
Confidence Estimation for Speculation Control

Dirk Grunwald and Artur Klauser Srilatha Manne and Andrew Pleszkun

Department of Computer Science Department of Electrical and Computer Engineering
Campus Box 430 Campus Box 425

University of Colorado University of Colorado
Boulder, CO 80309 Boulder, CO 80309

{grunwald,klauser}@cs.colorado.edu {bobbie,arp}@cs.colorado.edu

Abstract

Modern processors improve instruction level parallelism by specu-
lation. The outcome of data and control decisions is predicted, and
the operations are speculatively executed and only committed if the
original predictions were correct. There are a number of other ways
that processor resources could be used, such as threading or eager
execution. As the use of speculation increases, we believe more
processors will need some form of speculation control to balance
the benefits of speculation against other possible activities.

Confidence estimation is one technique that can be exploited by
architects for speculation control. In this paper, we introduce per-
formance metrics to compare confidence estimation mechanisms,
and argue that these metrics are appropriate for speculation con-
trol. We compare a number of confidence estimation mechanisms,
focusing on mechanisms that have a small implementation cost and
gain benefit by exploiting characteristics of branch predictors, such
as clustering of mispredicted branches.

We compare the performance of the different confidence esti-
mation methods using detailed pipeline simulations. Using these
simulations, we show how to improve some confidence estimators,
providing better insight for future investigations comparing and ap
plying confidence estimators.

1 Introductton

Speculation is a fundamental tool in computer architecture. It al-
lows an architectural implementation to achieve higher instruction
level parallelism, and thus performance, by predicting the outcome
of specific events. Most processors currently implement branch
prediction to permit speculative control-flow; more recent work has
focused on predicting data values to reduce data dependencies [lo].

Confidence esfimation is a technique for assessing the quality
of a particular prediction. Confidence estimation has usually been
studied in the context of branch prediction. Jacobsen et al [7] de-
scribed a number of uses for confidence estimation: they suggested
that it may be used to improve the branch prediction rate, control
resource use in a dual-path execution pipeline or control context
switching in a multithreaded processor.

In this paper, we study the design of confidence estimators and
make the several contributions. First, we feel that confidence esti-

1063-6897/98$10.00O1998IEEE
122

mators will usually be used for some form of speculation control.
Previous metrics used to compare confidence estimators would re-
sult in inappropriate design decisions. We introduce standard, con-
sistent metrics to compare the performance of confidence estima-
tors, and argue that different applications of confidence estimators
require different metrics. Second, we compare hardware inten-
sive confidence estimators against several less complex estimators
that use existing branch prediction or processor state information.
While the complex implementation has uniformly better perfor-
mance, the less complex methods have similar performance and a
significantly reduced implementation cost, making them appealing
for many of the practical cases where confidence estimation would
be used. Lastly, our pipeline-level simulations indicate ways to
improve the hardware-intensive confidence estimator in an actual
implementation.

In the next section, we describe screening or diagnostic tests,
and adopt their terminology for branch prediction and confidence
estimation. In $2, we apply this terminology to confidence estima-
tion, and conduct a series of measurements to compare different
confidence estimators. We close with a discussion of temporal as-
pects of branch predictors and how they can be exploited to improve
confidence estimation.

1.1 Diagnostic Tests

The following description is adapted from a paper by Gastwirth [4],
as described in [l]. A diagnostic tesf is used to determine if an
individual belongs to a class D of people that have a particular
disease, or to the class of people who do not have the disease, D.
The result of a test places a person either into the class S, those
who are suspected of having the disease, or class S. The accuracy
of the diagnostic test is indicated by two parameters: sensitivity and
speciJcity. The sensitivity is defined to be SENS = P(S(D], or the
probability that a person with the disease is properly diagnosed.
The specificity is SPEC = P[s@], or the probability that a person
who does not have the disease is correctly diagnosed. For good
tests, both SPEC and SENS are close to one.

The problem with all diagnostic tests is that if a disease occurs
infrequently, there will be a large number of “false positives” - the
diagnostic test will indicate that a person has t_he disease when in
fact they do not. This can be expressed as P[SID] = 1 -P[f?lD] =
1 - SPEC. The last metric of interest is the probability that someone
has a disease, p = P[D]. In most tests, we are interested in the
predicfive value of a positive test (PVP), which is P[DIS]. The
PVP is the probability that a person has the disease given that a test
indicates they might.

Gastwirth cites a study of the ELISA test for AIDS used to

screen donated blood, where the sensitivity was SENS = 0.977,
indicating that the test should find samples with the disease, and
the specificity was SPEC = 0.926, indicating that most tests that
come back positive would really have the disease. The large val-
ues for SENS and SPEC can be misleading for large populations
or for very rare diseases. For example, assume that only 0.01%
of the population actually has AIDS@ = 0.0001). Then, using
the above equation, we compute PVP = P[DIS] = 0.001319. In
other words, even if the diagnostic test indicates you have the dis-
ease, there is only a 0.13% probability that you actually have the
disease, simply because the disease is so rare.

So far, we have described parameters of diagnostic tests inde-
pendently of the cost of different outcomes. For example, in the
ELISA test for AIDS, it is very important to have a high sensitiv-
ity - tainted blood samples shouldn’t be accepted. However, it’s
acceptable to have a lower specificity, because you may be able to
use a series of (more expensive) tests to determine if the person
really has the disease.

2 Confidence Estimation as a Diagnostic Test

It is more difficult to compare two confidence estimators than two
branch predictors in part because confidence estimators can be used
for a number of purposes while branch predictors are typically
only used to predict the outcome of control-dependent instructions.
Most architectures are designed to use speculation and the general
assumption is that “you might as well be doing something”, and
thus each branch is predicted.

By comparison, we think that confidence estimators will nor-
mally be used for speculation control. For example, if a particular
branch in a Simultaneous Multithreading [14] processor is of low
confidence, it may be more cost effective to switch threads than
speculatively evaluate the branch. A confidence predictor attempts
to corroborate or assess the prediction made by a branch predictor.
Each branch is eventually determined to have been predicted cor-
rectly or incorrectly. For each prediction, the confidence estimator
assigns a “high confidence” or “low confidence” to the prediction.
In addition to the standard terminology of diagnostic tests, we have
found that another notation simplifies the comparison of different
confidence estimators. We draw a 2 x 2 matrix listing the frequency
for each outcome of a test. When we apply this framework to archi-
tectural simulation, each of the quadrants can be directly measured
during simulation or analysis. Typically, we normalize the values
to insure that the sum equals one. Thus, our quadrant table for
confidence estimation is:

Prediction Outcome
c I

Confidence
HC 1 CHC 1 IHC 1

LC jj
L I I

In this table, “C” and “I” refer to “correct” and “incorrect” pre-
dictions, respectively, and “HC” refers to “high confidence” and
“LC” to “low confidence”. During a simulation, we can mea-
sure CHC, ZHG, CLC and ZLC using a branch predictor for each
branch and concurrently estimate the confidence in that branch
predictor using a specific confidence estimator. When the branch
is actually resolved, we classify the branch as belonging to class
CHC‘, IHC, CLC’ or ILC.

2.1 Metrics for Comparing Confidence Estimators

There are many possible designs for confidence estimators, and
we need a consistent method to compare the effectiveness of two
confidence estimators. To date, only Jacobsen et al [7] have pub-
lished comparisons of confidence estimators, and their paper con-
sidered only two designs. When converted to our terminology, Ja-
cobsen et al defined the “confidence misprediction rate” as ZHC +
cLc;/cHC + ZHC + CL:C + ZLC. This represents the fraction when
the confidence estimator was wrong or disagreed with the eventual
branch outcome. Jacobsen et al also defined the “coverage” of a
confidence predictor as CLC + ZLCICHC + ZHc + CLC + ZLC.

We believe that when a confidence estimator is applied, the ar-
chitectural feature using that confidence estimation will either be
used for “high confidence” or “low confidence” branches, but not
both. Since the “confidence misprediction rate” includes both out-
comes, we felt more effective metrics needed to be designed. For
example, consider a simultaneous multithreading (SMT) proces-
sor that uses a confidence estimator to determine if a predicted
branch is likely to be mispredicted. If the branch prediction is
of “low confidence”, the processor may switch to another avail-
able thread rather than fetch additional instructions from the cur-
rent thread. The performance of such a processor is very sensitive
to P[Z]LC] = ZLC/CL~ + ZLC, the probability that the branch
is incorrectly predicted if it was low confidence. A high value
for P[Z]X] indicates that the processor can switch contexts only
when the following instructions will not commit. A low value of
P[ZILC] indicates that the SMT processor may needlessly switch
threads, reducing the performance of the primary thread. A low
value of the SPEC (P[LC(Z]) means that the processor will miss
some opportunities to improve aggregate performance by switch-
ing threads.

Not all uses of confidence estimators will make the same kind
of decisions, but we feel it is most useful to compare confidence
estimators using metrics that reflect how the confidence estimators
are used. For example, SMT processors want a confidence estima-
tor with a large P[ZILC] and a large P[LCII]. We have found in
our own discussion that terms such as “accuracy” and “coverage”
tend to cause confusion, because accuracy has an inherit implica-
tion about the application of a technique. Thus, we use neutral
terms that also have the benefit of being standard terms in statis-
tics. Each of these metrics is easy to compute, and each is a “higher
is better” metric. To simplify discussion, we assign the following
names to these conditions.

Sensitivity: The SENS is P[HC/C] = CHC’/CHC + CLC,
and represents the fraction of correct predictions identified as
“high confidence”.

Predictive value of a Positive Test: The PVP is P[CIHC] =
CHC/CHC + ZHC and represents the probability that a high-
confidence estimate is correct.

Specificity: The SPEC is P[LCII] = ILC/IHC + ILC, and rep-
resents the fraction of incorrect predictions identified as “low
confidence”.

Predictive value of a Negative Test: The PVN is P[ZILC] =
IL~;/CLC + ILC and represents the probability that the a
low-conjidence estimate is correct.

There is a natural relation between the SPEC and PVN and the
SENS and PVP that can be clarified by an example. Assume a pro-
gram executed 100 conditional branches. Of those, 20 are mispre-
dieted. The confidence estimator indicates “high confidence” for
61 of the 80 correctly predicted branches and 2 of the incorrectly

123

SENS-70% "r";*
P=70% =

5
O- OA

0.2

L

-I---
----, SPECm70X

x
I

/
---,---c--

A J
0.6 0.7 0.6 0.9 1

PVP

Figure 1: Parametric plots showing how the sensitivity (SENS), specificity
(SPEC) and branch prediction accuracy (p) influence the values of PVP and
PVN. Each line shows the value of PVP and PVN when we hold two values
constant and vary the third value. For example, in the right-most curve, the
specificity and branch prediction accuracy are held constant, and we vary
the value of the sensitivity. The markers on each line indicate the decile
values of the parameter b&g varied.

predicted branches. It indicates “low confidence” for 19 of the 80
correctly predicted branches and 18 of the 20 incorrectly predicted
branches.

Prediction Outcome
c I

I I I

Confidence

The SENS would be & = 76%, and the PVP would be
-CL- Cl +‘L = 97%. A larger SENS indicates more of the correctly pre-
dicted branches are correctly estimated, and a larger PVP indicates
that the confidence estimator doesn’t designate incorrect predic-
tions as “high confidence”. The SPEC would be * = 90X, in-
dicating that the confidence estimator is good at findin most of the

Ft3 - 49%. incorrectly predicted branches. The PVN would be 18+19 -
indicating that the confidence estimator is reasonably able to ex-
clude correctly predicted branches. Since branch predictor accu-
racy is CHC + CLC. the SENS and SPEC are independent of the
branch predictor accuracy. In other words, SENS is only a prop-
erty of correctly predicted branches, and SPEC is only a property of
incorrectly predicted branches.

Figure 1 provides some insight into the relation between the
SENS, SPEC, prediction accuracy, PVP and PVN. The curves
are plotted for values of SENS, SPEC and prediction accuracy (p)
that are representative of the measured values that will be dis-
cussed in $3. For a given sensitivity and prediction accuracy (e.g.,
[SENS = 700/n, p = 70x1 and [SENS = 70X, p = go%]), increas-
ing the sensitivity will greatly improve the PVP until it reaches an
asymptotic limit and then improves the PVN. Likewise, for a given
SPEC and prediction accuracy (e.g., [SPEC = 7O%,p = 70X],
[SPEC = 70%, p = 90%] and [SPEC = 99X, p = go%)]), increas-
ing the SENS improves the PVN. This improvement is faster if the
SENS is high or the branch prediction accuracy is low.

When designing a confidence estimator, we need to understand
whether the final application will be using the PVP or PVN and the

importance of the SENS and SPEC to that application. Qpically, we
would not want to change the branch prediction accuracy; although
we can increase the PVN by decreasing the prediction accuracy, this
would be counter-productive for most applications of confidence
estimation.

2.2 Using confidence estimators

Although the particulars of any given application are beyond the
scope of this paper, there are a number of obvious uses of conti-
dence estimation with associated costs that can illustrate the im-
portance of the relative values of these metrics. We have described
one such application (speculation control for simultaneous multi-
threading), and list four others.

Bandwidth multithreading: In a multithreading CPU designed
to assume a large number of threads, the architectural model would
be more willing to switch threads if there is any uncertainty in the
outcome of a branch. Unless the confidence estimator returned a
“high confidence” estimate, the architecture would switch threads.
Thus, we want a confidence estimator with a high SENS, meaning
that most correct branches are identified as high-confidence, and a
high PVP, meaning that most branches designated as high conti-
dence are predicted correctly.

SMT: As mentioned, in this architecture, you could use a con-
fidence estimator to control the number of instructions issued by
individual threads. Since this architecture would err on the side
of speculatively issuing instructions, confidence estimators with a
high PVN are very important, while PVP would be less important.
A higher SPEC means that more opportunities for avoiding wasteful
speculation are identified.

Power conservation: In related work [l 11, we are investigating
how to use confidence estimators to reduce power usage in a pro-
cessor by suppressing instruction issue following low-confidence
branches. The goals in the power conservation architecture are sim-
ilar to those of the SMT design, and we want a confidence estimator
with large PVN and SPEC.

Eager Execution: Some proposed architectures evaluate instruc-
tions on both paths of a conditional branch [16,9, 15,6,8]. These
architectures might use a confidence estimator to determine when
to diverge and evaluate both paths. A confidence estimator with
high PVN would indicate that a low-confidence estimate for a
given conditional branch has a high chance of being a r&predicted
branch and may benefit from eager execution. A higher SPEC
would mean that more opportunities for applying eager execution
are found.

Improving Branch Predictors: Jacobsen et al [7] suggested that
a confidence estimator could be used to improve the accuracy of a
branch predictor. If the PVN > 50%, then the confidence esti-
mator can improve the branch prediction accuracy by inverting the
outcome of a low-confident branch. Conversely, if PVP < 50%.
then the branch prediction for high-confident branches should be
inverted. We have examined many confidence estimators in many
configurations, but have not found a situation where these condi-
tions hold across a range of programs.

To summarize, in most of these applications, a higher PVN
would improve the underlying architecture, but none of the appli-
cations needing a higher PVN would sacrifice prediction accuracy

124

to increase the PVN. A higher SPEC would indicate that the archi-
tectural optimization (multithreading, eager execution, power con-
servation) might have greater impact because more of the opportu-
nities where it can be applied are exposed. Our own immediate ap-
plications for confidence estimation (power conservation and eager
execution) biased our investigation towards conlidence estimators
with a high PVN and SPEC.

3 Comparison of Confidence Estimators

We have implemented four confidence estimators either discussed
or implied in existing literature, and used our performance met-
rics to compare their performance. Later, we examine the temporal
characteristics of branch predictors and show how those properties
can be used to design another inexpensive confidence estimator.

JRS Estimator: The first method we implemented is one-level
resetting counter mechanism proposed by Jacobsen, Rotenberg,
and Smith (JRS) [7]. This predictor uses a miss distance counter
(which we call an MDC) table in addition to the branch predictor.
The structure of the confidence estimator is similar to that of the
Gshare predictor. An index is computed using an exclusive-or of
the program address and the branch history register. This index is
used to read a value from a table of MDCs. The width of these
counters can vary in size, but we used 4-bit counters as suggested
in [7]. We used a large table containing 4096 4-bit counters. Each
time a branch is predicted, the value of the MDC is compared to
a specific threshold. If the value is above that threshold, then the
branch is considered to have high confidence, otherwise it has low
confidence. When a branch resolves, the corresponding confidence
counter is incremented if the branch was correct; otherwise, it is re-
set to zero. We tried all different threshold levels, and show detailed
results for a threshold of 15 and show the trend for other thresholds.
We called this the JRS confidence estimator.

Pattern History Estimator: Lick et al [9, IS] proposed a conti-
dence estimator for dual-path execution, the confidence estimator
was used to determine when dual-path execution should be used.
Although neither of the available papers focused on the confidence
estimator itself, the basic design is described. Lick et al observed
that a small number of branch history patterns typically lead to cor-
rect predictions in a branch architecture using a PAS predictor (i.e.,
a BTB with a branch history stored for each branch site). The con-
fidence estimator assigned high confidence to a fixed set of patterns
and treated all other patterns as low confidence. Essentially, the pat-
terns were always taken, almost always taken (once not-taken), al-
ways not-taken, almost always not-taken and alternating taken and
not-taken. We called this thepattern history confidence estimator.

Saturating Counters Estimator: The third method we imple-
mented was originally proposed in an early paper by Smith [131.
Here, we use the state of the saturating counters used in many
branch prediction mechanisms to determine the confidence esti-
mate. For example, in a simple gshare predictor, branch outcomes
are determined by the state of a two-bit counter. We called this the
saturating counters method.

Static Estimator: The last technique uses a .xtutic confidence
hint. Here, we executed the program and simulated the underly-
ing branch predictor (e.g., a gshare predictor). We record the num-
ber of correct outcomes for each branch instruction, and then use a
“threshold” to determine confident branches. In our examples, we
used a threshold of 90%, meaning that a branch with 2 90% branch

prediction accuracy was considered to have high confidence, and all
other branches had low confidence. The results we report are from,
self-profiled executions where the same input was used to train and
evaluate the confidence predictor. Thus, these results present a best-
case evaluation of this confidence method. We mainly include this
technique to indicate its potential.’

3.1 Experimental Methodology

Each of the confidence estimation techniques makes assumptions
concerning the underlying branch predictor. Later, we compare
these methods when using a gshrue and a McFarling branch pre-
dictor [12]. In each case, the structure of the confidence estima-
tor may change due to the branch predictor, and we indicate those
changes there. We use the SimpleScalar [2] execution-driven simu-
lation infrastructure to compare the different confidence estimators.
Our simulator is an extension of the sim-outorder simulator, with
a 5-stage pipeline and an additional 3 cycle misprediction recovery
penalty.

We use a 64 kB Ll Dcache and a 128 kB Ll Icache’, both with
2 cycle access latency. Our simulator knows the outcome of all
branches at the point of instruction decode, even for branches that
do not actually commit. This includes branches following a mispre-
dieted branch. We essentially recorded a “speculative trace” for the
processor, recording the prediction and eventual outcome of com-
mitted and uncommitted branches. We did this to compare the dif-
ference in branch prediction and confidence estimation for commit-
ted and uncommitted branches. When the processor is executing a
conditional branch, it does not know if a branch will commit or not,
so it is important to understand how all branches are predicted and
estimated. It may be that some pattern arises in the uncommitted
branches that would impact confidence estimation. We will always
restrict our discussion to committed instructions unless we indicate
otherwise. For example, when we report the SPEC and PVN for
different confidence estimators, we only report these values for the
committed instructions.

We used the SPECint95 benchmarks for our performance eval-
uation and did not simulate the SPECfp95 since those programs
typically pose few difficulties for branch predictors. The bench-
marks and important measurements from our simulations are listed
in Table 1.

We used three underlying branch predictors to compare the dif-
ferent confidence estimators: a speculative gshare predictor, a spec-
ulative McFarhng combining predictor [12] and a non-speculative
SAg [171 predictor. Figure 2 gives a schematic illustration of each
branch predictor. The gshare branch predictor (Figure 2a) com-
bines a global branch history with the program counter to select a
two-bit counter. The SAg predictor (Figure 2b) uses the program
counter to index into an untagged table of branch history registers
that are used to select a two-bit counter. The bimodal predictor
(Figure 2c) is used in the combining predictor and uses the pro-
gram counter to index a table of two-bit counters. The combining
predictor (Figure 2d) uses both a gshare (Figure 2a) and bimodal
(Figure 2c) predictor. A table of two-bit counters is used to select a
component branch predictor for each prediction.

Only the gshare and combining predictors are speculatively up-
dated. Non-speculative update would slightly increase the branch

‘It is important to note that the “‘profile” technique cannot use a simple program
profile, smce the decwons depend on outcome and state of the branch predictor. Thu.
the “profile” technique requires a branch predictor simulation (which is much slower
than a simple profile) or hardware that reports performance information for the under-
lying branch predictor, such as the Profile-Me mechanism (31.

‘The Icache is equivalent to a 64 kB cache, since SimpleScalar has a H-bit in-
struction encoding, but we only use 32 bits for each instruction, so half the space IS
wasted.

125

Table 1: Program characteristics, differentiating between committed instructions and both committed and uncommitted instructions. The
processor will typically issue 20-100% more instructions than actually commit, due to speculative execution. The values for speculative
execution were measured when using the gshare branch predictor.

(c) Bimodal (d) Combining

Figure 2: Schematic illustration of the different branch predictors

misprediction rate, since information from recent branches is not
immediately available to succeeding branches. The SAg model is
similar to the PAS, which is usually implemented with a branch tar-
get buffer, but the SAg is “tagless” and may alias branch histories.
It is difficult to roll back from speculative history updates in a PAS
or SAg predictor, and we did not implement speculative update for
that reason. Restoring the table at a branch misprediction requires
multiple cycles as each non-committed predicted branch restores
its old history state in the branch history table (BHT). Alternatively,
the whole BHT could be checkpointed for each predicted branch,
and restored on misprediction. This scheme requires space to store
multiple copies of the BHT. The SAg is much more expensive to
implement than Gshare or McFarling, and only offers similar per-
formance (see Table 1).

Throughout our analysis and comparison, it is important to re-
member that the JRS estimator is significantly more expensive to
implement than either the saturating counters, the history pattern

or the profile method, since extra tables and state are needed by the
JRS estimator.

3.2 Comparison of Confidence Estimators When Using a
Gshare Branch Predictor

In our first configuration, we used a 4096-entry gshare branch pre-
dictor. The JRS confidence estimator was implemented as de-
scribed above. We implemented the history pattern confidence es-
timator using both the values determined by Lick et al and by re-
peating their measurements for the gshare predictor, selecting new
“highly confident” patterns. In our presentation, we only show re-
sults using the patterns specified by Lick et al since there appear to
be no dominant patterns in the global history register when using a
gshare predictor. The saturating counters method used the heuris-
tic described above - strongly taken or strongly not-taken branches
were considered confident and all others were not confident. We
used a 90% threshold for the static, profile-based technique.

The first column of Table 2 shows the performance of the dif-
ferent confidence estimators when using the gshare predictor. We
report the geometric mean of the sensitivity, specificity, PVP and
PVN for each confidence estimator; detailed information on each
application can be found in [5]. The averages are computed from
the averages of the original data. In other words, when comput-
ing the average-for the PVP, we take the mean for CHC and CLC

and compute CHC/CHC + CLC, rather than averaging the existing
PVP’S.

Unless we consider a specific application for the confidence es-
timators, it is difficult to select one estimator over another. In gen-
eral, the JRS estimator has the highest PVP and an acceptable PVN,
and the profile-based estimator is roughly similar. The saturating
counter method has a better PVN than the JRS or profile method,
but at the expense of a lower PVP. This occurs because the satu-
rating counter method is more sensitive (i.e., reduces the relative
value of low-confidence predictions for correct branches). How-
ever, the test is not very specific, and incorrectly classifies many
incorrectly predicted branches as “high confidence” branches. The
history pattern method fares poorly when using this and the McFar-
ling predictors because no dominant patterns emerge. Since those
patterns don’t occur, the history pattern method will classify most
branches as “low confidence”, leading to a low sensitivity. Since
most branches are marked “low confidence”, most of the incor-
rectly predicted branches will be correctly diagnosed as low conti-
dence.

126

., ,. ., ,.,.,. ‘~ .,. ., ,.,.,.,. k.: tj : j, ;a&ars ;&adr&~*“Y?‘~~
Confidence Estimator sens spec pvp pvn

JRS, Threshold >= 15 56% 96% 90% 30%
Saturated Counters 88% 42% 88% 41%
History Pattern 17% 94% 93% 19%
Static, Threshold > 90% 55% 09% 96% 28%

Table 2: Comparison of Confidence Estimators when using a Gshare, McFarling and SA .g branch predictors

3.2.1 Enhancing the JRS Estimator

We use an enhanced implementation of the JRS confidence estima-
tor that improves performance. Rather than use the same branch
history to index the branch prediction and MDC table, we first
predict the branch and include that prediction when we index the
MDC table. Figure 3 shows the noticeable performance difference.
Each point on the lines indicates the performance when changing
the “threshold” value. This improvement requires reading out both
alternative MDC counters and then selecting the appropriate result
when the branch prediction completes. We use this implementation
throughout the remainder of the paper.

Figure 4 shows the PVP and PVN for the JRS estimator for dif-
ferent possible configurations of the hardware. As before, each
line shows the results when we vary the number of the four-bit
MDC entries, and each point on a line indicates the performance
when changing the “threshold” value. The right-most point uses a
threshold of 16; since this cannot be reached by a four-bit MDC,
all branches are marked “low confidence”, and the PVN is equal to
the misprediction rate.

More branches are marked “low confidence” at a higher thresh-
old. This increases the SPEC, but also decreases the PVN since
more correctly predicted branches are marked as “low confidence”.
Lowering the threshold has the opposite effect: the SENS will in-
crease, but the PVP will decrease. Selecting the appropriate con-
figuration of the JRS estimator, as with selecting the appropriate
configuration of any estimator, depends very much on the intended
application.

3.3 Comparison of Confidence Estimators When Using a Mc-
Farling Branch Predictor

In the second comparison, we used a McFarling combining predic-
tor that combines the results from a gshare predictor and a table of
two-bit saturating counters indexed only by the program counter.
As indicated in [121, this configuration offers the best performance
for the predictor sizes we are using in this evaluation. The JRS,
static and history pattern confidence estimators were implemented
as before. The “saturating counters” method was modified to use
information from both prediction mechanisms in the combining
predictor.

3.3.1 Saturating Counters Estimator for McFarling Predic-
tors

In the McFarling predictor, two different two-bit counters provide
branch predictions, and a “meta-predictor” chooses between the
two predictions. Each component, the gshare or bimodal predic-
tors, uses a two-bit counter to provide hysteresis in the branch pre-
diction. In the McFarling predictor, both component predictors
are queried for each branch prediction. A third table. the meta-
predictor information, is used to determine which predictor should
be used. When the branch actually commits, both branch predictors

jJ;fj ::;:i; ‘i,~lf~lilii;~~~~~~~:,::~,~:~~~,’:~: . . .

sens spec pvp pvn
64% 94% 99% 24%
90% 40% 94% 36%
73% 81% 97% 26%
66% 93% 98% 30%

50 _._._._._. .__...._..
1 1 11 -4-enhancedJRS 1

25

88 90 92 94 96 98 100
PVP

Figure 3: Performance of the JRS enhanced confidence estimator.

Threshold = 2 :
I

Figure 4: Performance of the JRS confidence estimator when using
the Gshare predictor, as the design parameters are varied.

127

...........
gy,o Thresh&j

:
= 1 I.. i..

Threshold =15

94% 96%

PVP

Figure 5: Performance of the Smith confidence estimator when us-
ing the McFarling predictor, as the design parameters are varied.

are updated. If the component predictor results were different, the
meta predictor moves to re-enforce the use of the correct compo-
nent predictor. Otherwise the meta predictor is unchanged.

There are a number of sources of information for the “satu-
rating counters” mechanism. We found that two techniques work
well, and that each has a benefit depending on the desired perfor-
mance metric (PVP or PvN). We are not interested in the direction
of a branch prediction, just the likelihood that the prediction will
be correct. Thus, we categorize each branch component predictor
as offering a “strong” or “weak” prediction, where the transitional
states in the state machine are considered “weak” predictions. Ig-
noring the information from the meta predictor, there are now four
states: (Strong, Strong), (Strong, Weak), (Weak, Strong), (Weak,
Weak).

In the “Both Strong” variant, we signal “high confidence” only
when both predictors are strongly biased in the same direction, and
“low confidence” otherwise. In the “Either Strong” variant, we sig-
nal “low confidence” only when both branch predictors are in the
“weak” state, and high confidence otherwise. Table 2 shows only
the “Both Strong” variant to simplify the data presentation. Ta-
ble 3 compares the “Both Strong” and “Either Strong” variants.
The “Both Strong” method has a higher SPEC and PVP since only
“strongly” predicted branches will be marked as high confidence,
reducing the total number of correctly estimated low-confidence
branches. Conversely, the “Either Strong” method will have a high
SENS, lower PVN and higher PVP, since more branches will be
considered “low confidence”.

We also looked at a number of variations on these techniques
which use the saturation state of only the selected counter to deter-
mine the confidence, information from the meta-predictor, or dif-
ferent combinations of the state information. However, these meth-
ods generally had a lower SPEC and PVN. Since we were mainly
interested in applications of confidence estimation that emphasize
the SPEC and PVN, we do not include those results in the paper.

The relative merits of the different estimators change when
considering the McFarling branch predictor, as shown in the mid-
dle column of Table 2. In this configuration, the JRS, saturating
counter and profile-based techniques are roughly similar. The JRS
mechanism is more specific than the other methods, meaning it will
identify more incorrectly predicted branches, but the PVN is about
the same for each of those estimators.

saturated Countera
Both Strona nither Stmna

applmtmn sens 1 spec 1 pvp 1 pvn 1 *ens 1 spec 1 pvp 1 pvn
compress 66% 77% 96% 97% 16% 91% 38%

WC 54% 80% 95% 96% 15% 89% 36% perl
I I

52% 83% 96% 96% 17% 90% 36%

90 36% 64% 68% 91% 18% 78% 39%
m88ksim 79% 52% 97% 99% 12% 96% 33%
xlisD 78% 68% 97% 98% 15% 94% 34%

Table 3: Performance of Low-Confidence vs. High-Confidence
thresholds with the McFarling branch predictor

The SPEC of the JRS method decreases when we switch to the
McFarling predictor. We believe this happens because the predic-
tion accuracy is higher, and there are fewer incorrect predictions to
identify. Identifying those few remaining incorrect predictions is
more difficult. Essentially, the branch predictor is finding the eas-
ier mispredictions and thus improving the misprediction rate. The
SPEC for the saturating counter estimator improves greatly when
compared to the Gshare predictor, in part because the two-bit pre-
dictor in the Gshare has such a low specificity to begin with. The
PVN of all the branch estimators is significantly lower when using
the McFarling branch predictor. In part, this occurs because the
underlying branch predictor is more accurate and the confidence
estimator has to work harder to find mispredictions.

Figure 5 shows the performance of the JRS estimator as the
hardware configuration is varied. The trends are similar to that
explained in $3.2, but the overall PVN is lower.

3.4 Comparison of Confidence Estimators When Using a SAg
Branch Predictor

The third comparison, shown in column three of Table 2, uses a
SAg predictor with 2048 branch history entries and an 8192-entry
counter table. Each branch history register was 13 bits long.

Since the counter entries are only two bits, the saturating coun-
ters estimation method performs poorly in this configuration, just
as it did when using the Gshare predictor. Similarly, the JRS and
static estimators have similar performance to that seen when using
the gshare predictor. The performance of the history pattern esti-
mator improves dramatically for SAg, where it performs roughly
equivalent to the static and JRS methods. In addition, it has a much
lower implementation cost than JRS and does not require profiling
like the static method. Therefore, the history pattern estimator is
very competitive for a SAg branch predictor.

3.5 Summary of Compadsons

Several observations arise from our comparison of confidence esti-
mation techniques. First, the performance of a confidence estimator
appears to be very dependent on the branch predictor and conli-
dence estimator having a similar design or indexing method. For
example, the JRS estimator has better performance for the gshare
mechanism (to which it is similar) than for the McFarling predictor,
and the History Pattern technique has excellent performance when
using a SAg, but poor performance when using a global history,
as in Gshare or McFarling. This indicates that we may be able to
design a better variant of JRS for the McFarling predictor. Second,
our improvement to the JRS method indicates the value of includ-
ing more recent information in the confidence estimation process.

Our comparison also shows the value of inexpensive confi-
dence estimators such as static profiling, the “saturating counters”

128

method, and the History Pattern technique. These methods per-
formed almost as well as the JRS technique when using different
branch predictors, but they require very little additional hardware
to implement. It also shows that it is unlikely, albeit not impossible,
that confidence estimation may be used to directly improve branch
prediction, since none of the confidence estimators we examined
had a PVN consistently greater than 50%.

4 Temporal Aspects of Branch Prediction and Confidence Es-
timation

We originally began studying confidence estimators because we
are using them for a number of applications, including some of
those mentioned in $2.2. We wanted to focus on confidence esti-
mators with a low implementation cost. During our investigation,
we made a number of observations concerning the temporal aspects
of branch prediction and we have used these observations to design
alternative confidence estimators.

4.1 Branch Misprediction Clustering

If branch mispredictions are clustered, then we may be able to use
the distance since the last mispredicted branch as a confidence es-
timation mechanism. Our measurements confirm the observation
of Heil and Smith [6] that mispredictions in a trace were clustered.
However, we have found the degree of clustering is different when
you look at all branches (e.g., during a pipeline-level simulation)
or only at the committed branches (e.g., branches in a normal pro-
gram trace). We use the information from all branches because that
is what is actually of interest to an architect in a real pipeline or a
pipeline level simulation.

Our data shows that mispredictions are tightly clustered, with
few branches between mispredicted branches. Heil and Smith [6]
plotted the probability distribution function of the branch mispre-
diction distance. If branches are independent (and not clustered),
that graph has a geometric distribution with a parameter equal to
the misprediction rate. We found that presentation difficult to un-
derstand, and found it easier to understand if we plot the data as in
Figure 6. In this figure, we graph the misprediction rate vs. the dis-
tance to the previous mispredicted branch. If mispredictions were
not clustered, we would expect the misprediction rates to all be
the same, as indicated by the average lines. Instead, we find that
branches immediately following a misprediction are more likely to
be m&predicted. InFigure 6, we plot two views of the data from our
simulations. The data marked “all branches” includes both commit-
ted and uncommitted branches, whereas the “committed branches”
includes only committed branches. Heil and Smith used a trace for
their analysis, and only report the data for committed branches. We
used a gshare branch predictor to generate the data in Figure 6, but
we also used a precise value for the distance to the previous mis-
predicted branch - the processor model has complete knowledge
of the pipeline state. Again, this corresponds to the information
that would be recorded by a trace when we consider the commit-
ted branches without a pipeline-level simulator. Figure 7 shows a
similar plot using the McFarling branch predictor.

A real architecture determines m&predictions when a branch is
resolved, and not when a misprediction is actually made, as in our
“precise” model. This will lengthen the time, and thus the number
of branches executed, until the misprediction is actually detected,
and should skew the branch clustering such that it appears to occur
over a larger branch distance. Figure 8 shows the corresponding
misprediction rate vs. misprediction distance when we only use in-
formation from resolved branches, using the same gshare branch
predictor. Figure 9 shows similar information for the McFarling

46
40

*s
e30

f

s
PO
IS
10
I
a- 5. .., :.: x .:. .:.) :.: :.. .:

Figure 6: Mlsprediction distance using a gshare branch predictor
and precise misprediction information. The vertical axis shows the
misprediction rate of predictions that are made a specific number
of branches after a previously mispredicted branch.

56 -- ss38ll- ~conun110dbnnchu .” 45 -“-“WlWS . ..A....,.- p
.-

235
$50

I 25 26 15
10
5
0

1 2 9 4 5 a 7 8 8 10
M*prsdknoll d-

Figure 7: Misprediction distance using a McFarling branch predic-
tor and precise misprediction information.

Figure 8: Perceived n-&prediction distance for Gshare predictor.
This shows the misprediction rate of branches a specified number
of branches after the most recent misprediction detected by the pro-
cessor.

Figure 9: Perceived misprediction distance for McFarling predic-
tor.

129

>= 15 &hare
ntm N.A. &hare 88X 42% 88% 41%

> 90% &hare 55% 89% 96% 28%
, >l &hare 88% 38% 88% 32%
, >2 Qshare 7i% 58% 90% 30%
I >3 Gshare 89% 87% 92% 28%
I z-4 Gshare 64% 74% 93% 27%
I k-5 Gshare 59% 78% 94% 28%
, >8 Gshare 55% 81% 94% 25%

Gshara 52%

Satur. Cntrs N.A. McFatiing 67%
StaUc z 90% McFariing 7%
Distance >l McFarting 90%
Distance > 2 McFarting 81%
Distance > 3 McFarling 75%
Distance > 4 McFariing 69%
Distance > 5 McFatiing 64%
Distance > 8 McFatilng 60%

78% 96%
88% 96%
19% 92%
34% 9%
48% 93%
55% 94%
62% 94%
67% 95%

21%
28%
18%
16%
16%
15%
15%
15%

Table 4: Using misprediction distance as confidence estimator

branch predictor. As expected, both Figure 8 and Figure 9 still
show clustering, but the results are skewed to higher misprediction
distances. Interestingly, the distribution for all branches using Mc-
Farling predictor has a different shape than when using the gshare
predictor; however, the committed branches have a very similar
distribution. This occurs because of the variable time needed to
determine if a branch misprediction has occurred.

Precise pipeline information is unavailable to a processor dur-
ing execution, but it illustrates why the JRS estimator works. The
JRS miss distance counters (MDC) are reset every time a branch
misprediction is detected, and branches are not marked as “high
confidence” until several branches mapping to that MDC register
have been correctly predicted. Since branches are clustered, the
“reset and count” insures that enough branches have executed to
bypass the cluster of poorly predictable branches. You can use this
same behavior to design a misprediction distance confidence esti-
mator, which is essentially a JRS confidence estimator with a sin-
gle MDC register. If more than a specific number of branches have
been fetched since the last resolved (but not necessarily committed)
misprediction, we consider the branch to have “high confidence”.
Table 4 shows the average performance of this technique vs. other
confidence estimators, using a range of distance thresholds. We can
vary the distance threshold to achieve different values of S PEC and
PVN. Jacobsen ef al [7] examined a related configuration, where
a global MDC was used to index into a table of correct-incorrect
registers. This solution still has a large MDC table, and [7] pri-
marily investigated using the global indexing MDC as a way to
improve accuracy - they were not looking for inexpensive confi-
dence estimators. The variation used in [7] probably did not work
well for the reasons illustrated in our earlier data - unless the in-
dexing structure of a table-based confidence estimator matches that
of the underlying branch predictor, the performance will suffer. By
comparison, the misprediction distance confidence estimator uses
the property that mispredicted branches are clustered to achieve its
performance.

We conducted a similar set of experiments to see if confidence

estimators also cluster their “correct” confidence estimates. We
measured the JRS estimator with the gshare and McFarling pre-
dictors and the saturating counters estimator with McFarling, and
recorded a “mis-estimation distance” similar to the misprediction
distance previously discussed. In each of these configurations, we
found that correct confidence estimations are slightly clustered, but
only over large distances - e.g., the confidence estimations ranged
from being correct 45% of the time immediately following a mis-
estimated branch, decaying to a 41% misestimation rate at a dis-
tance of four branches and a 33% misestimation rate for a branch
distance greater than 8.

4.2 Using Clustering to Improve Confidence Estimation

Since confidence mis-estimations are only slightly clustered, we
can loosely approximate confidence estimation as a Bernoulli trial,
particularly over the small number of branches actually resident
in a pipeline. Doing this, we can boost specific metrics, such as
the PVN, by waiting for several low (or high) confidence events to
occur. Recall that PVN = P[IILC], the probability of an incor-
rect prediction given a low-confidence estimation. Now, assume
we only consider low confidence estimates - if we see two low-
confidence estimates, the probability of both of those estimates be-
ing wrong is 1 - (1 - PvN)‘, since the PVN is effectively the
probability of being incorrect. In certain applications, we can use
this to “boost” our confidence estimates. For example, two low
confidence estimates from an estimator with a PVN of 30% would
have an overall PVN z 50%.

Not all applications can benefit from this boosting, because
boosting doesn’t identify which of the two low-confident branches
are incorrect. Boosting only indicates the probability that one of
the two branches is incorrect, and thus describes the state of the
pipeline rather than the state of a particular branch. An eager-
execution architecture that evaluates multiple paths following a
low-confidence estimate would need to start evaluation down the
alternate paths of both of the low-confidence branches. An SMT
processor could use the two low-confidence estimates as evidence
that fhe instructions from the current thread are unlikely to commit,
and switch to an alternate thread. Likewise, a bandwidth multi-
threading processor can use boosting with the PVP.

5 Conclusions and Future Work

In this paper, we have focused on developing metrics that can be
used to compare confidence estimators, and then used those metrics
to evaluate different confidence estimators. We have also improved
variants of specialized confidence estimators and shown how exist-
ing branch prediction resources can be used for confidence estima-
tion. Equally important, we have shown that confidence estimators
appear to work best if their structure mimics that of the underlying
branch predictor. Furthermore, our pipeline-level simulations have
shown that branch predictors exhibit characteristics, such as clus-
tering, that can be exploited to provide better confidence estimators.
This points out the importance of using pipeline level simulations
for this kind of work.

Our motivation for this work is a broad study into specula-
tion control, where we hope to control how a superscalar proces-
sor uses speculative execution. Two applications are described at
this conference. One application involves controlling instruction
fetch and issue based on confidence estimators to reduce power
demands in speculative processors [111. The second involves con-
trolling variants of eager execution [8]. We are also working on
adaptive control of multithreaded processors to better utilize pro-
cessor resources. Each of these applications emphasizes the PVN

130

and SPEC metrics, and is very sensitive to the branch prediction ac-
curacy. This study has shown that as prediction accuracy increases,
the PVN decreases in every confidence estimator we examined, in
a large part because there are fewer incorrectly predicted branches
to discover. We think most applications of confidence estimation
are going to be similar to our work in speculation control, and that
confidence estimation will be useful even in the presence of highly
accurate branch predictors. We have focused on inexpensive mech-
anisms such as the “saturating counters” method, and methods to
improve those estimates in particular problem domains, such as ap-
plying the boosting techniques to multithreading.

There is considerable work to be done in speculation control,
particularly when applied to eager execution, control of multi-
threaded processors, control of the memory resources and power
conservation. Speculation control will require better and more pre-
cise confidence estimators, and we look forward to progress in this
area. In particular, we are working on an algorithm to “tune” static
confidence estimation to achieve a particular goal for PVN or SPEC.
We are also working on a confidence estimator similar to the JRS
mechanism designed to better exploit the structure of the McFarling
two-level branch predictor.

Acknowledgements

We would like to thank Todd Austin and Doug Burger for devel-
oping and supporting SimpleScalar, Digital Equipment Corpora-
tion for an equipment grant that provide the simulation cycles, a
grant from Hewlett-Packard, and the anonymous referees for pro-
viding helpful comments. This work was partially supported by
NSF grants No. CCR-9401689, No. MIP-9706286 and in part by
ARPA contract ARMY DABT63-94-C-0029.

References

[l] Arnold Allen. Probability, Statistics, and Queuing Theory,
pages 24-34. Academic Press, 1990.

[2] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating
future microprocessors: The simplescalar tool set. Technical
Report TR#1308, University of Wisconsin, July 1996.

[3] Jeffrey Dean, James Ei. Hicks, Carl A. Waldspurger,
William E. Weihl, and George Chrysos. ProfileMe: Hardware
support for instruction-level profiling on out-of-order proces-
sors. In 30th Annual International Symposium on Microar-
chitecture. IEEE, December 1997.

[4] Joseph Gastwirth. The Statistical Precision of Medical
Screening Procedures: Application to Polygraph and AIDS
Antibodies Test Data. Statistical Science, 2(3), August 1987.

[S] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew
Pleszkun. Contidence estimation for speculation control.
Technical Report CU.CS-8.54-98, University of Colorado,
Dept. of Computer Science, Campus Box 430, Boulder, CO
80309-0430, Mar 1998.

[6] Timothy Heil and James Smith. Selective Dual Path E<xe-
cution, November 1996. University of Wisconsin-Madison,
http://www.ece.wisc.edu/ jes/papers/sdpe.ps.

[7] Erik Jacobsen, Eric Rotenberg, and J. E. Smith. Assigning
confidence to conditional branch predictions. In Proceedings
of the 29th Annual International Symposium on Microarchi-
tecture, pages 142-152, Paris, France, December 2-4, 1996.

[8] Artur Klauser, Abhijit Paithankar. and Dirk Grunwald. Selec-
tive eager execution on the polypath architecture. In Proceed-
ings 25th Annual Annual International Symposium on Com-
puter Architecture, Barcelona, Spain, June 1998. ACM.

[9] Kelsey Lick. Limited Dual Path Execution. Master’s thesis,
University of California, Riverside, 1996.

[101 Mikko Lipasti. Value Locality and Speculative Execution.
PhD thesis, Carnegie Mellon University, April 1997.

[l I] Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline
gating: Speculation control for energy reduction. In Pr&eed-
ings 25th Annual Annual International Symposium on Corn-
puter Architecture, Barcelona, Spain, June 1998. ACM.

[121 Scott McFarling. Combining branch predictors. TN 36, DEC-
WRL, June 1993.

[131 J. E. Smith. A study of branch prediction strategies. In Pro-
ceedings 8th Annual International Symposium on Computer
Architecture. ACM, 1981.

[14] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simul-
taneous multithreading: Maximizing on-chip parallelism. In
Proceedings 22th Annual International Symposium on Com-
puter Architecture, Jun 1995.

[1.51 Gary Tyson, Kelsey Lick, and Matthew Farrens. Limited Dual
Path Execution. CSE-TR 346-97, University of Michigan,
1997.

[16] A. K. Uht, V. Sindagi, and K. Hall. Disjoint Eager Execu-
tion: An Optimal Form of Speculative Execution. In 28th
International Conference on Microarchitecture, pages 313-
325, December 1995.

[17] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of
two-level adaptive branch predictions. In Proceedinps 19th
Annual Ann&l Internation& Symposium on Computer Archi-
tecture, pages 124-134, Gold Coast, Australia, May 1992.
ACM.

131

