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Abstract 

In rhis papeE we identify perjkmance trends and design relation- 
ships behveen the following components of the data memory hi- 
erarchy in a dynamically-scheduled processor: the register file, 
the lockup-fee data cache, the stream buffers, and the interface 
behveen these componentsand the lower levels of the memory hier- 
archy. Similar pegormance was obtainedfrom all systems having 
support for freer than four in-fight misses, irrespective of the 
register-jle size, the issue width of the processoq and the memory 
bandwidth. While providing support for more than four in-jlight 
misses did increasesystem performance, the improvementwas less 
than that obtained by increasing the number of registers. The 
addition of stream buffers to the investigated systems led to a signif- 
icant per$ormance increase, with the larger increases for systems 
having less in-jlight-miss support, greater memory bandwidth, or 
more instruction issue capability. The perjormance of these sys- 
fems was not signijicantly affected by rhe inclusion of traficjfilters, 
dynamic-stride calculators, or the inclusion of the per-load non- 
unity stride-predictor and the incremental-prefetching techniques, 
which we inmduce. Howevel; the incremental prefetching tech- 
nique reduces the bandwidth consumed by stream buffers by 50% 
without a signijicant impact on perfomzance. 

1 Introduction 

Dynamically-scheduledprocessors offer much greater tolerance for 
data-cache misses than do statically-scheduled processors. This 
increased tolerance is provided by the abiity to issue instructions 
in an order different from that in which they were fetched whenever 
a hazard prohibits in-order issue. Cache misses may induce data 
and ~trnctural hazards that involve the instructions that are waiting 
to be issued. The degree of tolerance represents a balance between 
the number instructions that are not affected by such hazards, and 
the time required to resolve the miss. This balance exists because 
the longer a cachemiss takes to be resolved, the greater the number 
of instructions that are required to hide it. 

The time required to resolve a miss is determined by the band- 
width of the memory interface that is situated between the data cache 
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Figure 1: Overview of our dynamic scheduling implementation; 
only the data path is shown. 

and the lower levels of the memory hierarchy, and by the time re- 
quired to fetch a data item once a request for it has been issued. 
The ability to hide a cache miss is determined by the ability of the 
dynamic scheduler to issue unaffected instructions. The likelihood 
that such instructions are available to the scheduler is determined 
by a number of factors. Branch prediction is an important factor 
because its use allows the hardware to continue fetching instruc- 
tions from beyond a branch for which the direction or destination 
(address) is not statically known. Speculative fetching of instruc- 
tions provides the supply of (possibly) unaffected, new instructions. 
These instructions can be made available to the dynamic scheduler 
if the required hardware resources for processing the instructions 
are available. 

In our system model (Figure l), the dispatch queue stores the 
instructions from which the dynamic scheduler chooses the instruc- 
tions to issue next. To insert an instruction into the dispatch queue, 
there must be an available entry, and, if the instruction names an 
architectural registeras a destination, there must be aphysical reg- 
ister available to rename the named architectural register. If one 
of the required resources is not available, the process of inserting 
instructions must be stalled until a resource is available. 

The availability of dispatch-queueentries and physical registers 
is affected by the number of miss-processing resources that are pro- 
vided by the lockup-free data cache. The number of such resources 
places a limit on the number of cache misses that can be serviced 
concurrently. If a resource is required and none is available, the 
dynamic scheduler must stop issuing memory instructions until the 
required resource is available. Such stalls in the issuing of memory 
instructions can quickly lead to a full dispatch queue and a decrease 
in the rate of forward progress. 

In this paper, our goal is to provide insight into the effectiveness 
of hardwarebased techniques for reducing the apparent time cost of 
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(a) MSHR organization (b) Address stack 

Figure 2: Functional block diagram of the proposed lockup-free 
cache implementation that supports 16 in-flight memory accesses 
and five in-flight cache-block fetches. 

cache misses or increasing the tolerance for data-cache misses. The 
memory-system components that we consider are the register file, 
the lockup-free data cache, and the stream hcffers [1], a technique 
for implementing hardware-based prefetching. We also examine 
the interface between these components and the lower levels of the 
memory hierarchy. 

The presentation begins with a description of the lockup-free 
cache and stream buffer implementations we consider, followed 
by an overview in Section 3 of our system model and simula- 
tion‘metbodology. Then, we examine the performance of various 
lockup-free data cache organizations in Section 4, and of various 
stream-buffer implementations in Section 5. 

2 Hardware 

This section describes, in the context of a dynamically-scheduled 
processor, the hardware that is required to implement a lockup-free 
data cache and the stream buffer implementations that we consider. 
A more complete discussion of these components is given in [2]. 

2.1 Lockup-free Cache 

134 

When the processor detects a data-cache miss, it must determine 
whether the cache-block containing the missing data is already be- 
ing fetched, and it must resolve all pending cache misses when this 
cacheblock is returned from the lower levels of the memory hierar- 
chy. This functionality is provided by miss status holding regislers 
(MSHRs) [3], but for dynamically-scheduled processors, additional 
functionality is required that is not present in staticalIy-scheduled 
processors. This functionality allows selective cache misses to be 
suppressed while allowing others to be.completed, thereby permit- 
ting the cancellation of speculatively executed memory instructions. 

To provide the required functionality, we use a set of MSHRs 
and an address stuck. The MSHRs are used to determine whether a 
cache block is already being fetched, whereas the address stack is 
used to resolve pending cache misses. As shown in Figure 2a, each 
MSHR has three fields. The “block valid bit” indicates whether the 
cache block with the address stored in the “block address” field is in 
the process of being fetched. When a data-cache miss is detected, 
the MSHRs are associatively searched to determine whether the 
cache block is already being fetched. If a match is detected, the 
cache miss is referred to as asecondary miss, whereas if no match is 
detected, the miss is referred to as aprimary miss [3]. For a primary 
miss, a free MSHR is allocated, the block address is written, the 
“block valid bit” set, and a fetch request for the cache block is 
issued to the next level in the memory system. If there are no 
free MSHRs, no further memory requests can be issued until an 
MSHR is released by the return of previously:requested data; the 
load or store that caused this structural-hazard-induced stall will 
be replayed subsequent to the freeing of an MSJB. 

When a cache-block is returned, an associative lookup of the 
MSHR stmctureis done to extract the “destination bits” (Figure2a). 
This information indicates whether the cache bloc& is to be returned 
to the data cache, the instruction cache, or perhaps neither because 

it is to be used to resolve an access to an uncached memory locn- 
tion. Some information must be returned with the data to facilitate 
this lookup. Since dynamically-scheduled processors often support 
cache consistency and thus have a mechanism for sending addrcsscs 
to the processor from the memory system, a reasonable choice is 
to have the memory return the fetch-request address along with the 
data After the destination bits are extracted, the cache-block is sent 
to the component that requested a copy. 

To resolve data-cache misses once a block is returned, the ad- 
dress stack is used. The address stack (Figure 2b) is implemented 
as a fully associative buffer. After the hardware issues a load or 
a store and calculates the physical address for the memory access, 
it writes this address into a free address-stack entry, if there is one 
available. If there is no free entry, then a structural-hazard-induced 
stall is mandated, and the instruction will be replayed subsequent 
to the freeing of an entry. Once an address-stack entry is allocated, 
should the required data not be found in the cache, the valid bit in 
the address stack for the instruction is set, and if necessary, a cachc- 
block fetch is initiated. When this block is returned from the lower 
levels of the memory system, at same time as the hardware writes 
it into the cache, it does an associative lookup of all the entries in 
the address stack. For each match, the control logic notes that the 
corresponding memory instruction can now be replayed, In a corn= 
plex and more costly design, the address-stack entry allocated to a 
memory instruction M is freed once M is completed, In a simpler 
and less cosdy design, the address-stack entry is freed when M IS 
retired. 

In the event that a mispredicted branch or an exception man- 
dates the flushing of M from the processor as part of the flushing 
process, the address-stack entry held by M is invalidated, Thus, if 
the instruction was waiting for a cache block to be fetched, when 
the block is returned, it is guaranteed that the action indicated by 
M will not be performed, because there is no matching entry in the 
address stack. If M is a load, the named physical register will not 
be written, whereas if M is a store, the data will not be written, 
In this way, the instructions affected by the branch misprcdiction 
or exception are suppressed while those preceding the faulting In- 
struction can be completed normally. This ability to easily sup 
press selective cache misses makes an address stack more attractive 
for dynamically-scheduled processors than the more conventional 
methods for recording information about primary and secondary 
misses [4]. 

Although not described in the literature, it is likely that lockup- 
free caches are implemented in this way by the MIPS RlOOOO [5] 
using the address queue and address stack, the PA-8000 [6] using the 
memory buffer and the address-reorder buffer, and in the PowerPC 
604 [7] and 620 [8] using the load queue. 

2.2 Stream Buffers 

A stream buffer is a hardware-based prefetching technique that 
can be used to prefetch and store data that might be required to 
resolve future data cache misses. In this paper, we extend the 
model described in [9] by including the provision for: (1) a new 
prefetch strategy, called incremental prefetclring, which rcduccs 
the memory traffic generated by stream buffers, and (2) a new 
method for dynamic calculation of strides, called theper-load stride 
predictor. 

Memory-traffic filtering has been implemented using theallocn- 
tionjlfer technique proposed by Palacharla and Kessler [lo]. This 
filter prevented a stream buffer from being allocated until the second 
miss to a stream is detected. On the second miss, a stream buffer 
was allocated and it began prefetching the block subscqucnt to the 
one corresponding to the second miss. Our proposed increnterrlal 
prefetching technique differs from the allocation-filter technique in 
that it limits the number of blocks fetched after a stream buffer has 
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Figure 3: The enhanced stream-buffer model. In this example, there 
are four stream buffers with three entries each, and any one of the 
12 entries can be used to supply the missing data for a cache miss. 

been allocated until the stream is found to be useful. With incre- 
mental prefetching, when a stream buffer is first allocated, only one 
block is fetched. If the block is then used to service a cache miss, 
the next two blocks are fetched. This process of fetching the next 
2 x N blocks if one of the last N was used to resolve a cache miss 
continues until the s&am buffer is reallocated. 

Dynamic-stridepredictionhasbeenimplementedusingascheme 
based on the minimum delta scheme proposed by Palacharla and 
Kessler [lo]. With this scheme, on a stream-buffer miss, the alloca- 
tion filter was applied to determine whether a unit-stride should be 
used. If there was a Nter miss, then the minimum signed difference 
between the miss address and the last N miss addresses was deter- 
mined. This minimum delta, which may be positive or negative, 
was the stride. However, if the stride S was smaller than the size of 
a cache block, then a unit stride was used with the same sign as S. 
This strategy guards against the prefetch stream of a stream buffer 
overlapping with itself. A stream buffer was allocated if the miss 
was the third miss in a series to blocks that were separated by this 
stride. The stride predictor is shown in Figure 3, which depicts the 
enhanced stream-buffer model. 

We introduce the per-load strkie predictor. It differs from the 
minimum-delta scheme in that a stride is determined for a load 
instruction L by considering only the previous miss addresses gen- 
erated by L. This predictor is based on the scheme proposed by 
Fu et al. [ll] for preloading the data cache and is similar to the 
data prefetching scheme of Chen and Baer [12]. Our predictor 
uses a fully associative buffer to record the last miss address for 
N static loads, along with the program-counter address of each 
load. Thus, a stride prediction is based only on the past memory 
behavior of the static load for which the prediction is being made. 
We also implement an enhancement to provide the functionality 
of an allocation filter. With this enhancement, a stream buffer is 
allocated with a unit stride the first time a memory instruction M 
is executed for which there is no entry in the miss-address table 
and the required data (with address A) is not in the data cache or 
a stream buffer. Subsequently, a stream buffer is allocated only if 
S = A,,-1 - A,,4 = A,, - An-l, where AZ is the address of the 
data for the zth stream-buffer miss generated by M. By default, a 
stream buffer is not allocated on the second miss. As before, if the 
stride S is smaller than the size of a cache block, then a unit stride 
is used with the same sign as S. 

3 Simulation Methodology 

This section describes our investigation methodology, the system 
model we assume, and our simulation framework. The method- 
ology was selected to allow us to identify performance trends and 
design relationships, rather than to estimate the performance of 
specific system designs. 

3.1 System Model 

Our system model implements a RISC superscalar processor whose 
instruction set is based on the DEC Alpha instruction set. We 
assume that all instructions can be be speculatively executed, and 
that the processor can issue 4 or 8 instructions per cycle. These 
issue widths are representative of the current state-of-the art and 
future processors. The issue rules for the 4-way and g-way issue 
processors are given in rows 1 and 2 of Table 1. The processor has 
a standard four-stage execution pipeline, and, with the exception of 
the execution stage (stage 3), all stages have a single-cycle latency. 
The functional unit latencies are given in row 3 of Table 1. 

In a clock cycle, the number of instructions that can be inserted 
into the dispatch queue is equal to 1.5 times the maximum issue 
width of the processor, while the maximum number of instructions 
that can be retired is exactly twice the issue width of the processor. 
These values were chosen to reduce the possibility of either instruc- 
tion insertion or instruction commitment being a significant bottle- 
neck. Instructions are selected for issuing using a greedy algorithm 
that issues the earliest instructions in fetch order first. Hardware is 
included to dynamically disambiguate memory addresses so as to 
allow memory instructions to issue before those occurring earlier 
in the program order. The register file includes a cotigurable and 
equal number of integer and floating-point registers. The number 
of registers considered for each issue width are given in Table 2a; 
this table also specifies the number of dispatch-queue entries. The 
register file for the four-way issue processor has eight read ports 
and sufficient write ports to prevent any write-port conflicts arising 
when registers are filled on the resolution of a cache miss. For the 
eight-way issue processor, there is twice the number of ports. 

The model implements precise exceptions, and uses a branch 
prediction scheme proposed by McFarling [13] that comprises a 
bimodal predictor, a global history predictor, and a mechanism to 
select between them. The prediction scheme is used to predict the 
direction of conditional branches; all other control flow instructions 
are assumed to be 100% predictable. 

The model includes separate instruction and data caches, and 
supports non-blocking loads and non-blocking stores. Stores are 
assumed to be implemented using write-around (i.e., no-write- 
allocate) and write-through policies with a write buffer situated 
between the data cache and lower levels in the data memory hierar- 
chy. Since our goal was to include only the important features of a 
processor that affect the design of the register file and memory sys- 
tem, we assume that the servicing of instruction cache misses does 
not delay the servicing of data cache misses. Hence, the instruction 
cache has a fixed miss penalty. Furthermore, we assume that no 
memory bandwidth is required to retire stores in the write buffer. 
This assumption prevents any stalls due to a full write buffer and 
prevents stores from delaying the servicing of cache fetches. 

The data cache is assumed to be a 64-KByte, two-way set as- 
sociative cache that can be configured to be lockup, lockup-free, or 
perfect; the perfect organization assumes a 100% hit rate. These 
three organizations arelisted inTable2b. For the lockup-free cache, 
three types of in-flight miss restrictions are considered. The most 
restrictive type, designated mz, limits the number of outstanding 
cache misses to be at most Z, where 2 is an integer greater than 
zero. The second type, designated fi is less restrictive because 
it imposes no limit on the number of secondary misses. Rather, 
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instruction types 
total integer floatmg point loads & control 

# total multiply other total divide other stores flow 
1 number issued 4 4 4 4 2 1 2 2 1 
2 per cycle 8 8 8 8 4 2 4 4 2 

3 latency in cycles 6 1 8/16 3 1t 1 

Table 1: Instruction-issue rules and functional-unit latencies for the 4-way and 8-way issue processors. All functional units are fully pipelined 
with the exception of the floating-point divider. The divider is not pipelined and has an eight-cycle latency for 32-bit divides, and a 1 fi-cycle 

latency for 64-bit divides. +There is a single load-delay slot. 

Table 2: System designs. A system is defined by selecting specific parameters from the processor, memory, and stream-buffer details tables, 
N, in table (c) specifies the number of entries in the table of miss addresses. 

it limits only the number of prlmaxy misses to be at most I. A 
cache with this functionality offers greater flexibility than one with 
the functionality offered by m,, and therefore has a more aggres- 
sive implementation. Because a fetch request is required for each 
primary miss, the value of 2 for the fZ restriction also indicates 
the maximum number of outstanding cache-initiated fetch requests. 
The third type, designated i, is even less restrictive because it does 
not impose a limit on the number of primary or secondary misses. 
In real processors, the value of 2 for mZ might correspond to the 
number of address-stack entries, while the value of x for fZ might 
correspond to the number of MSHRs. 

Requests for blocks of data are sent via the memory interface 
to the next level in the memory hierarchy. The memory interface 
returns the requested block in a constant number of cycles, called the 
fetch latency; we assume a 32-cycle fetch latency. The bandwidth 
of the interface is constrained by controlling the number of cycles 
between the launching of fetch requests. Afetch spacing of zero 
allows requests to be launched as soon as they are submitted, and 
thus, corresponds to an interface with a very large bandwidth. A 
fetch spacing of one allows the memory interface pipeline to be 
full whereas a spacing equal to the fetch latency allows at most one 
in-flight fetch. Thus, the time required to resolve a cache miss is 
not deterministic for non-zero fetch spacings but has a lower bound 
equal to the fetch latency; Table 2b specifies the two fetch spacings 
that we consider. 

The 10 stream-buffer implementations (rows 2-l 1 in Table 2c) 
each comprise eight, four-entry stream buffers, and optional support 
for either memory-traffic filters, dynamic-stride prediction, or both. 
The implementation with none of this optional hardware is referred 
to as the baseline implementation, and for notational convenience it 
is designated as sb. The abbreviations used for the other implemen- 
tations are given in the table. We assume that one cycle is required 
to extract a block of data from a stream buffer. 

When a block is returned to the cache, the cache line is written 
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simultaneously with the writing of the appropriate words into all 
registers with loads outstanding to this block (updating all pcnd- 
ing registers requires the multiple write ports mentioned above), 
Writing a register or a cache line is assumed to take one cycle. 

Figure 4 presents an overview of the just-described system 
model. 

3.2 Simulation Framework 

This study is based on execution-driven simulations using an object 
code instrumentation system called ATOM [14], which is available 
for Alpha AXP workstations. The results presented correspond 
to simulations of seven benchmarks, six from the SPEC92 sullc 
and the appsp benchmark from the NAS suite. The benchmarks 
are listed in Table 3 along with some run-time characteristics for 
the four-way and eight-way issue processors. For each of the six 
SPEC92 benchmarks, one of the official data sets was used (rcf or 
small), and these are shown in Table 3 in column 2; for uppsp, the 
data set that was used is described in the table caption. In all cases, 
the benchmarks were compiled using the Alpha native C compiler 
with the global ucode optimizer enabled, and the linker was dircctcd 
to perform link-time optimlzations. 

The results in Table 3 are for a four-way issue processor and 
an eight-way issue processor. Both systems had a lockup-free data 
cache with no in-flight-miss restrictions, and an eight-cycle fetch 
spacing. The four-way issue processor had 64 registers (La, 64 
integer and 64 floating point), while the Light-way issue processor 
had 96 registers. 

Column 3 gives the numbef of instnictlons in the tract for 
each benchmark, which is equivalent to the number that commit, 
(An instruction is said to commit when it has completed and all 
the instructions preceding it in program order have complctcd.) 
The number of committed instructions does not necessarily equal 
the number of instructions that are executed due to mispredictcd 



com- 4-way issue 8-way issue 
mit issue mstr. 1 lx % load nuss Issue mstr. lx % load nuss 

iastr. total load I issue commit I pri. sec. total load I issue commit I pri. sec. 

(3) 1 (4) Q 1 (6) Q 1 i8) (9) I(10) (11) 1 (12) (13) I 04) (15) 
3191 320 68 I 1.58 1.57 I 6.0 6.8 I 322 68 I 2.44 2.42 I 6.0 7.6 

86 111 25 1.63 1.27 11.9 3.5 139 31 2.34 1.45 10.7 3.1 
237 238 54 1.45 1.44 12.6 21.1 240 55 2.52 2.49 12.5 36.4 
291 317 47 1.74 1.60 2.3 0.4 352 53 2.84 2.34 2.1 1.9 
417 432 106 1.88 ’ 1.81 8.4 8.1 445 109 2.63 2.46 8.2 14.3 
317 378 97 1.77 1.76 6.6 2.6 379 97 2.92 2.92 6.6 10.3 
910 911 247 1.63 1.63 11.2 21.1 911 248 2.40 2.40 11.2 28.4 

Table 3: Dynamic statistics for each benchmark for both issue widths. Columns 3, 4, 5, 10, and 11 give instruction counts in millions; 
columns 8,9,14, and 15 give the primary and secondary data-cache miss rates for load instructions. Notes: (a) qpsp was run for 50 iterations 
with a 12x12~12 gci&, (b) hydro2d was run for 15 iterations rather than the 400 specified in the official “ref’ data set. 
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Figure 4: Overview of machine model. 

branches (exceptions are not modeled). The number of executed 
instructions is given under columns 4 and 10 with columns 5 and 
11 giving the number of loads. Both the number of committed 
instructions and the number of executed instructions are dynamic 
instruction counts. 

The average number of instructions per cycle (IPC) for each 
benchmark and each issue width are given in columns 6, 7, 12, 
and 13. The issue PC, given in columns 6 and 12, is the ratio of 
the number of instructions that are issued to the total (simulated) 
run time; the issue IPC measures the rate at which instructions 
are dispatched to the functional units. In our system model, the 
difference between the issue IPC and the maximum issue width is 
due to the dependences in the code and the number and type of 
functional units. The commit IPC, given in cohmms 7 and 13, is 
the ratio of the number of instructions that commit to the total run 
time. The difference between the issue IPC and the commit IPC is 
due to instructions that are incorrectly speculatively executed when 
following mispredicted branches. 

The statistics presented in the table show that the benchmarks 
generate enough data-cache behavior to affect the performance of 
the memory-system implementations that we consider. First, the 

data presented in column 3 suggests that each trace contains a 
significant number of instructions, and second, the data presented 
in cohurms 4 to 5,8 to 11, and 14 to 15 suggest that the benchmarks 
have significant data-cache behavior. 

4 In-flight Cache Misses 

To evaluate the design and performance implications of data-cache 
misses with different numbers of in-fight-miss resources, we eval- 
uated performance for the system-design space listed in Tables 2a 
and 2b. Figures 5a and 5b respectively present the (overall) average 
commit PC!’ obtained by the benchmarks on the systems with the 
four-way and eight-way issue processors. In both of these figures, 
coordinate (c, r : s) gives the average commit IPC for a processor 
having a cache design c, a register-file size r and a fetch spacing 
s. The cache designs are mapped on the left-to-right axis with the 
less restrictive designs located to the left, The register-file sizes and 
fetch spacings are mapped on the front-to-back axis, with the larger 
register files located towards the back For each register-file size, 
the IPC values for a zero cycle fetch spacing are behind those for an 
eight-cycle fetch spacing. Thus, the coordinates to the left and to- 
wards the back represent more aggressive system implementations. 

ExaminationofthedatapresentedinFigure5 suggests anumber 
of important relationships. These relationships are discussed below 
beginning with the relationship between performance, number of 
registers, and support for in-flight misses. 

Consider the commit IPC values given in Figure 5a correspond- 
ing to the use of a lockup-free cache with no restrictions on in-flight 
misses, that is, coordinates (c =i, r : s). Observe that the average 
commit IPC increases with the size of the register file. Further- 
more, the rate of increase decreases at larger sizes. For instance, for 
a fetch spacing of eight cycles, doubling the size from48 to 96 yields 
an improvement of 70%, while doubling the size from 64 to 128 
yields an improvement of only 36%. In general, an increase in the 
number of registers permits more instructions to be in some stage 
of execution, thereby better utilizing the available hardware, and 
thus improving performance. However, this correlation between 
more registers and better performance is less pronounced for the 
systems with less support for in-flight misses. For example, if four 
in-flight fetches are permitted, (c = f4, r : s), doubling the size 
from 48 to 96 yields an improvement of 68% while doubling the 
size from 64 to 128 yields an improvement of 35%. If the support 
for misses is further reduced by allowing only four in-flight misses, 

‘The (overall) average commit lF’C is calculated for each system cc&gmation by 
first computing the average commit E’C for each benchmark for that system. The 
per-benchmarkaverage commit IPC is equal to the total number of instructions that are 
committed when the benchmarkis nm divided by the total number of (simulated) clock 
cycles required to rnn it. The& these per-benchmark averages am combined using an 
arithmetic average to obtain the reported (overall) avaage commit IPC. The commit 
E’C values foreach benchmarkare given in [Is. 
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Figure 5: Average commit IPC of all benchmarks for their (simulated) execution on the investigated systems. 
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Figure 6: Statistics for load-induced cache misses for the four-way issue processors using an eight-cycle fetch spacing. Each figure contains 
a curve for each of the seven in-flight miss restrictions that were investigated. 

(c = m4, r : s), the improvement percentages are 53% and 25%, 
respectively. 

The data presented in Figure 5a also suggests that system per- 
formance is more heavily affected by increasing the number of 
registers than providing support beyond four in-flight misses. For 
example, consider the system (c = m4, r = 64 : s = 8), that 
is, one with support for four in-flight misses, 64 registers, and an 
eight-cycle fetch spacing. Compared to this baseline system, one 
having twice the number of registers (c = ma, r = 128 : s = 8) 
will perform 25% better, while one with no restrictions on in-flight 
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misses (c = i, r = 64 : s = 8) will perform only 5% better, 
The above noted relationships between performance, number 

of registers, and support for in-flight misses are in part duo to the 
increaseinthenumber of structural-hazard-induced stalls that occw 

when the amount of in-flight miss support is reduced. To illustrate 
this increase in stalls, Figure 6a presents the percentage of (simu- 
lated) clock cycles in which such stalls occur in the systems using 
the four-way issue processors with an eight-cycle fetch spacing, 
In the figure, the percentages for each in-flight miss restriction are 



given by the seven curves as a function of the number of resisters*. 
For ins~mnce, with 64 registers, the percentage for each in-Sight 
miss restriction is: 5% for far 18% for ~724, 19% for fa, 34% for 
m2,43% for fl, 49% for ml, and 62% for a lockup cache. 

and 
The significant difference in the above percentages between fZ 
m2 restrictions for the same value of x is due to the benchmarks 

requiring significant amounts of secondary-miss support. This re- 
quirement is suggested by the miss rates presented in Figure 6b. 
As can be observed, while the primary miss rates for all systems 
having a given number of registers are sufficiently similar that the 
data points are coincident, there are significant differences in the 
secondary-miss rates. With less support for in-flight misses, the 
load instructions that correspond to these secondary misses must 
instead be held in the dispatch queue. Moreover, because memory 
instructions cannot be issued during a structural-hazard-induced 
stall, the dispatch queue will tend to fill up with memory instruc- 
tions for which the data is already in the data cache. Thus, the 
rate at which entries are freed and new instructions are inserted will 
decrease as the stall progresses, Together, these two effects reduce 
the demand for registers and the performance gains that accom- 
pany increasing the number of registers. As the data in Figure 6 
suggests, this reduction is more significant with larger numbers of 
registers because the secondary miss rates are larger, and because 
structural-hazard-induced stalls occur for a greater percentage of 
the (simulated) run-time. 

The trend of decreasing performance with less lockup-free sup- 
port is more pronounced with the systems having eight-way issue 
processors. Data supporting this trend is presented in Figure 5. 
Observe that there is less variance in the commit IPC values when 
more restrictions are imposed on in-flight misses in the systems 
with four-way issue processors (Figure 5a) than in the systems with 
eight-way issue processors (Figure Sb). This trend occurs because 
the performance of systems with wider-issue processors is more 
sensitive to the design of the memory system. The cause of this 
increased sensitivity is the ability to issue more instructions per 
cycle, which tends to reduce the number of clock cycles between 
the issuing of load instructions. As a result, at any point in the 
execution of an application, there tends to be a greater number of 
in-flight fetches and secondary misses. 

Additional insight into this difference between the two issue 
widths is suggested by the differential in the commit IPC values 
when the fetch spacing is reduced from 8 cycles to 0 cycles. As 
shown by the data in Figure 5, when the fetch spacing is reduced, 
there is greater variance in the commit IPC! values for the eight-way 
issue processors, and in particular, for systems with greater support 
for in-flight misses and a larger number of physical registers. 

In summary, a number of observations can be drawn from the 
above discussion, and these are presented in Section 6. 

5 Stream Buffer Implications 

To investigate the design and performance implications of stream 
buffers, the system model was augmented to include the stream- 
buffer models described in Section 2.2. The system model was 
then used to evaluate the behavior of the benchmarks on a num- 
ber of systems that were chosen to capture the behavior at several 
representative points in the large design space. 

5.1 Baseline Stream Buffers 

For clarity in presenting key observations, consider first the perfor- 
mance implications of including the baseline stream-buffer imple- 
mentation in 16 of the systems listed in Table 2. The performance 
of the benchmarks on the resulting 32 systems (16 without stream 

?kse percentages represent the average of the percentages for each benchmark 

buffers and 16 with stream buffers) is presented in Elgure 7. This 
figure gives the average commit IPC for each benchmark as a func- 
tion of the issue width of the processor, the size of the register files, 
the type of data cache, the fetch spacing, and the optional use of 
stream buffers. The lockup-free cache had no restrictions on the 
number of in-flight misses (type a). The columns with N at their 

base (e.g., the column marked by m give the commit IPC values 
for systems without stream buffers, while those with Sb at the base 

(e.g., the column marked with m give the commit IPC for systems 
with stream buffers. 

One important observation is that if stream buffers are included 
in a system, there is an overall performance gain, with this gain 
being bigger for systems having lockup caches and a larger number 
of registers. To illustrate this relationship, consider the columns 
marked with q and q in Figure 7 that correspond to the perfor- 
mance obtained on systems with 48 registers, a fetch spacing of 
eight cycles, and a four-way issue processor. Comparison of the 
relative position of the data points in these two columns shows that 
the data points are generally higher in the second column. The 
avemge increase in IPC for systems with the lockup-free cache (the 
filled circles) is 0.35, while for systems with the lockup cache (the 
filled squares), the average increase is 0.46. Expressed as speedup 
ratios, these increases correspond to a speedup of 1.29 for the sys- 
tems with a lockup-free cache and a speedup of 1.51 for systems 
with a lockup cache. 

The more significant speedup for systems with a lockup cache 
is a consequence of the hardware being blocked from issuing mem- 
ory instructions during stalls induced by structural hazards. For 
systems with this type of cache, stream buffers enhance the perfor- 
mance because they significantly reduce the effective cache-miss 
penalty. Systems with lockup-free caches, however, can issue un- 
related memory instructions during such stalls, and, thus, are both 
less sensitive to the effective cache-miss penalty, and more tolerant 
of cache misses. The amount of tolerance such systems have is a 
function of the number of physical registers, because the number of 
registers determines how many instructions can be simultaneously 
in execution. Thus, with more registers, the speedup obtained with 
stream buffers will decrease. As illustrated in Figure 7, when the 
number of physical registers is increased from 48 to 64 (columns 

Hand@, the speedup for systems with locknpfree caches drops 
to 1.25, while the speedup for systems with lockup caches rises to 
1.58. 

The above observations suggest that if a system can support a 
large number of in-flight misses, it is more beneficial to increase the 
number ofregisters than it is to include stream buffers. To illustrate 
this phenomenon, consider again the same four system configura- 
tions. When a lockup-free cache is used, a 32% performance im- 
provement is obtained by increasing the number of registers from 48 
to 64, but an improvement of only 29% is obtained by using stream 
buffers. On the other hand, when a lockup cache is used, a 14% 
performance improvement is obtained by increasing the number of 
registers from 48 to 64, but an improvement of 51% is obtained by 
using stream buffers. 

The performance gains achieved with stream buffers are a result 
of the buffers prefetching a significant number of cache blocks that 
are used to resolve cache misses. Table 4 presents data to quantify 
the frequency at which cache misses were anticipated. This table 
provides: in column 2, the run-time speedup due to the use of the 
stream buffers; in column 3, the primary data-cache miss rate; in 
column 4, the percentage of primary misses resolved using data 
either present in a stream buffer, or for which a fetch request had 
already been launched; and in column 5, the number of cache 
blocks used to resolve one of these misses as a percentage of the 
total number of cache blocks returned by the memory system in 
response to a fetch request from a stream buffer. Ignoring compress 
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lockup-free cache: 
0 for each benchmark 

Figure 7: Average commit IFC for systems using either a four-way or an eight-way issue processor and either no stream buffers (N) or ihe 
baseline stream-buffer implementation (Sb). The dotted lines connect the data points of each benchmark for each cache implementation, Tho 
unfilled circles indicate the IFC for each benchmark obtained with the use of a lockup-free cache having no in-flight miss restrictions, while 
the filled circles indicate the overall average IIX! for all benchmarks. The squares indicate similar information but with the use of the lockup 
cache. 

for the moment, observe that 18% to 98% of the blocks prefetched 
by the stream buffers (column 5) are used to resolve 29% to 77% 
of primary misses (column 4). 

The statistics presented in the table are sensitive to the number of 
physical registers. If the number is increased, there is little change 
in both the number of primary misses, and the number of times 
data is fetched in response to a stream buffer request. But, there 
is a significant drop in the number of misses for which the missing 
data is actually present in a stream buffer. This drop is largely due 
to the increase in the issue Il?C that accompanies the increase in 
the number of registers. This increase in the issue IX reduces the 
time between successive cache misses, and thus reduces the time 
available for prefetching. Compress, however, as already noted, 
does not benefit from stream buffers. Rather, as shown in Figure 7 
by the curves labeled “26”, for a fetch spacing of 8 cycles and afour- 
way issue processor with 48 registers, its performance decreases by 

bench- speed- 
mark up 

primary misses SB 
% % resolved % blocks 

by SB used 
(1) (2) (3) i4) 

‘~1 

tomcatv 11 1.64 1 11.2 1 71.6 1 98.4 1 

Table4 Effectiveness of the baseline stream-buffer implementation 
when used in a 4-way issue processor with 48 registers and an 8- 
cycle fetch spacing. 

4% when run on the systems having the lockup cache, and by 
5% when run on the systems having the lockup-free cache. This 
performance decrease is a result of the stream buffers prefetching 
mostly unneeded cache blocks, thereby delaying the launching of 
fetch requests that are needed to service cache misses. On these 
systems, less than 0.2% of primary cache misses are resolved using 
prefetched cache blocks. The percentages are much higher for the 
other benchmarks, as shown inTable 4 by the data given in column 
4. 

A second important relationship that is suggested by the data 
of Figure 7 is the performance insensitivity of the systems to the 
bandwidth of the interface. When the fetch spacing is reduced from 
8 cycles to 0 cycles, with the exception of compress, the commit 
IFC values change relatively little. This observation suggests that 
even with a fetch spacing of 8 cycles, contention for the memory 
interface is not significant. One result of this lack of contention 
is that with an 8-cycle fetch spacing, when a stream buffer is rc- 
allocated, 95 times out of 100, all of its entries contain valid data, 
Consequently, when the fetch spacing is reduced to 0 cycles, there 
will not be a large increase in the amount of prefetchcd data, and 
hence, only small performance gains arc likely. When the fetch 
spacing is changed to 0 cycles, the least significant change in the 
speedup ratios is an increase from 1.29 to 1.33 with 48 registers and 
a lockup-free cache, and the most significant change is an incrcasc 
from 1.58 to 1.67 with 64 registers and a lockup cache. These 
speedup ratios are given in Table 5 under the column heading “4. 
way”. Like the other benchmarks, compress performs better with a 
fetch spacing of 0 cycles, but unlike the other benchmarks, it does 
not achieve a speedup greater than one. This phenomenon is shown 
in Figure 7 by the curves near the bottom whose right-most data 
points are labeled with “26”. Observe that when a fetch spacing of 
0 cycles is used, the curves are nearly horizontal. 

When the baseline stream buffers are used in systems with an 
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Figure 8: Performance of sdcor and the total number of cache blocks supplied by the memory interface when it was run on systems using 
one of the 15 stream-buffer implementations. 

cache fetch Cway I-way 

type spacing # registers # registers 
48 64 64 128 

lockup 8 1.51 1.58 1.70 1.87 
0 1.57 1.67 1.80 2.15 

lockup- 8 1.29 1.24 1.30 1.18 
free 0 1.33 1.28 1.38 1.29 

Table 5: Average speedup in (simulated) run-time for all bench- 
marks due to the use of the baseline stream-buffer configurations. 

eight-way issue processor and 64 dispatch queue entries, the same 
trends as those noted for the four-way issue processors occur, but 
the differences tend to be greater. The increased significance is a 
consequence of the eight-way issue processor issuing and commit- 
ting more instructions per cycle thereby resulting in a compression 
of time. This temporal compression not only reduces the time be- 
tween the occurrence of cache misses, but also increases the number 
of secondary cache misses and the instruction cost of servicing all 
cache misses. 

5.2 Memory Traffic and Dynamic Strides 

Although the baseline stream-buffer implementation improves the 
performance of six of the benchmarks, the basic design can be 
augmented to reduce the possiblenegativeimpact of excess memory 
traffic, unit strides, and the possibility of flushing useful data from 
a stream buffer when it is reallocated. To counter the negative 
impact of stream buffers, the enhancements listed in Table 2c can 
be employed. 

The results obtained from the simulated execution of the bench- 
marks on these systems show a number of common relationships, 
and these will be illustrated using the su2cor benchmark and its 
execution on 60 systems. These 60 systems had an eight-way issue 
processor, 64 physical registers and a fetch spacing of 8 cycles. 
Figure 8a presents the average commit IPC values for these exe- 

cutions, while Figure 8b presents the total number of cache blocks 
that were supplied by the memory interface. In both figures, each 
of the curves for the four data-cache configurations (i, f~, fi, and 
k) includes a data point for the 15 stream-buffer implementations. 
The stream-buffer implementations are listed along the horizontal 
axes using the abbreviations given in Table 2c. However, the ab- 
breviations used for the designs based on the per-load scheme (e.g., 
Pf) also include a suffix (e.g., 10) to indicate the number of entries 
in the missed-load buffer. 

An important relationship suggested by the data presented in 
Figure 8a is that the enhancements to the baseline stream-buffer 
implementation have at best a small effect on performance, with 
this effect being more significant for the systems with less aggres- 
sive cache configurations. For example, when the implementations 
are used with the lockup cache (type Zk), there are pronounced 
variations in commit IPC values, but when the implementations are 
used with the lockup-free cache having no in-flight miss restrictions 
(type i), the commit IPC values vary very little. The increased per- 
formance sensitivity of the more restrictive cache configurations to 
the stream-buffer implementation is due to two factors. First, sys- 
tems with more support for in-flight misses have greater tolerance 
for cache misses. Thus, whether a stream-buffer implementation 
improves performance by correctly prefetching data that is missing 
from the cache, or degrades performance by tying up the memory 
interface with misfetched data, the overall performance impact, be 
it positive or negative, will be smaller. 

Second, systems with more support for in-flight misses tend to 
require fewer clock cycles to execute an application. Hence, there 
are fewer clock cycles available for prefetching data, and there is 
a reduction in the number of clock cycles between the detection of 
cache misses for which the missing data has not been prefetched. 
As a result of these two effects, systems with less restrictive cache 
configurations tend to fetch fewer cache blocks from the memory 
interface. This trend is suggested by the relative positions of the 
curves in Figure 8b. The performance differential between the 
stream-buffer implementations is a reflection of the ability of an 
implementation to correctly prefetch data and to hold on to the data 



until it is required. Thus, the implementations with some form 
of filtering give better performance (Figure 8a) and generate less 
memory traffic (Figure Sb). 

When the number of physical registers is increased and/or the 
bandwidth-limit on the memory interface is removed, data similar 
to that presented in Figure 8 is obtained. Due to space constraints, 
this data is not presented, but the following two relationships are 
nonetheless noted; the corresponding data is presented in [15]. 

First, concerning the number of physical registers and the amount 
of support for in-flight misses, for systems using the type i lockup- 
free cache, the performance impact of the stream-buffer implemen- 
tationis even smaller if the number of physical registers is increased. 
Increasing the number of registers allows more instructions to be 
simultaneously in some stage of execution, which increases the tol- 
erance for cache misses, and decreases the number of clock cycles 
required to run the application. Thus, when the number of registers 
is increased, the commit IPC varies less for the various stream buffer 
implementations, and the number of blocks fetched from the mem- 
ory system decreases. However, for the systems with restrictive 
cache configurations, increasing the number of registers increases 
the performance sensitivity to the stream buffer implementations. A 
larger number of registers increases the percentage of clock cycles 
in which-memory instructions cannot be issued (Figure 6a), thus 
increasing the performance sensitivity to the effective cache-miss 
latency. Because the performance impact of such stalls is a function 
of their duration, stream-buffer implementations that are better at 
lowering the effective cache-miss latency give better performance. 
Furthermore, the implementations that perform better generate less 
memory traf8c because there is less time to prefetch the data. 

Second, concerning the bandwidth of the memory interface, 
removal of the bandwidth limit leads to a more pronounced differ- 
ence in the relative performance obtained with the stream-buffer 
implementations. When memory bandwidth is not limited, the 
stream-buffer implementations that are more beneficial are those 
that are better at prefetching and holding onto data that is subse- 
quently required to resolve a cache miss. Thus, while the techniques 
for filtering stream-buffer allocations have a positive performance 
impact, the incremental prefetching technique, which serves only 
to reduce memory bandwidth requirements, has no significant per- 
formance impact. However, incremental prefetching reduces the 
bandwidth consumed by stream buffers by 50%. 

Finally, concerning all the benchmarks3, several comments 
should be made, On systems with a type i lockupfree cache, 
the stream-buffer enhancements had less than a 5% impact on per- 
formance with the exception of swm256. Furthermore, these en- 
hancements had little impact on the performance of mdljdp2 and 
hydro2d irrespective of the cache organization, while they signif- 
icantly degraded the performance of tomcatv if in-flight miss re- 
strictions existed. Appsp, sdcor, and swm256 performed best if 
the system included one of the following two sets of mutually ex- 
clusive enhancements: (1) the PIGallocation filters, and optionally, 
the mm-delta stride predictor, or (2) the per-load stride predictor 
with filtering, and optionally, incremental prefetchmg. Finally, for 
all the systems considered and all benchmarks, the stream-buffer 
implementations with PK-allocation filters or stride filters gener- 
ated between 1.5 and 4.2 times less memory traffic. In most cases, 
the per-load stride predictor with stride filtering generated the least 
amount of memory traffic. 

6 Conclusions 

In this paper, we have presented an investigation and analysis of the 
design of the register file and the other IeveIs of the data memory 
hierarchy. This analysis has focused on identifying performance 

+he data for these benchmarks is given in [lg. 

trends and design relationships. The components we considcrcd 
affect the apparent time-cost of servicing cache misses and the 
tolerance for data-cache misses. The following conclusions can be 
drawn from the analysis. 

First, similar performance was obtained from all systems hnv- 
ing support for fewer than four in-flight misses, irrespective of 
the register-file size, the issue width, and the memory bandwidth, 
While increasing the hardware support for in-flight misses beyond 
this point did increase system performance, for the configurations 
considered, theimprovement was less than that obtained by increas- 
ing the number of registers. 

Second, systems with a greater amount of support for in-flight 
missesrequireagreaterproportionofthesupporttobeforsccondnry 
misses, since the secondary miss rate tends to increase as the amount 
of in-flight-miss support is increased. Additional reglsters should 
alsobeprovided tooffset theincreasein theaverageregisterlifctimo 
that is a result of the ability to support a larger number of in-flight 
misses. 

Third, system performance is relatively unaffected by the bnnd- 
width of thememory interfaceif the processor can issue a maximum 
of only four instructions per cycle. But, when the issue width is 
increased to eight, the bandwidth of the memory interface has a 
more significant impact on performance, especially in systems with 
support for at least four in-flight fetches. While the pcrformnncc 
sensitivity to the bandwidth is small for all but the most aggrcsdve 
systems, the reported percentages represent a lower bound due to 
the assumption that neithertheinstruction cachenor the write buffer 
use thememory interface. If these two components were to compete 
for thebandwidth of theinterface, contention would increase, which 
would increase the performance sensitivity to the bandwldth. The 
rate of this increase would be greater for systems with the eight-wny 
issue processor since wider issue processors generate more traffic 
in a given time period than narrower issue processors. Nonethclcss, 
if stream buffers are not included in the system, the bandwidth is 
unlikely to be a significant factor for the less aggressive systems 
and the benchmarks discussed in this paper. 

Fourth, the addition of stream buffers to a system leads to a more 
significant performance increase for systems having either moro 
restrictive lockupfree caches, more memory bandwidth, or mom 
instruction issue capability. For the systems investigated, the dcslgn 
of the lockup-free cache had the greatest impact on perfonuancc, 
and the bandwidth of the memory interface had the least impact. 
Increasing the number of registers results in a more signillcant 
performance increase with systems having a lockup cache but a 
less significant increase with systems having a lockup-free cache, 
The increase is larger for the systems with the eight-way ISSUO 

processors. 
Fifth, system performance is not significantly affected when 

stream buffers are used that have traffic filters and dynamic-stride 
calculators. This observation is not surprising since the pcrformanco 
of the benchmarks is at best 16% better when the memory interface 
has an infinite bandwidth. In other words, contention for the lntcf- 
face is not a significant problem. This observation also suggests that 
the address streamgenerated by cachemisses when each benchmark 
isnmisdominatedbyinterleavedunit-stridestreams. Thus, thocost 
of supporting dynamic-stride calculation is not warranted for these 
seven benchmarks. However, in spite of the similar performnncc of 
many of the enhanced stream-buffer implementations, the cost of 
those that have traffic filters is probably warranted since the system 
model does not take into account all possible sources of memory 
traffic. The exact type of filter would have to be determined when 
a specific system is being considered. A larger set of benchmarks 
would also be required, as well as including all of the traflic effects 
into the model. 

Finally, the incremental-prefetching technique WC introduce rc- 
duces thebandwidth consumed by stream buffers by half with little 



performance loss. 
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