
Value Locality and Load Value Prediction

Mikko H. Lipasti, Christopher B. Wilkersonl, and John Paul Shen

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh PA, 15213

{mhl,shen} @ece.cmu.edu

Abstract

Since the introduction of virtual memory demand-paging
and cache memories, computer systems have been exploiting

spatial and temporal locality to reduce the average latency of a

memory reference. In thk paper, we introduce the notion of
value locality, a third facet of locality that is frequently present

in real-world programs, and describe how to effectively capture

and exploit it in order to perform load value prediction. Tempo-

ral and spatial locality are attributes of storage locations, and

describe the future likelihood of references to those locations or

their close neighbors. In a similar vein, value locality describes
the likelihood of the recurrence of a previously-seen value within

a storage location. Modern processors already exploit value

locality in a very restricted sense through the use of control spec-

ulation (i.e. branch prediction), which seeks to predict the future
value of a single condition blt based on previously-seen values.
Our work extends this to predict entire 32- and 64-bit register
values based on previously-seen values. We find that, just as con-

dition bits are fairly predictable on a per-static-branch basis,

full register values being loaded from memory are frequently

predictable as well. Furthermore, we show that simple microar-

chitectural enhancements to two modern microprocessor imple-

mentations (based on the PowerPC 620 and Alpha 21164) that

enable load value prediction can effectively exploit value locality
to collapse true dependencies, reduce average memory latency

and bandwidth requirements+ and provide measurable perfor-

mance gains.

1. Introduction and Related Work

The gap between main memory and processor clock speeds is
growing at an alarming rate [RD94]. As a result, computer system
performance is increasingly dominated by the latency of servicing

memory accesses, particularly those accesses which are not easily

predicted by the temporal and spatial locality captured by conven-
tional cache memory organizations [Smi82]. Conventional cache

memories rely on a program’s temporal and spatial locali~ to
reduce the average memory access latency. Temporal locali~

describes the likelihood that a recently-referenced address will be
referenced again soon, while spatial locali~ describes the likeli-
hood that a close neighbor of a recently-referenced address will be
referenced soon. Designing the physical attributes (e.g. size, line

size, associativity, etc.) of a cache memory to best match the tem-
porat and spatial locality of programs has been an ongoing challenge
for researchers and designers alike. Some have proposed adding
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additional features such as non-blocking fetches [Kro81 ], victim
caches [Jou90], and sophisticated hardware prefetching [CB94] to

alleviate the access penalties for those references that have locality

characteristics that are not captured by more conventional designs.
Others have proposed altering the behavior of programs to

improve the data locality of programs so that it better matches the

capabilities of the cache hardware. Such improvements have prima-

rily been limited to scientific code with predictable control flow and

regular memory access patterns, due to the ease with which rudi-

mentary loop transformations can dramatically improve temporal

and spatial locality [ASKL8 1,CMT94]. Explicit prefetching in
advance of memory references with poor or no locality has also been

examined extensively in this context, both with [CMCH9 1,CB94]

and without additional hardware support [CKP9 1,MLG92].
Dynamic hardware techniques for controlling cache memory allo-

cation that significantly reduce memory bandwidth requirements
have also been proposed [TFMP95]. In addition, alternative pipeline
configurations that reduce average memory access latency via early

execution of loads have been examined [Jou88,AS95].
The most relevant prior work related to ours is the Tree Machine

[Har80,Har82], which uses a value cache to store and lookup the

results of recurring arithmetic expressions to eliminate redundant

computation (the value cache, in effect, performs common subex-

pression elimination [ASU86] in hardware). Richardson follows up

on this concept in [Ric92] by introducing the concepts of trivial

computation, which is defined as the trivialization of potentially-
complex operations by the occurrence of simple operands; and
redundant computation, where an operation repeatedly performs the

same computation because it sees the same operands. He proposes
a hardware mechanism (the result cache) which reduces the latency

of such trivial or redundant complex arithmetic operations by stor-

ing and looking up their results in the result cache.
In this paper, we introduce value locality, a concept related to

redundant computation, and demonstrate a technique--Load Value
Prediction, or LVP--for predicting the results of load instructions at

dispatch by exploiting the affinity between load instruction

addresses and the values the loads produce. LVP differs from Har-
bison’s value cache and Richardson’s result cache in two important
ways: first, the LVP table is indexed by instruction address, and
hence value lookups can occur very early in the pipeline; second, it

is speculative in nature, and relies on a verification mechanism to
guarantee correctness. In contrast, both Harbison and Richardson
use table indices that are only available later in the pipeline (Harbi-
son uses data addresses, while Richardson uses actual operand vrd-
ues); and require their predictions to be correct, hence requiring

mechanisms for keeping their tables coherent with all other compu-
tation.

2. Value Locality

In this paper, we introduce the concept of value locali~, which we
define as the likelihood of a previously-seen value recurring repeat-
edly within a storage location. Although the concept is general and

can be applied to any storage location within a computer system, we
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have limited our current study to examine only the value locality of

general-purpose or floating-point registers immediately following

memory loads that target those registers. A plethora of previous

work on dynamic branch prediction (e.g. [Smi8 1,YP91]) has

focused on an even more restricted application of value locality,
namely the prediction of a single condition bit based on its past

behavior. This paper can be viewed as a logical continuation of that
body of work, extending the prediction of a single bit to the predic-

tion of an entire 32-or 64-bit register.

Intuitively, it seems that it would be a very difficult task to dis-

cover any useful amount of value locality in a register. After all, a

32-bit register can contain any one of over four billion values--how

could one possibly predict which of those is even somewhat likely
to occur next? As it turns out, if we narrow the scope of our predic-

tion mechanism by considering each static load individually, the

task becomes much easier, and we are able to accurately predict a
significant fraction of register values being loaded from memory.

What is it that makes these values predictable? After examining
a number of real-world programs, we assert that value locality exists
primarily for the same reason thatpardal evaluation [SIG91] is such

an effective compile-time optimization; namely, that real-world

programs, run-time environments, and operating systems incur

severe performance penalties because they are general by design.

That is, they are implemented to handle not only contingencies,

exceptional conditions, and erroneous inputs, all of which occur rel-
atively rarely in real life, but they are also often designed with future

expansion and code reuse in mind. Even code that is aggressively

optimized by modem, state-of-the-art compilers exhibits these ten-
dencies. We have made the following empirical observations about

the programs we examined for this study, and feel that they are help-

ful in understanding why value locality exists:
●

●

●

●

●

●

●

●

●

Data redundancy: Frequently, the input sets for real-world

programs contain data that has little variation. Examples of this

are sparse matrices, text files with white space, and empty cells
in spreadsheets.

Error-checking Checks for infrequently-occurring conditions

often compile into loads of what are effectively run-time con-
stants.
Program constants: It is often more efficient to generate code

to load program constants from memory than code to construct
them with immediate operands.

Computed branches: To compute a branch destination, for

e.g. a switch statement, the compiler must generate code to
load a register with the base address for the branch, which is a

run-time constant.
Vktual function calls: To call a virtual function, the compiler
must generate code to load a function pointer, which is a run-

time constant.

Glue code: Due to addressability concerns and linkage con-
ventions, the compiler must often generate glue code for call-

ing from one compilation unit to another. This code frequently

contains loads of instruction and data addresses that remain

constant throughout the execution of a program.
Addressability: To gain addressability to non-automatic stor-

age, the compiler must load pointers from a table that is not
initialized until the program is loaded, and thereafter remains

constant.

Call-subgraph identities: Functions or procedures tend to be
called by a fixed, often small, set of functions, and likewise
tend to call a fixed, often small, set of functions. As a result,
loads that restore the link register as well as other callee-saved
registers can have high value locality.

Memory alias resolution The compiler must be conservative
about stores aliasing loads, and will frequently generate what

aPPem to be redundmt loads to resolve those ~iases.

● Register spill code: When a compiler runs out of registers,

variables that may remain constant are spilled to memory and

reloaded repeatedly.

Naturally, many of the above are subject to tbe particulars of the

instruction set, compiler, and run-time environment being

employed, and it could be argued that some of them could be elim-
inated with changes in the ISA, compiler, or run-time environment,

or by applying link-time or run-time code optimizations (e.g.

[SW94, KEH93]). However, such changes and improvements have

been slow to appea~ the aggregate effect of above factors on value
locality is measurable and significant today on the two modem RISC

ISAs that we examined, both of which provide state-of-the-art com-

pilers and run-time systems. It is worth pointing out, however, that

the value locality of particular static loads in a program can be sig-

nificantly affected by compiler optimization such as loop unrolling,
loop peeling, tail replication, etc., since these types of transforma-

tions tend to create multiple instances of a load that may now exclu-

sively target memory locations with high or low value locality. A

similar effect on load latencies (i.e. per-static-load cache miss rates)
has been reported by Abraham et al. in [ASW+93].

TABLE 1. Benchmark Descriptions

“et ‘=’@;”I ‘puts”H
CC1-271 GCC 2.7.1; genoutput.i 102M 117M

SPEC95 flaw from SPEC95

ccl GCC 1.35 from insn-recog.i I 146M N/A

SPEC92 from SPEC92

cjpeg JPEG encoder 128x128 BW I 2.8M 10,7M

image

compress SPEC92 file 1 iter. with 1/2

I

38.8M 50.2M

compression of SPEC92

eqntott SPEC92 Eqn to Mod. input I 25.5M 44.OM

truth table from SPEC92

gawk GNU awk; 1.7M simulator 25.OM 53.OM

result parser output file

gperf GNU hash fn gperf-a-k l-13 7.8M 10.8M

generator -D -o diet

grep gnu-grep -c Same as com- 12.3M 2.9M

“st*mo” uress

mpeg Berkeley MPEG 4 frames w/

I

8.8M 15.lM

decoder fast dithering

perl SPEC95 Ana- find “admits” I 105M 114M

gram search in 1/8 of irmut

quick Quick sort 5,000 random

I

688K 1.lM

elements.

Sc Spreadsheet Short input

I

78.5M 107M

from SPEC92 from SPEC92

xlisp SPEC92 LISP 6 queens I 52.lM 60.OM

interpreter

doduc Nuclear reactor Tiny input from 35.8M 38.5M

simulator SPEC92

hydro2d IComputation of IShort input I 4.3MI 5.3M

Igalactic jets I from SP-EC92 I
swm256 [Shallow water I 5 iterations (vs. I 43.7M ] 54.8M

model 1,200) ‘ I
tomcatv IMesh generation 14 iterations (vs. 30.OM I 36.9M

progr& 100)

Total 720M 721h’1
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The benchmark set we use to explore vrdue locality and quantify

its performance impact is summarized in Table 1. We have chosen

thirteen integer benchmarks, five of them from SPEC ’92, one from
SPEC ’95, along with two image-processing applications (cjpeg and

mpeg), two commonly-used unix utilities (gawk and grep), GNU’s

perfect hash function generator (gperf), a more recent version of
GCC (cc1-271), and a recursive quicksort. In addition, we have cho-

sen four of the SPEC ’92 floating-point benchmarks. All bench-

marks are compiled at full optimization with each manufacturer’s

reference compilers, with the exception of gperf (our token C++

benchmark), which is compiled with IBM’s CSET compiler under

AIX, and GNU’s g++ under OSF/1. All benchmarks are run to com-
pletion with the input sets described, but do not include supervisor-
state instructions, which our tracing tools are unable to capture.

Figure 1 shows the value locality for load instructions in each of

the benchmarks. The value locality for each benchmark is measured
by counting the number of times each static load instruction

retrieves a value from memory that matches a previously-seen value
for that static load and dividing by the total number of dynamic loads

in the benchmark. Two sets of numbers are shown, one (light bars)
for a history depth of one (i.e. we check for matches against only the
most-recently-retrieved vahre), while the second set (dark bars) has

a history depth of sixteen (i.e. we check against the last sixteen
unique vrrlues)l. We see that even with a history depth of one, most

of the integer programs exhibit load vahre locality in the 50% range,
while extending the history depth to sixteen (along with a hypothet-
ical perfect mechanism for choosing the right one of the sixteen val-
ues) can improve that to better than 8070. What this means is that the
vast majority of static loads exhibit very little variation in the vahres
that they load during the course of a program’s execution. Unfortu-
nately, three of our benchmarks (cjpeg, swm256, and tomcatv) dem-

onstrate poor load value locality.

1. The history values are stored in a direct-mapped table with lK
entries indexed but not tagged by instruction address, and the val-
ues (one or sixteen) stored at each entry are replaced with an LRU
policy, Hence, both constructive and destructive interference can
occur between instructions that map to the same entry.

Integer Data

100.0 I m I

$ 80.0

$60.0

; 40.0
~
$ 20.0

0.0
FP Data

~ 80,0

$60.0 –

: 40.0
~
SJ 20.0

0.0 m

Data Addresses

100.0, . . I

~ 80.0

$60.0

: 40.0
~
$ 20.0

nn
“.”

Instruction Addresses

100.0

~ 80.0

~ 60.0
0

: 40.0
~
g 20.0

0.0

FIGURE 2. PowerPC Value Localitv bv Data TvDe,The
light bars show value locality for a hist&y depth of o~ej while
the dark bars show it for a history depth of sixteen.

To further explore the notion of value locality, we collected data

that classifies loads based on the type of data being loaded: floating-

point data, non-floating-point data, instruction addresses, and data
addresses (pointers). These results are summarized in Figure 2 (the
results shown are for the PowerPC architecture only). Once again,

two sets of numbers are shown for each benchmark, one for a history
depth of one (light bars), and the other for a depth of sixteen (dark
bars). In general, we see that address loads tend to have better locrd-
ity than data loads, with instruction addresses holding a slight edge

over data addresses, and integer data loads holding an edge over
floating-point loads.

3. Exploiting Value Locality

The fact that memory loads in many programs demonstrate a sig-
nificant degree of value locality opens up exciting new possibilities
for the microarchitect. In this paper, we describe and evaluate the

Load Value Prediction Unit, a hardware mechanism which

addresses both the memory latency and memory bandwidth prob-
lems in a novel fashion. First, by exploiting the affinity between load
instruction addresses and the values being loaded, we are able to

reduce load latency by two or more cycles. Second, we can reduce
memory bandwidth requirements by identifying highly-predictable
loads and completely bypassing the conventional memory hierarchy
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TABLE 2. LVP Unit Conjurations. For history depth greater
than one, a hypothetical perfect selection mechanism is assumed.

Constant 1024 1 256 1 128

Limit 4096 16/Perf 1024 2 128

Perfect m =dPerf - Perfect c
for these loads. The LVP Unit consists of a load value prediction
table or LVPT (Section 3.1) for generating vrdue predictions, a load
classification table or LCT (Section 3.2. and Section 3.3) for decid-

ing which predictions are likely to be correct, and a constant verifi-
cation unit or CVU (Section 3.3) that replaces accessing the
conventional memory hierarchy for verifying highly-predictable

loads.

3.1. Load Value Prediction Table

The LVPT is used to predict the value being loaded from memory

by associating the load instruction with the value previously loaded

by that instruction. The LVPT is indexed by the load instruction
address and is not tagged, so both constructive and destructive inter-

ference can occur between loads that map to the same entry (the

LVPT is direct-mapped). Table 2 shows the number of entries (col-
umn 2) as well as the history depth per entry (column 3) for the four
LVPT configurations used in our study. Configurations with a his-

tory depth greater than one assume a hypothetical perfect mecha-
nism for selecting the correct vrdue to predict, and are included to

explore the limits of history-based load value prediction.

3.2. Dynamic Load Classification.

Load value prediction is useful only if it can be done accurately,
since incorrect predictions can lead to increased structural hazards

and longer load latency (the misprediction penalty is discussed fur-
ther in Section 4). In our experimental framework we classify static

loads into three categories based on their dynamic behavior. There

are loads whose values are unpredictable with the LVPT, those that
are predictable, and those that are almost always predictable. By

classifying these separately we are able to take full advantage of

each case. We can avoid the cost of a misprediction by identifying

the unpredictable loads, and we can avoid the cost of a memory

access if we can identify and verify loads that are highly-predictable,

In order to determine the predictability of a static load instruction,

it is associated with a set of history bits. Based on whether or not pre-

vious predictions for a given load instruction were correct, we are

able to classify the loads into three general groups: unpredictable,
predictable, and corzstarrtloads. The load classification table or LCT

consists of a direct-mapped table of n-bit saturating counters
indexed by the low-order bits of the instruction address. Table 2
shows the number of entries (column 4) as well as the size of each
saturating counter (column 5) for the LCT configurations used in our

study. The 2-bit saturating counter assigns the four available states
O-3 as “don ‘t predict”, “don ‘tpredict”, “predict” and “constant,”

while the 1-bit counter assigns the two states as “don ‘t predict” and

“constant.” The counter is incremented when the predicted value is

correct and decremented otherwise. In Table 3, we show the per-

centage of all unpredictable loads the LCT is able to classify as

unpredictable (columns 2,4,6, and 8) and the percentage of predict-

able loads the LCT is able to correctly classify as predictable (col-
umns 3, 5, 7, and 9) for the Simple and Limit configurations.

3.3. Constant Verification Unit

Although the LCT mechanism can accurately identify loads that

retrieve predictable values, we still have to verify the correctness of
the LVPT’S predictions. For predictable loads, we simply retrieve

the value from the conventional memory hierarchy and compare the

predicted value to the actual value (see Figure 3). However, for

highly-predictable or constant loads, we use the constant verifica-

tion unit, or CVU, which allows us to avoid accessing the conven-

tional memory system completely by forcing the LVPT entries that

correspond to constant loads to remain coherent with main memory.
TABLE 3, LCT EM Rates. Percentages shown are fractions of

unpredictable and predictable loads identified as such by the LCT.

TABLE 4. Successful Constant Identification Rates.
Percentages shown are ratio of constant loads to all dynamic loads.

cjpeg 97% 61% 92% 61% 93% 75~o 93% 82%

compress 99% 94% 97% go~o 98% 56% 97% 94%

doduc 83% 75% 82% 92% 84% 68% 78% 92%
L I I
eqntott 91% 85% 88% 99% 68% 80% 83% 97%

gawk 85’%0I 92% 44% I 95% 74% 86% 59% 93%

gperf 93% 75% 76% 97% 77% 79% 77% 91%

grep 93% 88% 67% 81% 85% 82% 92% 92%

hydro2d 82% 85% 63% 91% 86% 80% 60% 89%

E#+H+EE
86% 90% 78% 93% 84% 88% 85% 93%

84?lo 71% 65% 93% 83% 66% 74% 93%

98?lo 84% 93% 89% 98% 95% 96% 95%

77% 90% 59% 97yo 86% 85% 78% 95%

swm256 I 99% I 89% I 99% I 937.1 99% I 86% I 99% I 90%

tomcatv 1100% I 89% 1100% I 98’%[ 99% I 68% I 99%! 70%

lcjpeg I 4% I 7%1 17%1 17% I.- -
compress I 33% I 34%[ 36% I 42%

doduc I 5%1 20%1 5%1 15%

eantott 19%1 44%1 21901 35%
1 1 1 m 1

gawk 10%I 287.1 31%1 31%

gperf 2170 39% 38% 56%

grep 16% 24% 18% 22%

hvdro2d 2% 8% 3yo 10’%0

Iswm256 I 8% I 17%1 12%1 12%1
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For the LVPT entries that are classified asconstants by the LCT,
the data addressand the index of the LVPT are placed in a separate,
fully-associative table inside the CVU. This table is kept coherent
with main memory by invalidating any entries where the data
address matches a subsequent store instruction. Meanwhile, when

the constant load executes, its data address is concatenated with the

LVPT index (the lower bits of the instruction address) and the

CVU’s content-addressable-memory (CAM) is searched for a

matching entry. If a matching entry exists, we are guaranteed that the

value at that LVPT entry is coherent with main memory, since any

updates (stores) since the last retrieval would have invalidated the

CVU entry. If one does not exist, the constant load is demoted from

constant to just predictable status, and the predicted value is now
verified by retrieving the acturd value from the conventional mem-

ory hierarchy.
Table 4 shows the percentage of all dynamic loads that are suc-

cessfully identified and treated as constants. This can also be thought
of as the percentage decrease in required bandwidth to the L1 data

cache. We also observed a slight decrease (around 1%) in the sec-

ond-level-cache bandwidth. Although we were disappointed that we

were unable to obtain a more significant reduction, we are pleased

tc~note that load value prediction, unlike other speculative tech-

niques like prefetching and branch prediction, reduces, rather than

increases, memory bandwidth requirements.

3,4. The Load Value Prediction Unit

The interactions between the LVPT, LCT, and CVU are described

in Figure 3 for both loads and stores. When a load instruction is
fetched, the low-order bits of the load instruction address are used
tc, index the LVPT and LCT in parallel. The LCT (analogous to a

branch history table) determines whether or not a prediction should
be made, and the LVPT (analogous to a branch target buffer) for-

wards the value to the load’s dependent instructions. Once the

address is generated, in stage EX 1 of the sample pipeline, the cache

access and CVU access progress in parallel. When the actual value

returns from the L1 data cache, it is compared with the predicted

data, and the dependent speculative instructions are consequently
either written back or reissued. Since the search on the CVU cannot

be performed in time to prevent initiating the memory access, the

only time the CVU is able to prevent the memory access is when a
bid conflict or cache miss occurs. In either case, a CVU match will

cancel the subsequent retry or cache miss. During the execution of

a store, a fully-associative lookup is performed on the store’s address
and all matching entries are removed from the CVU.

3.5. LVP Unit Implementation Notes

An exhaustive investigation of LVP Unit design parameters and
implementation details is beyond the scope of this paper. However,

to demonstrate the validity of the concept, we analyzed sensitivity

to a few key parameters, and then selected several design points to
use with our microarchitectural studies (Section 6). We realize that
the designs we have selected are by no means optimal, minimrd, or

very efficient, and could be improved significantly. For example, we
reserve a full 64 bits per value entry in the LVP Table, while most

instructions generate only 32 or fewer bits, and space in the table

could certainly be shared between such entries with some clever
engineering. The intent of this paper is not to present the details of
such a design; rather, our intent is to explore the larger issue of the

impact of load value prediction on microarchitecture and instruc-

tion-level parallelism, and to leave such details to future work.
However, we note that the LVP Unit has several characteristics

that make it attractive to a CPU designer. First of all, since the LVPT
and LCT lookup index is available very early, at the beginning of the
in stmction fetch stage, access to these tables can be superpipelined
over two or more stages. Hence, given the necessary chip space,
even relatively l~ge tables could be built without impacting cycle

tilme. Second, the design adds little or no complexity to critical delay

Fetch
.—

Disp
.-

3X1
.—

2X2
.—

~om~

Sample
Load PC

Sample
Load LCT Store
Execution Execution

Cache
Address

- “ Ai3drER~

u
FIGURE 3. Block Diagram of the LVP Mechanism. The
Load PC is used to index into the LVPT and LCT to find a
value to predict and to determine whether or not a prediction
should be made. Constant loads that find a match in the CVU
needn’t access the cache, while stores cancel all matching
CVU entries. When the load completes, the predicted and
actual vrdues are compared, the LVPT and LCT are updated,
and dependent instructions are. reissued if necessary.

uaths in the microarchitecture. Rather. table lookum and verifica-

~ions are done in parallel with existing activities & are serialized
with a separate pipeline stage (value comparison). Finally, we reit-

erate that the LVP Unit, though speculative in nature, actually
reduces memory bandwidth requirements, rather than aggravating

them.

4. Microarchitectural Models

In order to validate and quantify the performance impact of load
value prediction and constant identification, we implemented trace-

driven timing models for two significantly different modem micro-
processor implementations--the PowerPC 620 [DNS95, L~95]

and the Alpha AXP 21164 [BK95]; one aggressively out of order,

the other clean and in order. We chose to use two different architec-

tures in order to alleviate our concern that the value locality behavior

we observed is perhaps only an artifact of certain idioms in the

instruction set, compiler, inn-time environment, and/or operating

system we were mming on, rather than a more universal attribute of
general-purpose programs. We chose the PowerPC 620 and the AXP
21164 since they represent two extremes of the microarcbitectural

spectrum, from complex “brainiac” CPUS that aggressively and
dynamically reorder instructions to achieve a high IPC metric, to the
clean, straightforward, and deeply-pipelined “speed demon” CPUS

TABLE 5. Instruction Latencies

I
.–-–-=––––––=––

I I t I I
IComdex Integer i 1-351 1-351 161 161. I 1 I I

Load/Store 11 21 11 2

Simple FP I 11 31 11 4

Complex FP 181 181 11 36-65

Branch(pred/mispr) I 11 0/1+1 11 0141
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~lGURE 4. PowerPC 620 and 620+ Block Diagram. Buffer
sizes are shown as (620/620+).

that rely primarily on clock rate for high performance [Gwe941. The
issue aid result ‘latencies for comm&” instruction types on both

machines are summarized in Table 5.

4.1. The PowerPC 620 Machine Model

The rnicroarchitecture of the PowerPC 620 is summarized in

Figure 4. Our model is based on published reports on the PowerPC

620 [DNS95, LTT95] and accurately models all aspects of the
microarchitecture, including branch prediction, fetching, dispatch-
ing, register renaming, out-of-order issue and execution, result for-

warding, the non-blocking cache hierarchy, store-to-load alias
detection and instruction refetching, and in-order completion. To

allsviate some of the bottlenecks we found in the 620 design, we also

mc}del an aggressive “next-generation” version of the 620, which we

term the 620+. The 620+ differs from the 620 by doubling the num-

ber of reservation stations, FPR and GPR rename buffers, and com-

pletion buffer entries; adding an additional load/store unit (LSU)
without an additional cache port (the base 620 already has a dual-

banked data cache); and relaxing dispatching requirements to allow

up to two loads or stores to dispatch and issue per cycle. In addition,
we add a LVP Unit that predicts load values by keeping a value his-
tory indexed by load instruction addresses.

‘The LVP Unit predicts the values during dispatch, then forwards
them speculatively to subsequent operations via the 620’s rename

busses. Dependent instructions are able to issue and execute imme-

diately, but are prevented from completing architecturally and are
forced to retain possession of their reservation stations. Specula-

tively-forwarded values are tagged with the uncommitted loads they

depend on, and these tags are propagated to the results of any sub-

sequent dependent instructions. Meanwhile, uncommitted loads

execute in the loadlstore pipe, and the predicted values are verified

by either a CVU address match or a comparison against the actual
values retrieved by the loads. Once a load is verified, all the depen-

dent operations are either ready for in-order completion and can
release their reservation stations (in the case of a correct prediction),
or restart execution with the correct load values (if the prediction is
incorrect). Since the loadktore unit supports multiple non-blocking
loads on cache misses, verifying a predicted value can take up to

dozens of cycles, allowing the processor to speculate several levels

down the dependency chain beyond the load, executing instructions
and resolving branches that would otherwise be blocked by true
dependencies.

The worst-case penalty for an incorrect load value prediction in
this scheme, as compared to not predicting the value in question, is
one additional cycle of latency, along with structural hazards that
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FIGURE 5. Alpha AXP 21164 Block Diagram.

might not have occurred otherwise. The penalty occurs only when

a dependent instruction has already executed speculatively, but is
waiting in its reservation station for the load value to be committed

or corrected. Since the load value comparison takes an extra cycle

beyond the standard two-cycle load latency, the dependent instruc-

tion will reissue and execute with the correct load value one cycle
later than it would have had there been no prediction. In addition, the

earlier incorrect speculative issue may cause a structural hazard that
prevents other useful instructions from dispatching or executing. In

those cases where the dependent instruction has not yet executed

(due to structural or other unresolved data dependencies), there is no

penalty, since the dependent instmction can issue as soon as the
loaded value is available, in parallel with the value comparison in the
load/store pipeline. In any case, due to the LCT which accurately
prevents incorrect predictions, the misprediction penalty does not

significantly affect performance.
There can also be a structural hazard penalty even in the case of

a correct prediction. Since speculative values are not verified until

one cycle after the actual values become available, speculatively-

issued dependent instructions may end up occupying their reserva-

tion stations for one cycle longer than they would have had there

been no prediction

4.2. The Alpha AXP 21164 Machine Model

Our in-order processor model, summarized in Figure 5, differs
from the actual AXP 21164 [BK95] in three ways. First, in order to
accentuate the in-order aspects of the AXP 21164 we omitted the
MAF (miss address file) which enables nonblocking L1 cache

misses. We omitted the MAF from both our baseline 21164 config-

uration as well as our enhanced LVP configurations. Second, in
order to allow speculation to occur in our LVP configurations, we
must compare the actual data returned by the data cache and the pre-
dicted data. Since the distance between the data cache and the write-

back is already a critical path in hardware, the comptison requires
an extra stage before writeback. The third modification, the addition
of the reissue buffer, allows us to buffer instruction dispatch groups
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that contain predicted loads. With this feature, we are able to redis-
patch instructions when a misprediction occurs with only a single-
cycle penalty. The latter modifications apply only to our LVP con-
figurations, and not to the baseline 21164 model.

In order to keep the AXP 21164 model as simple as possible,

when any one of two dispatched loads is mispredicted then all of the

eight possible instructions in flight are squashed and reissued from
the reissue buffer regardless of whether or not they are dependent on

the predicted data. Since the 21164 is unable to stall anywhere past

the dispatch stage, we are unable to predict loads that miss the L1

data cache. However, when an L1 miss occurs, we are able to return

to the non-speculative state before the miss is serviced. Hence, there

is no penalty for doing the prediction. The inability of our LVP Unit

to speculate beyond an L1 cache miss in most cases means that the
LVP Unit’s primary benefit is the provision of a zero-cycle load

[AS95].
Typically, we envision the CVU as a mechanism for reducing

bandwidth to the cache hierarchy (evidence of this is discussed in

Section 6,1), However, since the 21164 is equipped with a true dual-
ported cache and two load-store units it is largely unaffected by a
reduction in bandwidth requirement to the LI cache. In addition to

reducing L2 bandwidth, the primary benefit of the CVU in the 21164

model is that it enables those predictions identified as constants to

proceed regardless of whether or not they miss the L1 data cache.

Hence, the only LVP predictions to proceed in spite of an L1 cache

miss are those that are verified by the CVU.

5. Experimental Framework

Our experimental framework consists of three main phases: trace
generation, LVP Unit simulation, and microarchitectural simula-

tion. All three phases are performed for both operating environ-
ments (IBM AIX and DEC OSF/1),

For the PowerPC 620, traces are collected and generated with the

TRIP6000 instruction tracing tool. TRIP6000 is an early version of

a software tool developed for the IBM RS/6000 that captures all

instruction, value and address references made by the CPU while in

user state. Supervisor state references between the initiating system
call and the corresponding return to user state are lost. For the Alpha
AXP 21164, traces are generated with the ATOM tool [SE94],

which also captures user state instruction, value and address refer-

ences only. The instruction, address, and value traces are fed to a
model of the LVP Unit described earlier, which annotates each load

in the trace with one of four value prediction states: no prediction,

incorrect prediction, correct prediction, or constant load. The amo-
tated trace is then fed in to a cycle-accurate microarchitectural sim-
ulator that correctly accounts for the behavior of each type of load.

All of our microarchitectural models are implemented using the

VMW framework [DS95], which enables significant productivity

gains by allowing us to reuse and retarget existing models. The LVP
Unit model is separated from the microarchitectural models for two
reasons: to shift complexity out of the microarchitectural models
and thus better distribute our simulations across multiple CPUS; and
to conserve trace bandwidth by passing only two bits of state per

load to the microarchitectural simulator, rather than the full 32/64 bit

values being loaded.

6. Experimental Results

We collected four types of results from our microarchitectural
models: cycle-accurate performance results for various combina-
tions of LVP Unit configurations and microarchitectural models for

both the 620 and 21164; distribution of load latencies for the 620;
average data dependency resolution Iatencies for the 620; and reduc-
tions in bank conflicts for the 620.

6.1. Base Machine Model Speedups with Realistic LVP

In Figure 6, we show speedup numbers relative to the baseline
620 for two LVP Unit configuration that we consider realistic (i.e.
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buildable within one or two processor generations) as well as two
idealized LVP Unit configurations. The two realistic configurations,
Simple and Constant, are described in Table 2. To explore the limits

of load value prediction, we also include results for the Limi~ and

Perfect LVP Unit configurations (also described in Table 2). The
former is similar to the Simple configuration, only much larger, but

it is not realistic, since it assumes a hypothetical perfect mechanism

for selecting which of the sixteen values associated with each load
instruction address is the correct one to predict. The latter configu-

ration, Pe~ect, is able to correctly predict all load values, but does

not classify any of them as constants. Neither of these configurations
is buildable, but the configurations are nevertheless interesting,

since they give us a sense of how much additional performance we
can expect from more aggressive and accurate LVP implementa-
tions.

Figure 6 also shows three of these fourLVP configurations for the
Alpha AXP 21164. We omit the Constant configuration from our

21164 simulations because it does not differ significantly from the

Simple configuration on the 620 and because we have limited access
to native Alpha CPU cycles for collecting traces.

In general, the 21164 derives roughly twice as much performance

benefit from LVP as does the 620, We attribute this to two factors:
its small first-level data cache (8K direct-mapped vs. the 620’s 8-
way associative 32K cache) benefits more from the CVU, and its in-

order issuing policy makes it more sensitive to load latency, since it
is forced to depend solely on the compiler to try to overlap it with
other useful computation. The 620, on the other hand, is able to find
other useful computation dynamically due to its out-of-order core.

Two benchmarks (grep and gawk) stand out for the dramatic per-

formance increases they achieve on both models. This gain results
from the fact that both benchmarks are data-dependence bound, i.e.
they have important but relatively short dependency chains in which
load latencies makeup a significant share of the critical path. Thus,

according to Amdahl’s Law, collapsing the load latencies results in
significant speedups. Conversely, benchmarks which we would
expect to perform better based on their high load value locality (e.g.
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mpeg and sc on the 620, and compress and mpeg on the 21 164), fail

to do so because load latencies make up a lesser share of the criticrd

dependency paths.
The bandwidth-reducing effects of the CVU manifest themselves

as lower first-level data cache miss rates for several of the bench-
marks running on the 21164. For example, the miss rate for com-

press drops from 4.3% to 3.4% per instruction, a 20% reduction.

Likewise, eqrttott and gper-experience - 10% reductions in their

miss rates, which translate into the significant speedups shown in

Figure 6. Even cjpeg and mpeg, which gain almost nothing from

LVP on the 620, eke out measurable gains on the 21164 due to the

10% reduction in primary data cache miss rate brought about by the

Cvu.

6.2. Enhanced Machine and LVP Model Speedups

To further explore the interaction between load value prediction
and the PowerPC 620 rnicroarchitecture, we collected results for the

620+ enhanced machine model described earlier in conjunction with
four LVP configurations.

The results for these simulations are summarized in Table 6,

where the third column shows the 620+’s average speedup of 6.170

over the base 620 with no LVP, and columns 4 through 7 show aver-

age additional speedups of 4.6%, 4.2Y0, 7.7~0, and 11.3% for the

Simple, Constant, Limit, and Pe~ect LVP configurations, respec-
tively. In general, we see that the increased machine parallelism of

the 620+ more closely matches the parallelism exposed by load
value prediction, since the relative gains for the realistic LVP con-

figurations are nearly 50% higher than they are for the baseline 620.

The most dramatic examples of this trend are grep and gawk, which

show very little speedup from the increased machine parallelism
without LVP, but nearly double their relative speedups with LVP

(with the Simple LVP configuration, grep increases from 20% to

33%, while gawk increases from 15% to 30%).

TABLE 6. PowerPC 620+ Speedups. Column 3 shows 620+
speedup relative to 620 with no LVP; columns 4-7 show additional

LVP speedups relative to baseline 620+ with no LVP.

s ■ m ,

cc1 I 117,571,9981 1.1121 1.0121 1.0061 1.0211 1.041

k%AmKm2,818,98711.1261 1.001 I 1.011 I 1.0001 1.0211

$ 1.092 1.006 1.006 1.019 1.175

doduc I 43.796,620 1.030 1.007 1.008 1.016 1.039

eantott 18,823.362 1.049 1.029 1.037 1.083 1.082

- awk I 28,741,14711.0091 1.293 I 1.2401 1.3271 1.2721

gperf 4,893,9661 1.108 I

~

2169697 1.018 1.329 1.310 1.531 1.789

5,398,363 1.024 1.018 1.019 1.028 1.041

5,394,984 1.192 1.012 1.023 1.036 1.031

Iuerl I 102,965,698! 1.0501 1.0461 1.0071 1.099 I 1.1161

quick I 704,2621 1.0191 1.0001 0.9991 1.051 I 1.170

Sc 62.227.728[ 1.061 I 1.035 I 1.056 \ 1.061 I 1.088,,
swm256 51,327,965 1.044 1.000 1.000 1.000 1.025

tomcatv 32,838,452 1.018 1.003 1.003 1.004 1.050

xlisp 44,844,605 1.052 1.022 1.026 1.059 1.058
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6.3. Dktribution of Load Verification Latencies

In Figure 7 we show the distribution of load verification latencies
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FIGURE 7. Load Verification Latency Distribution.
Numbers shown are the percentage of correctly-predicted
loads that are verified a given number of cycles after they are
dispatched.

for each of the four LVP configurations (Simple, Constant, Limit,

and Pe#ect) on the 620 and 620+ machine models. That is, we show

the percentage of correctly-predicted loads that are verified a given
number of cycles after they are dispatched. The numbers shown are

the sum over all the benchmarks. These results provide an intuitive

feel for the number of cycles of load latency being eliminated by

load value prediction. Clearly, if a larger percentage of loads have
longer latency, LVP will prove more beneficial. Interestingly
enough, the distributions for all four LVP configurations look virtu-

ally identical, which indicates that more aggressive LVP implemen-

tations (like Limit and Pe~ect) are uniformly effective, regardless of
load latency. One would expect that a wider rnicroarchitecture like
the 620+ would reduce average load latency, since many of the struc-

tural dependencies are eliminated. These results counter that expec-
tation, however, since there is a clear shift to the right in the

distribution shown for the 620+. This shift is caused by the time dila-
tion brought about by the improved performance of the 620+, which

in turn is caused by its microarchitectural improvements as well as

the relative improvement in LVP performance noted in Section 6.2.

6.4. Data Dependency Resolution Latencies

The intent of load value prediction is to collapse true dependen-

cies by reducing memory latency to zero cycles. To confirm that this
is actually happening and to quantify the dependencies being col-
lapsed, we measured the average amount of time an instruction

spends in a reservation station waiting for its true dependencies to be

resolved. The results are summarized in Figure 8, which categorizes

the waiting time reductions by functional unit type. The numbers
shown are the average over all the benchmarks, norrnrdized to the
waiting times without LVP. We see that instructions in the branch

@RU) and multi-cycle integer (MCFX) units experience the least
reductions in true dependency resolution time. This makes sense,
since both branches and move-from-special-purpose-register
(mJspr) instructions are waiting for operand types (link register,
count register, and condition code registers) that the LVP mecha-
nism does not predict. Conversely, the dramatic reductions seen for

floating-point (FPU), single-cycle fixed point (SCFX), and load/
store (LSU) instructions correspond to the fact that operands for

them are predicted. Furthermore, the relatively higher value locality
of address loads shown in Figure 2 corresponds well with the dra-
matic reductions shown for loadAtore instructions in Figure 8. Even
with just the Simple or Constant LVP configurations, the average

dependency resolution latency for load/store instructions has been
reduced by about 50T0.
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6.5. Bank Conflicts

The purpose of the CVU is to reduce memory bandwidth by elim-

inating the need for constant loads to access the conventional mem-

ory hierarchy. In our 620 and 620+ models, this benefit manifests

itself as a reduction in the number of bank conflicts to the two banks

of the first-level data cache. On the 620, in any given cycle, both a
load and a store can attempt to access a data cache port. If both

accesses are to the same bank, a conflict occurs, and the store must
wait to try again the next cycle. On our 620+ model this problem is

aggravated, since up to two loads and a store can attempt to access

the two available banks in each cycle.
In Figure 9, we show the fraction of cycles in which a bank con-

flict occurs for each of our benchmarks running on the 620 and 620+
models. Overall, bank conflicts occur in 2.6% of all 620 simulation

cycles for our benchmark set, and 6.99t0 of all 620+ cycles. Our Sim-

ple LVP Unit configuration is able to reduce those numbers by 8.5%
and 5.190 for the 620 and 620+, respectively, while our Constant

configuration manages to reduce them by 14,t)~0 and 14.2% (we are

pleased to note that these reductions are relatively higher than those
shown in Table 4, which means the CVU tends to target loads that

are, on average, more likely to cause bank conflicts),

Interestingly enough, a handful of benchmarks (gawk, grep,
hydro2d) experience a slight increase in the relative number of

cycles with bank conflicts as shown in Figure 9. This is actually
brought about by the time dilation caused by the increased perfor-
mance of the LVP configurations, rather than an increase in the abso-

lute number of bank conflicts. One benchmark--tomcatv--did
experience a very slight increase in the absolute number of bank
conflicts on the 620+ model. We view this as a second-order effect

of the perturbations in instruction-level parallelism caused by LVP,

and are relieved to note that it is overshadowed by other factors that
result in a slight net performance gain for tomcatv (see Table 6).

7. Conclusions and Future Work

We make three major contributions in this paper. First, we intro-
duce the concept of value locality in computer system storage loca-
tions. Second, we demonstrate that load instructions, when
examined on a per-instruction-address basis, exhibit significant
amounts of value locality. Third, we describe load value prediction,
a microarchitechmd technique for capturing and exploiting load
value locality to reduce effective memory latency as well as band-
width requirements. We are very encouraged by our results. We have

PowerPC 620

shown that measurable (3?Z0 on average for the 620, 6% on average

for the 21 164) and in some cases drarr&ic (up to 21% on the 620 ~d
17% on the 21164) performance gains are achievable with simple

microarchitectural extensions to two current microprocessor imple-

mentations that represent the two extremes of superscalar design

philosophy.

We envision future work proceeding on several different fronts.
First of all, we believe that the relatively simple techniques we
employed for capturing value locality could be refined and extended

to effectively predict a larger share of load values. Those refine-
ments and extensions might include allowing multiple values per
static load in the prediction table by including branch history bits or

other readily available processor state in the lookup index; or mov-
ing beyond history-based prediction to computed predictions

through techniques like value stride detection. Second, our load

classification mechanism could also be refined to correctly classify

more loads and extended to control pollution in the value table (e.g.
removing loads that are not latency-critical from the table). Third,
the rnicroarchitectural design space should be explored more exten-
sively, since load value prediction can dramatically alter the avail-
able program parallelism in ways that may not match current levels
of machine parallelism very well. Fourth, feedback-directed com-
piler support for rescheduling loads for different memory latencies

based on their value locality may also prove beneficial. Finally,
more aggressive approaches to value prediction could be investi-

gated. These might include speculating down multiple paths in the
value space or speculating on values generated by instructions other

than loads.
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