulness of
these techniques only to instructions which have multi-cycle
latency ([7] uses it for floating point instruction, while [6] uscs it
for floating point divides only). In contrast, the reuse schemes
presented in this paper access the RB using the instruction
address, and hence reuse occurs while the instruction is still in
the decode stage. This has two advantages: first, even single
cycle instructions benefit from reuse; second, the reused instruc-
tion need not flow down the pipeline, which frees machine
resources for other instructions to use. The third difference IS,
since other techniques use operand values for indexing In the
result buffer, unlike our schemes, they cannot reuse multiple
dependent instructions simultaneously (the result of one instruc-
tion would be needed to form the index for the dependent
instruction)

One of the benefits of instruction reuse is that it collapses
true dependencies. Other techniques based on prediction have
been proposed to achieve the same effect [4][5]. In [S], Lipnstl
et. al. propose predicting the value of loads to collapse the true
dependencies. In [4] they extend this concept to predict the value
of registers. The fundamental difference from our schemes IS
that these approaches are based on prediction. The instructions
still must execute to generate result for later verification, Our
schemes are not based on prediction, and the reused result !S
guaranteed to be correct.

7 Conclusions

In this paper we introduced and studied the concept of
dynamic instruction reuse. Empirical observations suggest thnt
in a program execution, many instructions (and groups of
instructions) are executed repeatedly with the same inputs, gen-
erating the same results. We discussed two causes of this bchnv-
ior: (i) the re-execution of (control-independent) computation
when recovering from a branch mis-prediction, and (ii) the
generic nature of programs which arc written to opcrnte on n
variety of data inputs.

We presented three schemes for exploiting the phenomenon.
All three schemes buffer the outcome of an instruction in a rcim
buffer from where future instructions can nccess it (if the opcr-
ands match). The schemes differ in the way that they trnck the
reuse status of an instruction: scheme S, uses operand vnlues,
scheme S, uses operand names, and scheme Sri+++ uses operand
names as well as dependence information. By dynamically WS-

ing instruction results, we are able to (i) cut down on the
resources required to execute the instructions, and (ii) cut down

on the time that it takes to know the outcomes of sequences of
dependent instructions, i.e., reduce the length of critical paths of
computation.

We evaluated tbe effectiveness of the proposed schemes
using 3 different buffer sizes: 32, 128, and 1024 entries, using
execution-driven simulation. Significant instruction reuse was
found in many cases, with as many as 76% of the instructions
being reused in one case. Furthermore, reuse was not limited to a
particular category of instructions; a significant number of
instructions were reused from all the broad categories of instruc-
tions considered. We also measured the resulting speedup in the
program execution time. The speedup is not as pronounced as
the percentage of instructions reused, but it is still quite signifi-
cant, with as much as 43% speedup in one case. We also
observed that a Cway set associative reuse buffer compared
favorably in performance for the cases considered. Finally, we
measured the effectiveness of reuse in cutting down data depen-
dence path lengths by measuring the average time that an
instruction waits for operands. We found that the waiting time
was cut down by 40% in one case.

This paper represents only a first attempt at studying a phe-
nomenon (and associated means to exploit it) that could have
significant implications for the rnlcroarchitecture of the future
processors. There is a great deal of work that remains to be done;
this work can broadly be classified into two-related categories:
(i) better exploiting the reuse phenomenon, and (ii) impact of
reuse on other microarchitectural components. Several issues
need to be investigated in either category. In the former, we have
observed that only about 20% of the instructions inserted into the
RB constitute all the reuse. This calls for selective insertion poli-
cies that result in better reuse characteristics with small reuse
structures. Another issue that needs to be investigated is better
invalidation mechanisms (for schemes S, and S,d) such as
invalidation using time-stamps. Software transformations that
facilitates reuse are also an area that deserves study. Consider-
able work is also needed in the second category. Success at
instruction reuse might cause us to rethink the need for aggres-
sive speculation structures: there might be no need to predict the
outcome of a branch if its outcome can be determined from a
reuse buffer. Likewise, there might be no need to carry out value
prediction, if the value can be determined from the reuse buffer.
In this case, resources that would otherwise be spent in making
more powerful speculation structures might be better spent in
structures that improve instruction reuse, backed up by less pow-
erful speculation structures.

Acknowledgments

We thank Scott Breach, Doug Burger, Andy Glew, Andreas
Moshovos, Shubu Mukhejee, Subbarao Palacharla and the
anonymous referees for their comments on earlier drafts of the
paper. We would also like to thank Haitham Akkary and Todd
Austin for their comments on this work.

This work was supported in part by NSF Grants CCR-
9303030 and MIP-9505853, the U.S. Army Intelligence Center
and Fort Huachuca under contract DABT63-95-C-0127 and
ARPA order no. D346, a donation from Intel Corp, and an equip-
ment donation from Sun Microsystems. The views and conclu-

205

sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S Army
Intelligence Center and Fort Huachuca, or the U.S. Government.

References

Ul

121

131

141

PI

161

[71

181

D. Burger, T. M. Austin, and S. Bennett. EvaluatingFutureMicropro-
cessors: The SimpleScalar Tool Set. Technical Report CS-TR-96-
1308, University of Wisconsin-Madison, July 1996.
(URLz http://www.cs.wisc.edu/-mscalru/simplescalax.html)

S. P. Harbison. A Computer Architecture for the Dynamic Optimiza-
tion of High-Level Language Programs. Ph.D. thesis, Carnegie Mel-
lon University, Sept. 1980.

S. P. Harbison. An architectunl alternative to optimizing compilers.
In Proc. International Conference on Architectural Supportfor Pro-
gramming Languages and Operating Systems (ASPLOS), page 57 65,
Mar. 1982.

M. H. Lipasti and J. P. Shen. Exceeding the datatlow lit via value
prediction. In Proc. of 29th International Symposium on Microarchi-
lecture, pages 22&237, Dec. 1996.

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Proc. of ASPLOS VII, pages 138-147. Sept.
1996.

S. F. Obennan and M. J. Flynn. On Division and Reciprocal Caches.
Technical Report CSL-TR-95-666, Stanford University, Apr. 1995.

S. E. Richardson. Caching function results: Faster arithmetic by
avoiding unnecessary computation. Technical Report SMLI TR-92-1,
Sun Microsystems Laboratories, Sept. 1992.

J. Smith and A. Pleszkun. Implementing precise interrupts in pipe-
lined processors. IEEE Transactions OR Computers, 37(5):562-573,
May 1988.

