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Abstract 

This paper introduces the concept of dynamic instruction reuse. 
Empirical observations suggest that many instructions, and 
groups of instructions, having the same inputs, are executed 
dynamically. Such instructions do not have to be executed repeat- 
edly - their results can be obtainedj?om a buffer where they were 
saved previously. This paper presents three hardware schemes for 
exploiting the phenomenon of dynamic instruction reuse, and eval- 
uates their effectiveness using execution-driven simulation. We 
find that in some cases over 50% of the instructions can be reused. 
The speedups so obtained, t/lough less striking than the percent- 
age of instructions reused, are still quite significant. 

1 Introduction 

There are three parameters that influence the execution time 
of a program. Microarchitecture has concentrated on two of 
them: (i) the number of instructions executed per clock cycle, 
i.e., the IPC, and (ii) the clock cycle time. The third parameter: 
(iii) the total number of instructions, has been considered the 
domain of software. In this paper we address the following ques- 
tion: “Can we develop microarchitectural techniques to reduce 
the number of instructions that have to be executed dynamically, 
and what are the potential benefits of such techniques?” 

Just as caches reduce the number of memory accesses made 
dynamically if a memory location is going to be accessed repeat- 
edly, the number of instructions executed dynamically can be 
reduced if an instruction is going to produce the same value 
repeatedly. We have observed many instructions, and groups of 
instructions, having the same inputs (consequently producing the 
same output) when executed dynamically. This observation can 
be exploited to reduce the number of instructions executed 
dynamically as follows: by buffering the previous result of the 
instruction, future dynamic instances of the same static instruc- 
tion can use the result by establishing that the input operands in 
both cases are the same. We call this dynamic instruction reuse. 

Dynamic instruction reuse can benefit performance in two 
main ways. First, by not having to pass through all the phases of 
execution (e.g., issue, execute, result bypass) dynamically, utili- 
zation of machine resources could be reduced, alleviating 
resource conflicts. Second, and more important, the outcome of 
an instruction can be known much earlier, allowing instructions 
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Figure 1. Scenario where execution on the (mis)predictedpath 
converges with the execution on the correct path. In such cases 
certain instructionsfrom part (C) need not be re-executed when 
encountered on the correct path. 

that are dependent upon the outcome to proceed sooner. As WC 
shall see, the results of chains of dependent instructions could all 
be generated in a single cycle, short-circuiting depcndcncc 
chains, and reducing the lengths of critical paths of execution, 

This paper is concerned with exploiting the phenomenon of 
dynamic instruction reuse. Towards this end, WC develop 
microarchitectural mechanisms that allow the outcome of an 
instruction to be known earlier than it would had the instruction 
have to pass through all the phases of its execution. We dcscdbc 
the concept of dynamic instruction reuse in section 2, and 
present scenarios to illustrate why it occurs and why might it bc 
a useful phenomenon to exploit. In section 3, we present three 
different schemes for instruction reuse. Each scheme employs a 
reuse buffer, a buffer of previous outcomes of instruction CXCCU- 

tion. In section 4 we show how a reuse buffer can bc incorpo- 
rated into a generic superscalar processor. In section 5 WC 
provide a quantitative evaluation, and in section 6 WC discuss 
related work. Finally section 7 presents some concluding 
remarks. 

2 Scenarios for Dynamic Instruction Reuse 

Before developing mechanisms to allow dynamic instruction 
reuse, we need to understand why this phenomenon occurs. 
What causes instructions to be executed with the same input 
operands’? Why are such instructions in the program in the first 
place? Are such instructions needed? Why might it be better to 
obtain the outcome of an instruction from a buffer rather than 
recompute it? In order to answer these questions, we look at a 
couple of scenarios 

The first scenario involves speculative execution in a dynam- 
ically scheduled processor. As illustrated in Figure 1, when a 
branch instruction is encountered, its outcome is predicted, and 
instructions from the predicted basic block (block A) am CXC- 

cuted speculatively. In addition to executing instructions from 
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block A, the processor may execute instructions from another 
block (C), which is control independent of the branch. If the 
branch was mispredicted, instructions executed from both blocks 
A and C are discarded, execution resumes at block B, from 
where it proceeds to block C. Instructions in block C that were 
discarded, but whose operands are not affected by instructions in 
either blocks A or B, would end up being re-executed. If the 
results of such instructions were buffered, and we could detect 
that their operands values are the same, their results could be 
reused, thereby reducing the squash penalty. We term this sce- 
nario as squash reuse. 

Our initial goal for developing an instruction reuse mecha- 
nism was to reduce the branch m&prediction penalty, especially 
for short forward branches, as described above. However, when 
we were studying the effectiveness of the mechanisms that we 
developed for the above case, we discovered that the concept 
was much more powerful. Other scenarios where instructions 
can be reused dynamically also arise frequently. These scenarios 
are a result of two important artifacts of how the dynamic com- 
putation is expressed statically. First, programs are written to be 
generic, i.e., operate upon a variety of input data sets-we don’t 
write programs that operate on only a single input data set. Start- 
ing out with a single static program, different inputs will cause 
different instructions to be executed dynamically, resulting in a 
different dynamic operation stream for each input data set. For a 
particular input set, operands for some of the instructions may 
not change dynamically (they would in another execution with a 
different input data set). Second, programs are written to express 
a desired computation in a concise manner. For example, the 
computation to carry out operations on each element of a lOOO- 
element data structure is expressed using a loop structure; we 
don’t write separate instructions for each element of the data 
structure. In the process of recreating the dynamic sequence of 
operations from the static representation, many operations may 
be repeated, as we shall see shortly. 

195 

The above situations are best illustrated by an example. Con- 
sider the example of Figure 2. The function f unc searches for a 
value in a list of a particular size. The function 
main-func calls func several times, searching for a different 
element in the same list with each call. When func is called, it 
iterates through the 1 is t, element by element, searching for the 
value until the end of the 1 is t, exiting when the value is found. 
Instructions corresponding to the loop in func are shown in 
Figure 2(b). Figure 2(d) shows the dynamic instances of these 
instructions which are generated by the first call to func. In 
each iteration of the loop, the instruction 2 is dependent upon the 
size parameter, the instructions 3 and 4 are dependent upon the 
list parameter, instruction 5 is dependent upon both the list 
as well as the value being searched for, and instruction 6 is 
dependent on the induction variable. If func is called again 
(Figure2(e)) on the same list (and same size), but with a 
different search key, then all the different dynamic instances of 
instructions 1-4 and 6 produce the same outcomes as they did the 
last time the function was called (a total of size dynamic 
instances of instructions 2-4 and 6). Only the dynamic instances 
of instruction 5 produce results that might be different from what 
they were in the previous call to func. This “reuse” of the 
results of the dynamic instances of instructions l-4 and 6 is 
directly attributable to the fact that func was written to be a 
generic list search function, but in this particular case, only one 
of its parameters changed between different calls to it. Even if 
func was called with all its parameters being different for each 
call, the different dynamic instances of the instruction 6 (i=O, 
i=l, i=2, ..) in the second call to func would end up producing 
the same values as they did in the first call to func, a conse- 
quence of using loops to express the desired computation in a 
concise manner. (Actually, if the size parameter was also dif- 
ferent, then only min(size1, size2) dynamic instances of 
instruction 6 would produce the same values.) 

How might performance benefit if we buffered the (size) 



dynamic instances of instructions l-4 and 6 in the above exam- 
ple, and reused them? First, the dynamic instances of instruc- 
tions 1-4 and 6 do not have to pass through all the different 
phases of execution (ALU, issue, result bus, etc.), thereby reduc- 
ing the demand for processor resources. (In the above case, 
accesses to the data cache are also eliminated - these end up 
becoming accesses to the buffer which holds previous instruction 
results.) Second, the critical path to carry out the total computa- 
tion involved in func can be reduced considerably. Without 
dynamic instruction reuse, the critical path through the computa- 
tion, as expressed above, would be size+3 steps (assuming that 
the loop executes all size iterations), size steps to generate 
all the dynamic instances for the induction variable i, plus 3 
steps to execute instructions 3,4, and 5 of each iteration (which 
form a dependence chain). In other words, the height of the data- 
flow graph for the above computation is size+3 steps. With 
instruction reuse, in the best case, the critical path, i.e., the 
height of the dataflow graph through the computation, is reduced 
to only 1 step. This is because the outcomes of all the dynamic 
instances of instructions l-4 are already known, and all the 
dynamic instances, being independent of one another, could all 
execute at the same time. In other words, dynamic instruction 
reuse allows us to exceed the dutujow limit that is “inherent” in 
the program. Of course, in an actual execution other constraints 
will prevent us from achieving the dataflow limit in either case, but 
concentrating on the dataflow limit illustrates the potential power 
of the concept. We call this second scenario general reuse. 

The above example shows that the potential for instructions 
to be reused dynamically exists. As we shall see in section 5, in 
some cases over 50% of all executed instructions produce results 
that they produced earlier, suggesting a need to exploit the phe- 
nomenon. Our objective is to develop dynamic techniques to 
exploit repetitive behavior of the above type. While not impossi- 
ble, doing the same statically in the compiler would require a tre- 
mendous (and very likely impractical) effort in the above case: 
constant propagation, function in-lining, loop unrolling size 
times, common sub-expression elimination, all carried out glo- 
bally (and possibly inter-procedurally), sufficient registers to 
store size elements, as well as alias analysis to allow register 
allocation of the list elements. In the above example, to achieve 
the same effect as dynamic instruction reuse, the compiler would 
essentially have to end up putting the size elements of list in 
registers, and in-lining func as a sequence of size static 
instructions, each of which compares value with a register. This 
is a tall order, given the current state of the art. Accordingly we 
concentrate on developing dynamic schemes for instruction 
reuse. 

3 Schemes for Instruction Reuse 

In this section, we describe three hardware schemes to imple- 
ment dynamic instruction reuse. To reuse an instruction we need 
to determine that its outcome is going to be the same as a previ- 
ous outcome, and reuse the previous outcome. The reuse 
schemes described in this section implement this determination 
in different ways. In each scheme we store the result(s) of a pre- 
viously-executed instruction in a hardware structure called Reuse 
Buffer (RB) (Figure 3).’ When an instruction is encountered, the 
RB is queried to see if it contains a reusable result for the 
instruction. Three issues need to be dealt with: (i) how the infor- 
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mation in the RB is accessed, (ii) how we know that the acccsscd 
RB entry (or entries) has reusable information, and (iii) how the 
buffer is managed. 

The first issue is easily dealt with: the program counter (PC) 
of the instruction provides a convenient index for searching the 
RB. The RB could be organized with any degree of associativity, 
the larger the associativity, the larger the number of dynamic 
instances of an instruction that can be held in the RB at a given 
time. 

To deal with the second issue, we need to develop a reuse test 
which checks information accessed from the RB to see if them is 

a reusable result. Details of the test depend upon the reuse 
scheme, as we describe shortly. 

There are two aspects to RB management: (i) deciding WMCII 

instructions get placed in the buffer, and (ii) maintaining the 
consistency of the buffer. The decision as to what to place in the 
buffer can range from no policy, i.e., place all recently exccutcd 
instructions in this buffer (if they aren’t already present), to a 
more judicious policy that filters out instructions that aren’t 
likely to be reused.2 Maintaining the consistency of information 
in the RB depends upon the reuse scheme, as we see shortly. 

Next, we present details of three schemes for reusing instruc- 
tions. These schemes mainly differ in the way in which reusable 
results are identified. The first scheme (Sv) tracks operand val- 
ues for each instruction, the second scheme (S,) tracks only 
operand names (register identifiers), and the third scheme (S,+u) 
tracks dependence relationships among the instructions. For 
each scheme, we discuss the following issues: 

l What information is stored in the RB? 
l How is the reuse test performed? 
l How is the information in the RB updated/invalidated’? 

In practice, the reuse schemes would be implemented in a 
variety of different ways. In this paper we concentrate on the 
functionalities required by each reuse scheme instead of their 
implementations. 

Reuse Buffer 

Reused inst. 

Figure 3. Generic Reuse Bluffer. It is indexed by the PC and it 
has mechanism for selectively invalidating en!ries based on 
some event. 

1. Depending upon the buffer mapping and management policy, the RB could ~011. 

tin the outcomes of many previous dynnmic instnnces of the same instrucdon. 
For example. in Figure2. the buffer could conttdn nil the size dynnmlo 
instances of the instruction updating the induction vndnble, with cnch dynamlo 
instance producing B different value. 

2. In this paper, we do not explore this nspect of the problem-in our discussions 
and experiments we assume that all recently executed instructions NO plnccd In 
thcRl3. 
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3.1 Scheme S,: Reuse based upon operand vah~es 

Scheme S, is a straightforward implementation of the reuse 
concept. The operand values of an instruction are stored along 
with its result, Since the reuse test is based on operand values, as 
we will see shortly, we call this scheme S,, where ‘v’ stands for 
value. 

When an instruction is decoded, its current operand values 
are compared with those stored in the RB. If they are the same, 
then the result stored in the RB is reused. Loads, being a two- 
operation instruction, need special handling. Address-calculation 
can be reused if the operands for the address calculation did not 
change. However, the actual outcome of the load can only be 
reused if the addressed memory location was not written into by 
a store instruction. Information in the RB has to distinguish 
between the two. Likewise, stores are also special. While reusing 
the address calculation part of a store presents no problems (we 
treat it no differently from the address calculation for a load) we 
make no attempt to reuse the actual memory write - the mem- 
ory write could have side effects outside the domain of the pro- 
cessing node (similar restrictions would apply to other 
instructions with side effects, e.g. loads in the I/O space). 

l RB entry: An entry in RB for this scheme is shown in 
Figure 4(a). The tag field stores part of the PC. The result, oper- 
and valuel, and operand value2 store the result and the operand 
values of the instruction. These fields are used to identify the 
instruction (or address calculation in case of a load/store) that 
can be reused. The memvalid bit and the address field are used to 
determine if the actual memory access for a load instruction can 
be reused; the memvalid bit indicates whether the value loaded 
from memory (present in the result field) is valid, and the 
address field stores the memory address (i.e., the outcome of the 
address calculation). 

l Reuse test: For testing reuse, the operands of an instruc- 
tion are compared with the values in the operand value fields of 
the RB entry. A match indicates that result is valid (for non-load/ 
store instructions) or address is valid (for loads and stores), For 
loads, in addition to testing the validity of the address bits, we 
also need to test the memvalid bit to see if the outcome of the 
load (in the result field) can be reused. If the operand values are 
not known at the time of the reuse test then the instruction is not 
reused. 

l Invalidation: For non-load operations, the reuse test 
works because the operands uniquely determine the result and 
therefore invalidations are not needed to maintain the integrity of 

the test. For loads, a store to the same address invalidates the 
value in the result field. Accordingly, on a store the address field 
of each RB entry is searched for a matching address, and the 
memvalid bit reset for matching entries. 

Note that the address field, memvalid field, and the associa- 
tive search for invalidations are required only to maintain the 
integrity of load values. The RB can be split into two buffers: 
one for storing load values and another, the main RB, for storing 
everything except the load values (including entries for load 
addresses). This RB organization has two advantages: first, 
address and memvalid fields need not be maintained for entries 
storing non-load instructions, reducing the overall storage 
required for the reuse scheme; second, the main RB need not 
have invalidation logic, this logic would only be present in the 
buffer for load values, which probably would be much smaller 
compared to the main RB. Nevertheless, since our goal is to 
demonstrate the potential of instruction reuse, and not to com- 
pare the merits of different implementations, we assume a uni- 
fied RB for our experiments presented in this paper. 

3.2 Scheme S,: Reuse based upon register names 

In scheme S,, we attempt to trivialize the reuse test (and also 
to reduce the size of each RB entry). Rather than store operand 
values, we store operand (architectural) register identifiers in the 
RR. When an instruction writes into a register, all instructions 
with a matching (source) register identifier in the RB are invali- 
dated. Since the reuse test is based on operand names (and not 
value), we call this scheme S,, where ‘n’ stands for name. The 
remaining details are: 

l RB entry : An RB entry for this scheme is shown in 
Figure 4(b). Differences from scheme S, are: (i) the operand1 
and operand2 fields contain register names of the operands 
instead of actual operand values, (ii) there is a resultvalid bit, 
which indicates whether the result is valid. (This bit was not 
required in scheme S, because the reuse test detected the stale 
results). This bit is set when an entry is first inserted into theRl3. 

l Reuse test: The reuse test is as simple as testing the state 
of resultvalid and memvalid bits. Address calculation for load/ 
store instructions and results for all other instructions can be 
reused if the resultvalid bit is set; the result of a load instruction 
can be reused if both resultvalid and memvalid are set. 

l Invalidations: As before, stores invalidate the loads 
from the same address (memvalid bit is reset). Moreover, when a 
register is written, the RB is searched for entries whose operand 
field matches the name of the register. The entries which match 
are marked invalid (resultvalid bit is reset). 

Note that the effect of invalidations (which is to purge stale 
results) can be obtained in other ways too, e.g., using time- 
stamps for the operands. As mentioned earlier, in this paper we 
focus on the required functionality and leave the task of explor- 
ing different implementations as a future work. 

3.3 Scheme Sn+a: Reuse using register aames and 
dependence chains 

Scheme Sri+++ extends scheme S, by attempting to establish 
chains of dependent instructions, and to track the reuse status of 
such instruction chains. Since in this scheme the reuse status of 
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an instruction in the RB is established based on its operand 
names and/or its dependence information, we call this scheme 
Sad (the letters ‘n’ and ‘d’ stand for name and dependence 
respectively). 

Figure 5(a) motivates scheme Sn+& The figure shows a 
dynamic stream of instructions on the left and the contents of the 
RB at different point in time on the right. I, J, K is a chain of 
dependent instructions; It, J1, K1 and 12, Jz, K2 are the dynamic 
instances of this instruction chain. With scheme S,, only instruc- 
tion I, could reuse the result of 11, because results of Jt and K1 
are invalidated by instruction R. Scheme S,,+d instead tries to 
establish the fact that instruction 52 (J1) depends solely upon 
instruction 12 (11), and instruction K2 (K1) depends solely upon 
instructions I2 and J2 (It and J1) (Figure 5(b)). If instruction 12 
can be reused, so can instructions J2 and K2. Furthermore, if 12, 
J2, and K2 are all fetched simultaneously from the RB, the reuse 
status of all three could be established simply by establishing the 
reuse status of 12, and verifying the dependence relationship (as 
we elaborate below). This is tantamount to obtaining the result(s) 
of chains of dependent operations in a single cycle. Scheme S,, 
which does not maintain instruction dependence relationships, 
can’t establish the reuse status of a dependence chain as easily. 
In our example, the reuse status of 12 would have to be estab- 
lished; the result of 12 would be needed to establish the reuse sta- 
tus of J2; and Jz’s result would be needed th establish the reuse 
status of K2 

For the ensuing discussions we define the following terms 

Dynamic instruction 
stream 

time 

I 
RB contents 

4 : rl c- 0 

JI : r2 + rl + 4 

KI : r3 + rl + r2 
0 
: 

R : rl <- 4 
0 
: . 

.h : r2 <- rl + 4 
Kz : r3 <- rl + r2 

(4 
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time RB contents 

I 

II : rl <- 0 

4 : r2 <- rl + 4 
Kl : r3 x- rl + r2 

: 0 
R : rl s- 4 

Figure 5. Dependent sequence of instructions (a) not handled in 
Scheme S,,, but (b) handled in Scheme S,,,& 

- 
rl + 0 

- Independent 
Source . - 

-*. LtlFsib B 1-2 +-r1+4 

r3 t r1 + r2 1 2. Dependent 

Figure 6. Instructions with data dependence links, The arrows 
pointji-om the instruction using the value to the instruction pro- 
ducing the value. 

(illustrated in Figure 6). Instructions that produce values used by 
other instructions in the chain are called source instructions (c.g. 
A and B in the figure). Instructions whose source instructions arc 
not in the chain, which implies that their data dependence infor- 
mation is not available, are called independent instructions (e.g. 
A). Finally, instructions whose source instructions are in the 
chain are called the dependent instructions (e.g. B and C). 

Dependence chains are created as entries are inserted into the 
RB. To facilitate this process, we use a mapping table called a 
Register Source Table (RST). The RST has an entry for each 
architectural register; it tracks the RB entry which has (or will 
have) the latest result for that register. When an entry is rcscrvcd 
in the RB for an instruction, the RST entry for its destination 
register is updated to point to the reserved entry. If the instruc- 
tion which is the latest producer of a register is not in the RB, 
then the RST entry for that register is set to invalid. The RST is 
similar in spirit to the rename map used in register renaming, In 
essence, the RST is used to link a consumer instruction to the lat- 
est producer instruction by pointing to the “physical register” (RB 
entry) of the producer. Accordingly, another way of looking at 
scheme S,,+d is to consider it as a “physical register” version of 
scheme S,, which tracks dependences using architectural regls- 
ters. We now present details of this scheme’s operation. 

l RB entry: An RB entry (shown in Figure 4(c)) is similar 
to that of scheme S,, except for the addition of a src-index field, 
The dependence links are created by storing the RB index of the 
source instructions in this field. An invalid value is inserted in 
this field if the source doesn’t exist in the RB. 

l Reuse test: The reuse status of independent instructions 
is established as it was in scheme S, (resultvalid bit is set; mem- 
valid is set in the case of load instructions). A dependent instruc- 
tion is reused if its source instructions (in the RB), as indicated 
by the src-index field of its operands, are indeed the latest pro- 
ducers for its operands. This fact is established with the help of 
the RST, as we shall illustrate below with the help of an example 
(Figure 7). 

l State updates: As in schemes S, and S,, stores invali- 
date the loads to the same address (memvalid is reset). AS in 
scheme S,, independent instructions are invalidated when their 
operands registers are overwritten (resultvalid is reset). Dcpcn- 
dent instructions need not be invalidated on operand overwrites 
because their reuse status can be established using their dcpcn- 
dence information. Instead, they are invalidated when their 
source instructions are evicted from RB, i.e., when the depcn- 
dence information is losL3 To perform this operation the RB 
needs to be searched for entries whose src-index field matches 
the index (in RB) of the source instruction being evicted, Tha 
entries which result in a match are invalidated (resultvalid bit is 
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J1: r2trl +4 
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R: rl& 4 

12: rl 2 0 
J2: ti+-rl+4 
K2: r3trl+r2 

(a) State when I2 is 
encountered 

(b) Reusing J2 (c) Reusing K2 

Figure 7. Illustrating the reuse test for dependent instructions. (a) State when 12 is encountered. (b) Testing t2 C- r7 +4 for reusability. 
(c) Testing t3 c- t-1 + t2for reusability. (Instruction R is not shown in Z?B for clariv). 

reset). 

We illustrate the working of this scheme using the example 
shown in Figure 7 with the same dynamic stream of instructions 
as in Figure 5. Figure 7(a) shows the state of the RB and RST at 
the time when I2 is encountered in the dynamic instruction 
stream. At this time, the results of instructions 11, J1 and K1 are 
present in the RB with appropriate data dependence information 
(indicated by the links in RB and the index values in the src- 
index field). Since instructions Jt and Kt are stored in the RB as 
dependent instructions, their results are not invalidated by 
instruction R (unlike scheme S,). Instruction 12 reuses the result 
of It (since it is independent and valid) and the RST entry for rZ 
is updated to point to RB entry 10 (the latest producer for 
rZ)(Figure 7(b)). To establish the reusability of J2, the src-index 
field for rl is compared with the RST entry for rZ (Figure 7(b)). 
The match indicates that the source for rl in the dependence 
chain (which is II) is also the current producer for rZ; hence the 
result is reusable. Instruction K2 gets reused in a similar fashion 
(Figure 7 (c)). The instructions 12, J2, K2 can be reused simulta- 
neously if encountered in the same cycle. While performing the 
reuse test on each one, interdependence among them needs to be 
considered. The interdependence check is similar to what is done 
while renaming registers for multiple dependent instructions in 
the same cycle. 

4 Microarchitecture with a Reuse Buffer 

Figure8 shows a generic microarchitecture with an RB. 
Except for the RB (and the datapaths associated with it), the rest 
of the rnicroarchitecure is similar to what is found in a generic 
dynamically-scheduled superscalar processor. 

The Znstntction Fetch Unit fetches and places the instructions 
in the Instruction Queue. Instruction decode and register renam- 
ing is done in the Decode and Rename Unit. At this point, the RB 
is accessed to see if a reusable result for the instruction can be 
found. If a reusable result is found, the instruction does not need 
to be operated upon any further; it bypasses the Znstntction Win- 
dow (IW), and proceeds directly to the Reorder Bu@r (ROB) 

3. An optimization to this approach is to check whether the source instmction is the 
cumnt producer for its destination register (this can be done using the RST); if 
so. then the dependent inshuctions are not invalidated, instead they am treated as 
independent instruction thereafter. In OUT simulations we implemented this opti- 
mization. 

[8]. Loads bypass the IW only if both micro-operations, address 
calculation and the actual memory operation, can be reused. If a 
reusable result is not found in the RB, an entry is reserved in the 
RB where the result of the instruction will be placed after it is 
executed, setting it up for future reuse (in scheme Sn+,+ the RST 
has to be updated accordingly). Once in the IW, instructions pro- 
ceed as they would in any generic superscalar processor. After 
an instruction has executed, its results are stored in the reserved 
RB entry. In scheme S,, the operand values are also stored in the 
entry at this time. When an instruction commits, depending on 
the reuse scheme, it invalidates appropriate results in the RB. 

Since the RB contains state that will determine the outcome 
of future instructions, it needs to be maintained precisely (just 
like a register file). The straightforward way to do this is to 
update the RB only when an instruction is committed. However, 
this approach prevents speculatively-executed instructions from 
being entered into the RB, making it ineffective for one of our 
purposes, that of recovering squashed work. Accordingly, we 
must allow the RB to be updated speculatively, and take neces- 
sary actions (depending upon the reuse scheme) to ensure correct 
behavior. For scheme S,, inserting instructions into the RB spec- 
ulatively requires no special actions -the reuse test ensures that 
the correct result is obtained. For scheme Sn+d, the RST controls 
the reusability of instructions. Just like the rename map in a 
superscalar processor, checkpoints of the RST have to be taken 
when a speculation decision is made, and it has to be repaired in 
the case of an incorrect speculation. 

Other issues, such as interlocks to ensure correct operations, 
flushing on context switches, etc., are fairly routine, and we 
don’t discuss them further. 

Though in all previous discussions we assumed that an RI3 

Figure 8. Generic microarchitecture with a reuse buffer. 



access takes a single cycle, there is no need for this timing con- 
straint since accesses may be pipelined. For example, the access 
can begin in the fetch stage of the pipeline after the PC of the 
instruction is available (since only the PC is required for indexing 
the RB, the RB access can begin as early as in fetch stage); then 
only the reuse test needs to be performed in the decode stage. 
Other operations, like invalidations, evicting entries to make 
way for new instructions etc., can be pipelined as well. For 
example, when the RB gets full, entries can be freed for future 
inserts. This will ensure that free RB entries are always avail- 
able, eliminating the search for a victim entry from the critical 
path. Thus, despite its size, the RB seems unlikely to be the 
structure that determines the cycle time. 

5 Experimental Evaluation 

Our simulator is built on top of the SimpleScalar toolset [l], 
an execution-driven simulator based upon the MIPS-I ISA. The 
base simulator models in detail a Cway dynamically-scheduled 
processor with its first level of instruction and data cache mem- 
ory. The parameters for the base out-of-order simulator are listed 
in Table 1. We extended this base simulator to incorporate the 
RB and the three instruction reuse schemes described earlier. 
The RB is integrated with the processor pipeline as described in 
section 4. In our simulations, the RB is capable of supporting 4 
reads, 4 writes, and 4 independent invalidations simultaneously. 
We also assume that all RB accesses - read, write or invalidate 
- complete in one cycle, and that, like scheme Sn+d, scheme S, 
can reuse multiple dependent results in a single cycle (the maxi- 
mum length of a dependence chain reused in a cycle is equal to 
the read bandwidth of RB, which is 4 in the simulated configura- 
tion). This configuration of the RB, though aggressive, allows us 
to study the concept of instruction reuse without been limited by 
any particular implementation. 

5.1 Benchmarks 

The benchmark programs analyzed are listed in Table 2 along 
with their inputs and number of dynamic instructions executed 
on the timing simulator. There are five integer programs from 
SPEC ‘92 benchmark suite (gee, compress eqnrott, espresso, 
xlisp) and five integer programs from the SPEC ‘95 benchmark 
suite (go, m88ksim, vortex ijpeg and perl). Other integer pro- 

TabIe 2: Benchmark programs, inputs and instruction cormt, 

grams analyzed are: YucrZ, a VLSI channel router roudng a 
channel with 230 terminals, and Mpeg, a mpeg decoder which 
decodes a mpeg file with 71 frames. Except for go, m88ksim, 
vortex and ijpeg, all programs were run to completion. These 
four programs were run for first 1 billion instructions on a func- 
tional simulator (so that we do not do all our measurement in the 
initialization phases) and for the next 500 million cycles (or 
completion) on the timing simulator. The exact number of 
instructions simulated in a fixed number of cycles is dependent 
on the microarchitectural enhancements applied. Thus, for these 
programs (except ijpeg which ran to completion) in Table 2 WC 
show the approximate number of instructions executed on the 
timing simulator. All the benchmark programs were compiled 
using GNU gee (version 2.6.3), gas (version 2.5.2) and gld (vcr- 
sion 2.5) with maximum optimizations (-03). 

5.2 Experiments and ResuIts 

We performed several experiments to evaluate the concept of 
dynamic instruction reuse. Being the first paper on the concept 
(and mechanisms to exploit it), an exhaustive evaluntion of all 
interesting cases is not possible. Furthermore, we also don’t 
evaluate the concept in the abstract. Rather, we concentratc on 
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some key initial results for some sample configurations of the 
proposed mechanisms: how much dynamic reuse of instructions 
is there (as captured by our reuse schemes), what types of 
instructions are reused, how does it vary with RB size, and how 
much speedup results. We categorize total instruction reuse into 
squash reuse and general reuse, and show the contribution of 
either category to total speedup. We also evaluate the impact of 
associativity and the effectiveness of instruction reuse in allevi- 
ating dependences. 

For most of our experiments we use fully-associative RBs of 
three different sizes: 32, 128, and 1024 entries with a FIFO 
replacement policy. As mentioned earlier, we make no attempt to 
be selective about what instructions get inserted into the RB; that 
will be the subject of future work. We expect that with clever RB 
management policies, small RBs will be able to achieve the same 
performance as the larger RBs presented in the next several sec- 
tions. 

5.2.1 Instructions Reused 
Figure 9 shows the percentage of total dynamic instructions 

reused for the three different schemes, with 3 different RB sizes 
for each scheme. The harmonic mean (EM) over all benchmarks 
for each RB size is also shown in the figure. All the analyzed 
benchmarks exhibit significant instruction reuse, especially for 
the larger buffer sizes. For scheme S, with 1024 entries the per- 
centage of instructions reused are 63% for eqntott, 39% for 
espresso, 76% for yacd and 34% for xlisp. Even for small RB 
sizes the instructions reused are significant (21% for eqntott, 
24% for espresso, 26% for yacr2). For other benchmarks and for 
other reuse schemes the percentage of instruction reuse is also 
appreciable. 

For larger RB sizes, scheme S, does not reuse as many 
instructions as schemes S, and S,,+,+ This is because invalida- 
tions are more frequent in scheme S, (being done every time a 
register or memory location is written), which limit the number 
of reusable instructions irrespective of the RB size (for large RB 
sizes). Frequent invalidations help small size RBs (32 entries); 
the instructions which are more likely to be reused remain in the 
RB, resulting in better utilization. Thus, S, performs better than 
other two schemes for RB with 32 entries. 

In scheme S,, invalidations are infrequent: only stores that 
match loads cause invalidations. Accordingly, larger buffers are 
able to retain more reusable instructions, resulting in S, perform- 
ing better than S, and Sri+++ for RB with 1024 entries. The smaller 
number of invalidations also means that instructions which are 
not likely to be reused remain in RB. This phenomenon results in 
scheme S, performing worse than S, and S,M for an RB size of 
32 entries. 

Since scheme S a+,j uses selective invalidations (only indepen- 
dent instructions are invalidated), the frequency of invalidations 
is reduced while still retaining the ability to purge unusable 
instructions from the RB. Thus, Sad not only continues to bene- 
fit as the RB size is increased to 1024 entries but also out per- 
forms other two schemes for RB with 128 entries. 

To study the reuse characteristics of different instruction 
types, we divide the instructions into the following broad catego- 
ries: loads, address calculations, control and integer. The cate- 
gory address calculations consists of loads and stores for which 
only the address calculation part is reused. (As noted earlier, for 
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Figure 9. Percentage of instructions reusedfor RB sizes: 32,128 
and 1024 entries. The RB in these experiments wasjidly associa- 
tive. (a) Scheme S,, (b) Scheme S,, (c) Scheme S,,+b Hi14 stands for 
harmonic mean. 

stores we reuse only address calculation, and not the actual 
memory operation). The integer instructions are further divided 
into three subcategories based on the type of operands: two reg 
operands, one reg operands and immediate. Table 3 shows the 
percentage of instructions reused (average over all benchmarks) 
from each category using a 1024 entry RB (e.g. 36.9% of all 
integer instructions with two register operands are reused). As 
expected, most computation involving immediate constants is 
reused, Likewise, reuse of address calculation is also not very 
surprising. Somewhat surprising is that a large number of load 
instructions could be reused (an average of 21.2% for scheme 
S,). This reduces the demand for data cache bandwidth, which 



can possibly be exploited by reducing the number of data cache 
ports. 

Figure 10 shows the contribution of each instruction cate- 
gory to the total instruction reuse (averaged over all bench- 
marks), for 3 different RB sizes. We observe that each 
instruction category makes a measurable contribution to the total 
instruction reuse; reuse is not limited to some particular instruc- 
tion type. However, it is worth noting that almost 40-50% of the 
reuse comes from the load instructions (about 15%) and address 
calculations (25-35%). 

5.2.2 Speedups 
Figure 11 shows the speedups (IPC,it&lPCwi~ou~) 

obtained with the different reuse schemes for varying RB sizes. 
The harmonic mean (HM) over all the benchmarks for each RB 
size is also shown in the figure. The speedups are not as impres- 
sive as the percentage of instructions reused, however, they are 
still significant in many cases; they range from no speedup to 
19% for a 32 entry RB, from 2% to 28% for a 128 entry RB, and 
from 3% to 43% for a 1024 entry RB. The speedups are not as 
impressive because there are many other parameters that contrib- 
ute to overall performance (e.g., cache misses) and reducing the 
instruction execution component of the execution time may not 
result in a proportionate decrease in the overall time. With more 
ideal system parameters (for which instruction issuing and/or the 
lengths of dependence paths are more important), the speedups 

I immediate 1 51.0 1 98.1 1 90.4 

Table 3: Percent reuse per instruction categoryfor a 1024 entry 
RB 
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Figure 10. Contribution of each instruction category to total 
reuse. These numbers are average over all benchmarks for jidl 
associative RB. 

wiIl mirror the percentage of instructions reused more closely, 

Comparing the harmonic means of the speedups we can see 
that S, performs best (among the three schemes) for a 32 entry 
RB (harmonic mean 4.3), S,,+d performs best for a 128 entry RB 
(harmonic mean 7.2), S, works best for a 1024 entry RB (har- 
monic mean 14.9). Comparing percent instruction reuse 
(section5.2.1) with the resulting speedups, we see that the 
scheme that reuses more instructions also delivers better overall 
speedup. 
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Figure 11. Speedups obtained due to instruction reuse, The 
numbers are presented for RB entries 32, 128 and 1024. (a) 
Scheme S, (b) Scheme S,, (c) Scheme S,,J. HM stands for har- 
monic mean. 
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5.2.3 Squash Reuse vs. General Reuse 
Figure 12 gives a break down of the number of instructions 

reused into two categories: squash reuse and general reuse. 
Squash reuse and general reuse have been illustrated in Figure 1 
and Figure2 respectively. Due to a lack of space, we do not 
present the breakdown for all three schemes; Figure 12 contains 
the information only for scheme Sn+d. The figure suggests that, 
as one might expect (with a couple of exceptions), smaller RB 
sizes have a larger percentage of squash reuse. This is also true 
for the other schemes. 

Figure 13 separates the performance obtained by squash 
reuse from that obtained by general reuse for each benchmark for 
scheme &,-J with the three different RB sizes. Observe that the 
fraction of the speedup attributed to squash reuse is greater than 
the contribution of squash reuse to the total number of instruc- 
tions reused (compare with Figure 12). This suggests that squash 
reuse is more time critical than general reuse - the squash pen- 
alty impacts the bottom line more than the latency of an instruc- 
tion (or a set of instructions), especially in a dynamically 
scheduled processor. 

5.2.4 Set Associative RB 
Figure 14 presents the results for a Cway set associative, 128 

entry RB, for scheme S,. (Figure 14(a) presents the instruction 
reuse and Figure 14(b) presents the speedups.) Other schemes 
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Figure 12. Reuse break down in terms of general and squash 
reuse using scheme Sn+d. Bar ‘A’ stands for a 32 entry RB, ‘B’ 
Stan& for a 128 entry RB, and ‘C’ stands for a 1024 entry RB. 

Figure 13. Pe$ormance break down in terms of general and 
squash reuse using scheme S,,+d. Bar ‘A’ for a 32 entry RB, ‘B’ 
for a I28 entry RB, and ‘C’ for a 1024 entry RB 
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and buffer sizes show similar results. As we can see, the perfor- 
mance is comparable in either case. For some programs (e.g., 
eqntott, espresso, and compress) set associativity actually 
improves performance. This is due to the fact that the FIFO 
replacement policy that we use does not discriminate between 
reusable and not reusable instructions. Reusable entries are 
evicted even though non-reusable entries are present (the non- 
reusable entries are evicted in the set-associative case because of 
limited choice). 

5.2.5 Early resolution of data dependence 
We now evaluate the effectiveness of instruction reuse in 

reducing the length of dependence chains. To do so, we measure 
the average number of cycles an instruction spends waiting for 
its operands to be ready (this is called the data dependence reso- 
lution latency [5]). Figure 15 plots the data dependence resolu- 
tion latency with instruction reuse, normalized to that without 
instruction reuse. The data in the figure is for Cway set associa- 
tive RFJ implementing reuse scheme S,. As is evident from the 
figure, instruction reuse causes significant reduction in operand 
waiting times. For eqntott and espresso, the waiting time is cut 
down by 40% and 320/o, respectively, for an RB size of 128 
entries, suggesting that dynamic instruction reuse is quite effec- 
tive in collapsing true dependences. 
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Figure 15. Data dependence resolution latency with instruc- 
tion reuse normalized to that without instruction reuse. The 
result is shown for scheme S, using I-way set associative RLIs of 
three direrent sizes. 

6 Related Work and Discussion 

The idea of not having to redo computation is not a new one 
- it has been used before in several different contexts. A tech- 
nique called memoization has been used for functional and logic 
programs. The outcome of a function (or a rule) is saved in a 
table. If the function or the rule is encountered again with the 
same parameters then the result from the table is used instead of 
re-evaluation. Memoization is also used to reduce the running 
time of optimizing compilers, where the same data dependence 
test is carried out repeatedly. 

Harbison in [2][3] proposes a stack-oriented architecture, the 
Tree Machine, which uses a hardware mechanism, the value 
cache, for eliminating common subexpressions and loop invari- 
ant expressions. He keeps the result of a computation (called a 
phrase) in the value cache. A bit vector, called a dependency set, 
is associated with each result in the value cache to indicate the 
variables used in computing the result; the bit positions are 
determined by the address of the variables. When an address is 
overwritten, all the results in the value cache which have the bit 
set for that address are invalidated. If a phrase is encountered 
again, recomputation is avoided by reading the result from the 
value cache. This approach is similar to our second reuse 
scheme, scheme S,. Both perform reuse based on the architec- 
tural names of the operands (scheme S, uses the register speci- 
fier, while the value cache uses the memory address). The 
differences are highlighted later in this section. 

Richardson [7] introduces the notion of redundant computa- 
tion, which is computation that produces the same result repeat- 
edly because it gets the same value for its operands. In this work, 
the results of floating point operations are stored in a cache, 
called result cache. The index of the cache is obtained by hash- 
ing the operand values. The result cache is accessed in parallel 
with executing an floating point operation. If the result is found 
in the result cache then the operation is halted. 

In [6], Oberman and Flynn, propose the use of division 
caches and reciprocal caches for capturing the redundancy in the 
division and square root computation. The division caches are 
similar to Richardson’s result cache, but for divisions only. The 
reciprocal caches hold the reciprocals of the divisors. They help 
convert the high latency division operation to relatively low 
latency multiply operation. These caches are accessed using the 
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bits from the mantissa of the operands. 

There are several differences between our work and the work 
mentioned above. First, the above techniques are more special 
purpose. The value cache [2][3] approach is tailored for an archl- 
tecture which expresses computation in the form of parse trees 
(J’ree Machine). The result caches [7], and the division and 
reciprocal caches[6] target only floating point operations, Our 
approach is general purpose in that it does not assume any spe- 
cial architecture, and it captures reuse of any type of instruction 
(except stores). Second, the techniques referred to above ~CCCSS 
their respective result buffers (value cache in [3], result cache in 
[7] and division and reciprocal caches in [6]) by using either the 
operand address [3] or operand values [7][6], which arc only 
available later in the pipeline. Thus, the result buffer access is 
delayed till the execute stage, which restricts the usefulness of 
these techniques only to instructions which have multi-cycle 
latency ([7] uses it for floating point instruction, while [6] uscs it 
for floating point divides only). In contrast, the reuse schemes 
presented in this paper access the RB using the instruction 
address, and hence reuse occurs while the instruction is still in 
the decode stage. This has two advantages: first, even single 
cycle instructions benefit from reuse; second, the reused instruc- 
tion need not flow down the pipeline, which frees machine 
resources for other instructions to use. The third difference IS, 
since other techniques use operand values for indexing In the 
result buffer, unlike our schemes, they cannot reuse multiple 
dependent instructions simultaneously (the result of one instruc- 
tion would be needed to form the index for the dependent 
instruction) 

One of the benefits of instruction reuse is that it collapses 
true dependencies. Other techniques based on prediction have 
been proposed to achieve the same effect [4][5]. In [S], Lipnstl 
et. al. propose predicting the value of loads to collapse the true 
dependencies. In [4] they extend this concept to predict the value 
of registers. The fundamental difference from our schemes IS 
that these approaches are based on prediction. The instructions 
still must execute to generate result for later verification, Our 
schemes are not based on prediction, and the reused result !S 
guaranteed to be correct. 

7 Conclusions 

In this paper we introduced and studied the concept of 
dynamic instruction reuse. Empirical observations suggest thnt 
in a program execution, many instructions (and groups of 
instructions) are executed repeatedly with the same inputs, gen- 
erating the same results. We discussed two causes of this bchnv- 
ior: (i) the re-execution of (control-independent) computation 
when recovering from a branch mis-prediction, and (ii) the 
generic nature of programs which arc written to opcrnte on n 
variety of data inputs. 

We presented three schemes for exploiting the phenomenon. 
All three schemes buffer the outcome of an instruction in a rcim 
buffer from where future instructions can nccess it (if the opcr- 
ands match). The schemes differ in the way that they trnck the 
reuse status of an instruction: scheme S, uses operand vnlues, 
scheme S, uses operand names, and scheme Sri+++ uses operand 
names as well as dependence information. By dynamically WS- 

ing instruction results, we are able to (i) cut down on the 
resources required to execute the instructions, and (ii) cut down 



on the time that it takes to know the outcomes of sequences of 
dependent instructions, i.e., reduce the length of critical paths of 
computation. 

We evaluated tbe effectiveness of the proposed schemes 
using 3 different buffer sizes: 32, 128, and 1024 entries, using 
execution-driven simulation. Significant instruction reuse was 
found in many cases, with as many as 76% of the instructions 
being reused in one case. Furthermore, reuse was not limited to a 
particular category of instructions; a significant number of 
instructions were reused from all the broad categories of instruc- 
tions considered. We also measured the resulting speedup in the 
program execution time. The speedup is not as pronounced as 
the percentage of instructions reused, but it is still quite signifi- 
cant, with as much as 43% speedup in one case. We also 
observed that a Cway set associative reuse buffer compared 
favorably in performance for the cases considered. Finally, we 
measured the effectiveness of reuse in cutting down data depen- 
dence path lengths by measuring the average time that an 
instruction waits for operands. We found that the waiting time 
was cut down by 40% in one case. 

This paper represents only a first attempt at studying a phe- 
nomenon (and associated means to exploit it) that could have 
significant implications for the rnlcroarchitecture of the future 
processors. There is a great deal of work that remains to be done; 
this work can broadly be classified into two-related categories: 
(i) better exploiting the reuse phenomenon, and (ii) impact of 
reuse on other microarchitectural components. Several issues 
need to be investigated in either category. In the former, we have 
observed that only about 20% of the instructions inserted into the 
RB constitute all the reuse. This calls for selective insertion poli- 
cies that result in better reuse characteristics with small reuse 
structures. Another issue that needs to be investigated is better 
invalidation mechanisms (for schemes S, and S,d) such as 
invalidation using time-stamps. Software transformations that 
facilitates reuse are also an area that deserves study. Consider- 
able work is also needed in the second category. Success at 
instruction reuse might cause us to rethink the need for aggres- 
sive speculation structures: there might be no need to predict the 
outcome of a branch if its outcome can be determined from a 
reuse buffer. Likewise, there might be no need to carry out value 
prediction, if the value can be determined from the reuse buffer. 
In this case, resources that would otherwise be spent in making 
more powerful speculation structures might be better spent in 
structures that improve instruction reuse, backed up by less pow- 
erful speculation structures. 
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