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Abstract 

Modern processors improve instruction level parallelism by specu- 
lation. The outcome of data and control decisions is predicted, and 
the operations are speculatively executed and only committed if the 
original predictions were correct. There are a number of other ways 
that processor resources could be used, such as threading or eager 
execution. As the use of speculation increases, we believe more 
processors will need some form of speculation control to balance 
the benefits of speculation against other possible activities. 

Confidence estimation is one technique that can be exploited by 
architects for speculation control. In this paper, we introduce per- 
formance metrics to compare confidence estimation mechanisms, 
and argue that these metrics are appropriate for speculation con- 
trol. We compare a number of confidence estimation mechanisms, 
focusing on mechanisms that have a small implementation cost and 
gain benefit by exploiting characteristics of branch predictors, such 
as clustering of mispredicted branches. 

We compare the performance of the different confidence esti- 
mation methods using detailed pipeline simulations. Using these 
simulations, we show how to improve some confidence estimators, 
providing better insight for future investigations comparing and ap 
plying confidence estimators. 

1 Introductton 

Speculation is a fundamental tool in computer architecture. It al- 
lows an architectural implementation to achieve higher instruction 
level parallelism, and thus performance, by predicting the outcome 
of specific events. Most processors currently implement branch 
prediction to permit speculative control-flow; more recent work has 
focused on predicting data values to reduce data dependencies [lo]. 

Confidence esfimation is a technique for assessing the quality 
of a particular prediction. Confidence estimation has usually been 
studied in the context of branch prediction. Jacobsen et al [7] de- 
scribed a number of uses for confidence estimation: they suggested 
that it may be used to improve the branch prediction rate, control 
resource use in a dual-path execution pipeline or control context 
switching in a multithreaded processor. 

In this paper, we study the design of confidence estimators and 
make the several contributions. First, we feel that confidence esti- 

1063-6897/98$10.00O1998IEEE 
122 

mators will usually be used for some form of speculation control. 
Previous metrics used to compare confidence estimators would re- 
sult in inappropriate design decisions. We introduce standard, con- 
sistent metrics to compare the performance of confidence estima- 
tors, and argue that different applications of confidence estimators 
require different metrics. Second, we compare hardware inten- 
sive confidence estimators against several less complex estimators 
that use existing branch prediction or processor state information. 
While the complex implementation has uniformly better perfor- 
mance, the less complex methods have similar performance and a 
significantly reduced implementation cost, making them appealing 
for many of the practical cases where confidence estimation would 
be used. Lastly, our pipeline-level simulations indicate ways to 
improve the hardware-intensive confidence estimator in an actual 
implementation. 

In the next section, we describe screening or diagnostic tests, 
and adopt their terminology for branch prediction and confidence 
estimation. In $2, we apply this terminology to confidence estima- 
tion, and conduct a series of measurements to compare different 
confidence estimators. We close with a discussion of temporal as- 
pects of branch predictors and how they can be exploited to improve 
confidence estimation. 

1.1 Diagnostic Tests 

The following description is adapted from a paper by Gastwirth [4], 
as described in [l]. A diagnostic tesf is used to determine if an 
individual belongs to a class D of people that have a particular 
disease, or to the class of people who do not have the disease, D. 
The result of a test places a person either into the class S, those 
who are suspected of having the disease, or class S. The accuracy 
of the diagnostic test is indicated by two parameters: sensitivity and 
speciJcity. The sensitivity is defined to be SENS = P(S(D], or the 
probability that a person with the disease is properly diagnosed. 
The specificity is SPEC = P[s@], or the probability that a person 
who does not have the disease is correctly diagnosed. For good 
tests, both SPEC and SENS are close to one. 

The problem with all diagnostic tests is that if a disease occurs 
infrequently, there will be a large number of “false positives” - the 
diagnostic test will indicate that a person has t_he disease when in 
fact they do not. This can be expressed as P[SID] = 1 -P[f?lD] = 
1 - SPEC. The last metric of interest is the probability that someone 
has a disease, p = P[D]. In most tests, we are interested in the 
predicfive value of a positive test (PVP), which is P[DIS]. The 
PVP is the probability that a person has the disease given that a test 
indicates they might. 

Gastwirth cites a study of the ELISA test for AIDS used to 



screen donated blood, where the sensitivity was SENS = 0.977, 
indicating that the test should find samples with the disease, and 
the specificity was SPEC = 0.926, indicating that most tests that 
come back positive would really have the disease. The large val- 
ues for SENS and SPEC can be misleading for large populations 
or for very rare diseases. For example, assume that only 0.01% 
of the population actually has AIDS@ = 0.0001). Then, using 
the above equation, we compute PVP = P[DIS] = 0.001319. In 
other words, even if the diagnostic test indicates you have the dis- 
ease, there is only a 0.13% probability that you actually have the 
disease, simply because the disease is so rare. 

So far, we have described parameters of diagnostic tests inde- 
pendently of the cost of different outcomes. For example, in the 
ELISA test for AIDS, it is very important to have a high sensitiv- 
ity - tainted blood samples shouldn’t be accepted. However, it’s 
acceptable to have a lower specificity, because you may be able to 
use a series of (more expensive) tests to determine if the person 
really has the disease. 

2 Confidence Estimation as a Diagnostic Test 

It is more difficult to compare two confidence estimators than two 
branch predictors in part because confidence estimators can be used 
for a number of purposes while branch predictors are typically 
only used to predict the outcome of control-dependent instructions. 
Most architectures are designed to use speculation and the general 
assumption is that “you might as well be doing something”, and 
thus each branch is predicted. 

By comparison, we think that confidence estimators will nor- 
mally be used for speculation control. For example, if a particular 
branch in a Simultaneous Multithreading [14] processor is of low 
confidence, it may be more cost effective to switch threads than 
speculatively evaluate the branch. A confidence predictor attempts 
to corroborate or assess the prediction made by a branch predictor. 
Each branch is eventually determined to have been predicted cor- 
rectly or incorrectly. For each prediction, the confidence estimator 
assigns a “high confidence” or “low confidence” to the prediction. 
In addition to the standard terminology of diagnostic tests, we have 
found that another notation simplifies the comparison of different 
confidence estimators. We draw a 2 x 2 matrix listing the frequency 
for each outcome of a test. When we apply this framework to archi- 
tectural simulation, each of the quadrants can be directly measured 
during simulation or analysis. Typically, we normalize the values 
to insure that the sum equals one. Thus, our quadrant table for 
confidence estimation is: 

Prediction Outcome 
c I 

Confidence 
HC 1 CHC 1 IHC 1 

LC jj 
L I I 

In this table, “C” and “I” refer to “correct” and “incorrect” pre- 
dictions, respectively, and “HC” refers to “high confidence” and 
“LC” to “low confidence”. During a simulation, we can mea- 
sure CHC, ZHG, CLC and ZLC using a branch predictor for each 
branch and concurrently estimate the confidence in that branch 
predictor using a specific confidence estimator. When the branch 
is actually resolved, we classify the branch as belonging to class 
CHC‘, IHC, CLC’ or ILC. 

2.1 Metrics for Comparing Confidence Estimators 

There are many possible designs for confidence estimators, and 
we need a consistent method to compare the effectiveness of two 
confidence estimators. To date, only Jacobsen et al [7] have pub- 
lished comparisons of confidence estimators, and their paper con- 
sidered only two designs. When converted to our terminology, Ja- 
cobsen et al defined the “confidence misprediction rate” as ZHC + 
cLc;/cHC + ZHC + CL:C + ZLC. This represents the fraction when 
the confidence estimator was wrong or disagreed with the eventual 
branch outcome. Jacobsen et al also defined the “coverage” of a 
confidence predictor as CLC + ZLCICHC + ZHc + CLC + ZLC. 

We believe that when a confidence estimator is applied, the ar- 
chitectural feature using that confidence estimation will either be 
used for “high confidence” or “low confidence” branches, but not 
both. Since the “confidence misprediction rate” includes both out- 
comes, we felt more effective metrics needed to be designed. For 
example, consider a simultaneous multithreading (SMT) proces- 
sor that uses a confidence estimator to determine if a predicted 
branch is likely to be mispredicted. If the branch prediction is 
of “low confidence”, the processor may switch to another avail- 
able thread rather than fetch additional instructions from the cur- 
rent thread. The performance of such a processor is very sensitive 
to P[Z]LC] = ZLC/CL~ + ZLC, the probability that the branch 
is incorrectly predicted if it was low confidence. A high value 
for P[Z]X] indicates that the processor can switch contexts only 
when the following instructions will not commit. A low value of 
P[ZILC] indicates that the SMT processor may needlessly switch 
threads, reducing the performance of the primary thread. A low 
value of the SPEC (P[LC(Z]) means that the processor will miss 
some opportunities to improve aggregate performance by switch- 
ing threads. 

Not all uses of confidence estimators will make the same kind 
of decisions, but we feel it is most useful to compare confidence 
estimators using metrics that reflect how the confidence estimators 
are used. For example, SMT processors want a confidence estima- 
tor with a large P[ZILC] and a large P[LCII]. We have found in 
our own discussion that terms such as “accuracy” and “coverage” 
tend to cause confusion, because accuracy has an inherit implica- 
tion about the application of a technique. Thus, we use neutral 
terms that also have the benefit of being standard terms in statis- 
tics. Each of these metrics is easy to compute, and each is a “higher 
is better” metric. To simplify discussion, we assign the following 
names to these conditions. 

Sensitivity: The SENS is P[HC/C] = CHC’/CHC + CLC, 
and represents the fraction of correct predictions identified as 
“high confidence”. 

Predictive value of a Positive Test: The PVP is P[CIHC] = 
CHC/CHC + ZHC and represents the probability that a high- 
confidence estimate is correct. 

Specificity: The SPEC is P[LCII] = ILC/IHC + ILC, and rep- 
resents the fraction of incorrect predictions identified as “low 
confidence”. 

Predictive value of a Negative Test: The PVN is P[ZILC] = 
IL~;/CLC + ILC and represents the probability that the a 
low-conjidence estimate is correct. 

There is a natural relation between the SPEC and PVN and the 
SENS and PVP that can be clarified by an example. Assume a pro- 
gram executed 100 conditional branches. Of those, 20 are mispre- 
dieted. The confidence estimator indicates “high confidence” for 
61 of the 80 correctly predicted branches and 2 of the incorrectly 
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Figure 1: Parametric plots showing how the sensitivity (SENS), specificity 
(SPEC) and branch prediction accuracy (p) influence the values of PVP and 
PVN. Each line shows the value of PVP and PVN when we hold two values 
constant and vary the third value. For example, in the right-most curve, the 
specificity and branch prediction accuracy are held constant, and we vary 
the value of the sensitivity. The markers on each line indicate the decile 
values of the parameter b&g varied. 

predicted branches. It indicates “low confidence” for 19 of the 80 
correctly predicted branches and 18 of the 20 incorrectly predicted 
branches. 

Prediction Outcome 
c I 

I I I 

Confidence 

The SENS would be & = 76%, and the PVP would be 
-CL- Cl +‘L = 97%. A larger SENS indicates more of the correctly pre- 
dicted branches are correctly estimated, and a larger PVP indicates 
that the confidence estimator doesn’t designate incorrect predic- 
tions as “high confidence”. The SPEC would be * = 90X, in- 
dicating that the confidence estimator is good at findin most of the 

Ft3 - 49%. incorrectly predicted branches. The PVN would be 18+19 - 
indicating that the confidence estimator is reasonably able to ex- 
clude correctly predicted branches. Since branch predictor accu- 
racy is CHC + CLC. the SENS and SPEC are independent of the 
branch predictor accuracy. In other words, SENS is only a prop- 
erty of correctly predicted branches, and SPEC is only a property of 
incorrectly predicted branches. 

Figure 1 provides some insight into the relation between the 
SENS, SPEC, prediction accuracy, PVP and PVN. The curves 
are plotted for values of SENS, SPEC and prediction accuracy (p) 
that are representative of the measured values that will be dis- 
cussed in $3. For a given sensitivity and prediction accuracy (e.g., 
[SENS = 700/n, p = 70x1 and [SENS = 70X, p = go%]), increas- 
ing the sensitivity will greatly improve the PVP until it reaches an 
asymptotic limit and then improves the PVN. Likewise, for a given 
SPEC and prediction accuracy (e.g., [SPEC = 7O%,p = 70X], 
[SPEC = 70%, p = 90%] and [SPEC = 99X, p = go%)]), increas- 
ing the SENS improves the PVN. This improvement is faster if the 
SENS is high or the branch prediction accuracy is low. 

When designing a confidence estimator, we need to understand 
whether the final application will be using the PVP or PVN and the 

importance of the SENS and SPEC to that application. Qpically, we 
would not want to change the branch prediction accuracy; although 
we can increase the PVN by decreasing the prediction accuracy, this 
would be counter-productive for most applications of confidence 
estimation. 

2.2 Using confidence estimators 

Although the particulars of any given application are beyond the 
scope of this paper, there are a number of obvious uses of conti- 
dence estimation with associated costs that can illustrate the im- 
portance of the relative values of these metrics. We have described 
one such application (speculation control for simultaneous multi- 
threading), and list four others. 

Bandwidth multithreading: In a multithreading CPU designed 
to assume a large number of threads, the architectural model would 
be more willing to switch threads if there is any uncertainty in the 
outcome of a branch. Unless the confidence estimator returned a 
“high confidence” estimate, the architecture would switch threads. 
Thus, we want a confidence estimator with a high SENS, meaning 
that most correct branches are identified as high-confidence, and a 
high PVP, meaning that most branches designated as high conti- 
dence are predicted correctly. 

SMT: As mentioned, in this architecture, you could use a con- 
fidence estimator to control the number of instructions issued by 
individual threads. Since this architecture would err on the side 
of speculatively issuing instructions, confidence estimators with a 
high PVN are very important, while PVP would be less important. 
A higher SPEC means that more opportunities for avoiding wasteful 
speculation are identified. 

Power conservation: In related work [l 11, we are investigating 
how to use confidence estimators to reduce power usage in a pro- 
cessor by suppressing instruction issue following low-confidence 
branches. The goals in the power conservation architecture are sim- 
ilar to those of the SMT design, and we want a confidence estimator 
with large PVN and SPEC. 

Eager Execution: Some proposed architectures evaluate instruc- 
tions on both paths of a conditional branch [16,9, 15,6,8]. These 
architectures might use a confidence estimator to determine when 
to diverge and evaluate both paths. A confidence estimator with 
high PVN would indicate that a low-confidence estimate for a 
given conditional branch has a high chance of being a r&predicted 
branch and may benefit from eager execution. A higher SPEC 
would mean that more opportunities for applying eager execution 
are found. 

Improving Branch Predictors: Jacobsen et al [7] suggested that 
a confidence estimator could be used to improve the accuracy of a 
branch predictor. If the PVN > 50%, then the confidence esti- 
mator can improve the branch prediction accuracy by inverting the 
outcome of a low-confident branch. Conversely, if PVP < 50%. 
then the branch prediction for high-confident branches should be 
inverted. We have examined many confidence estimators in many 
configurations, but have not found a situation where these condi- 
tions hold across a range of programs. 

To summarize, in most of these applications, a higher PVN 
would improve the underlying architecture, but none of the appli- 
cations needing a higher PVN would sacrifice prediction accuracy 
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to increase the PVN. A higher SPEC would indicate that the archi- 
tectural optimization (multithreading, eager execution, power con- 
servation) might have greater impact because more of the opportu- 
nities where it can be applied are exposed. Our own immediate ap- 
plications for confidence estimation (power conservation and eager 
execution) biased our investigation towards conlidence estimators 
with a high PVN and SPEC. 

3 Comparison of Confidence Estimators 

We have implemented four confidence estimators either discussed 
or implied in existing literature, and used our performance met- 
rics to compare their performance. Later, we examine the temporal 
characteristics of branch predictors and show how those properties 
can be used to design another inexpensive confidence estimator. 

JRS Estimator: The first method we implemented is one-level 
resetting counter mechanism proposed by Jacobsen, Rotenberg, 
and Smith (JRS) [7]. This predictor uses a miss distance counter 
(which we call an MDC) table in addition to the branch predictor. 
The structure of the confidence estimator is similar to that of the 
Gshare predictor. An index is computed using an exclusive-or of 
the program address and the branch history register. This index is 
used to read a value from a table of MDCs. The width of these 
counters can vary in size, but we used 4-bit counters as suggested 
in [7]. We used a large table containing 4096 4-bit counters. Each 
time a branch is predicted, the value of the MDC is compared to 
a specific threshold. If the value is above that threshold, then the 
branch is considered to have high confidence, otherwise it has low 
confidence. When a branch resolves, the corresponding confidence 
counter is incremented if the branch was correct; otherwise, it is re- 
set to zero. We tried all different threshold levels, and show detailed 
results for a threshold of 15 and show the trend for other thresholds. 
We called this the JRS confidence estimator. 

Pattern History Estimator: Lick et al [9, IS] proposed a conti- 
dence estimator for dual-path execution, the confidence estimator 
was used to determine when dual-path execution should be used. 
Although neither of the available papers focused on the confidence 
estimator itself, the basic design is described. Lick et al observed 
that a small number of branch history patterns typically lead to cor- 
rect predictions in a branch architecture using a PAS predictor (i.e., 
a BTB with a branch history stored for each branch site). The con- 
fidence estimator assigned high confidence to a fixed set of patterns 
and treated all other patterns as low confidence. Essentially, the pat- 
terns were always taken, almost always taken (once not-taken), al- 
ways not-taken, almost always not-taken and alternating taken and 
not-taken. We called this thepattern history confidence estimator. 

Saturating Counters Estimator: The third method we imple- 
mented was originally proposed in an early paper by Smith [ 131. 
Here, we use the state of the saturating counters used in many 
branch prediction mechanisms to determine the confidence esti- 
mate. For example, in a simple gshare predictor, branch outcomes 
are determined by the state of a two-bit counter. We called this the 
saturating counters method. 

Static Estimator: The last technique uses a .xtutic confidence 
hint. Here, we executed the program and simulated the underly- 
ing branch predictor (e.g., a gshare predictor). We record the num- 
ber of correct outcomes for each branch instruction, and then use a 
“threshold” to determine confident branches. In our examples, we 
used a threshold of 90%, meaning that a branch with 2 90% branch 

prediction accuracy was considered to have high confidence, and all 
other branches had low confidence. The results we report are from, 
self-profiled executions where the same input was used to train and 
evaluate the confidence predictor. Thus, these results present a best- 
case evaluation of this confidence method. We mainly include this 
technique to indicate its potential.’ 

3.1 Experimental Methodology 

Each of the confidence estimation techniques makes assumptions 
concerning the underlying branch predictor. Later, we compare 
these methods when using a gshrue and a McFarling branch pre- 
dictor [12]. In each case, the structure of the confidence estima- 
tor may change due to the branch predictor, and we indicate those 
changes there. We use the SimpleScalar [2] execution-driven simu- 
lation infrastructure to compare the different confidence estimators. 
Our simulator is an extension of the sim-outorder simulator, with 
a 5-stage pipeline and an additional 3 cycle misprediction recovery 
penalty. 

We use a 64 kB Ll Dcache and a 128 kB Ll Icache’, both with 
2 cycle access latency. Our simulator knows the outcome of all 
branches at the point of instruction decode, even for branches that 
do not actually commit. This includes branches following a mispre- 
dieted branch. We essentially recorded a “speculative trace” for the 
processor, recording the prediction and eventual outcome of com- 
mitted and uncommitted branches. We did this to compare the dif- 
ference in branch prediction and confidence estimation for commit- 
ted and uncommitted branches. When the processor is executing a 
conditional branch, it does not know if a branch will commit or not, 
so it is important to understand how all branches are predicted and 
estimated. It may be that some pattern arises in the uncommitted 
branches that would impact confidence estimation. We will always 
restrict our discussion to committed instructions unless we indicate 
otherwise. For example, when we report the SPEC and PVN for 
different confidence estimators, we only report these values for the 
committed instructions. 

We used the SPECint95 benchmarks for our performance eval- 
uation and did not simulate the SPECfp95 since those programs 
typically pose few difficulties for branch predictors. The bench- 
marks and important measurements from our simulations are listed 
in Table 1. 

We used three underlying branch predictors to compare the dif- 
ferent confidence estimators: a speculative gshare predictor, a spec- 
ulative McFarhng combining predictor [12] and a non-speculative 
SAg [ 171 predictor. Figure 2 gives a schematic illustration of each 
branch predictor. The gshare branch predictor (Figure 2a) com- 
bines a global branch history with the program counter to select a 
two-bit counter. The SAg predictor (Figure 2b) uses the program 
counter to index into an untagged table of branch history registers 
that are used to select a two-bit counter. The bimodal predictor 
(Figure 2c) is used in the combining predictor and uses the pro- 
gram counter to index a table of two-bit counters. The combining 
predictor (Figure 2d) uses both a gshare (Figure 2a) and bimodal 
(Figure 2c) predictor. A table of two-bit counters is used to select a 
component branch predictor for each prediction. 

Only the gshare and combining predictors are speculatively up- 
dated. Non-speculative update would slightly increase the branch 

‘It is important to note that the “‘profile” technique cannot use a simple program 
profile, smce the decwons depend on outcome and state of the branch predictor. Thu. 
the “profile” technique requires a branch predictor simulation (which is much slower 
than a simple profile) or hardware that reports performance information for the under- 
lying branch predictor, such as the Profile-Me mechanism (31. 

‘The Icache is equivalent to a 64 kB cache, since SimpleScalar has a H-bit in- 
struction encoding, but we only use 32 bits for each instruction, so half the space IS 
wasted. 
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Table 1: Program characteristics, differentiating between committed instructions and both committed and uncommitted instructions. The 
processor will typically issue 20-100% more instructions than actually commit, due to speculative execution. The values for speculative 
execution were measured when using the gshare branch predictor. 

(c) Bimodal (d) Combining 

Figure 2: Schematic illustration of the different branch predictors 

misprediction rate, since information from recent branches is not 
immediately available to succeeding branches. The SAg model is 
similar to the PAS, which is usually implemented with a branch tar- 
get buffer, but the SAg is “tagless” and may alias branch histories. 
It is difficult to roll back from speculative history updates in a PAS 
or SAg predictor, and we did not implement speculative update for 
that reason. Restoring the table at a branch misprediction requires 
multiple cycles as each non-committed predicted branch restores 
its old history state in the branch history table (BHT). Alternatively, 
the whole BHT could be checkpointed for each predicted branch, 
and restored on misprediction. This scheme requires space to store 
multiple copies of the BHT. The SAg is much more expensive to 
implement than Gshare or McFarling, and only offers similar per- 
formance (see Table 1). 

Throughout our analysis and comparison, it is important to re- 
member that the JRS estimator is significantly more expensive to 
implement than either the saturating counters, the history pattern 

or the profile method, since extra tables and state are needed by the 
JRS estimator. 

3.2 Comparison of Confidence Estimators When Using a 
Gshare Branch Predictor 

In our first configuration, we used a 4096-entry gshare branch pre- 
dictor. The JRS confidence estimator was implemented as de- 
scribed above. We implemented the history pattern confidence es- 
timator using both the values determined by Lick et al and by re- 
peating their measurements for the gshare predictor, selecting new 
“highly confident” patterns. In our presentation, we only show re- 
sults using the patterns specified by Lick et al since there appear to 
be no dominant patterns in the global history register when using a 
gshare predictor. The saturating counters method used the heuris- 
tic described above - strongly taken or strongly not-taken branches 
were considered confident and all others were not confident. We 
used a 90% threshold for the static, profile-based technique. 

The first column of Table 2 shows the performance of the dif- 
ferent confidence estimators when using the gshare predictor. We 
report the geometric mean of the sensitivity, specificity, PVP and 
PVN for each confidence estimator; detailed information on each 
application can be found in [5]. The averages are computed from 
the averages of the original data. In other words, when comput- 
ing the average-for the PVP, we take the mean for CHC and CLC 

and compute CHC/CHC + CLC, rather than averaging the existing 
PVP’S. 

Unless we consider a specific application for the confidence es- 
timators, it is difficult to select one estimator over another. In gen- 
eral, the JRS estimator has the highest PVP and an acceptable PVN, 
and the profile-based estimator is roughly similar. The saturating 
counter method has a better PVN than the JRS or profile method, 
but at the expense of a lower PVP. This occurs because the satu- 
rating counter method is more sensitive (i.e., reduces the relative 
value of low-confidence predictions for correct branches). How- 
ever, the test is not very specific, and incorrectly classifies many 
incorrectly predicted branches as “high confidence” branches. The 
history pattern method fares poorly when using this and the McFar- 
ling predictors because no dominant patterns emerge. Since those 
patterns don’t occur, the history pattern method will classify most 
branches as “low confidence”, leading to a low sensitivity. Since 
most branches are marked “low confidence”, most of the incor- 
rectly predicted branches will be correctly diagnosed as low conti- 
dence. 
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Confidence Estimator sens spec pvp pvn 

JRS, Threshold >= 15 56% 96% 90% 30% 
Saturated Counters 88% 42% 88% 41% 
History Pattern 17% 94% 93% 19% 
Static, Threshold > 90% 55% 09% 96% 28% 

Table 2: Comparison of Confidence Estimators when using a Gshare, McFarling and SA .g branch predictors 

3.2.1 Enhancing the JRS Estimator 

We use an enhanced implementation of the JRS confidence estima- 
tor that improves performance. Rather than use the same branch 
history to index the branch prediction and MDC table, we first 
predict the branch and include that prediction when we index the 
MDC table. Figure 3 shows the noticeable performance difference. 
Each point on the lines indicates the performance when changing 
the “threshold” value. This improvement requires reading out both 
alternative MDC counters and then selecting the appropriate result 
when the branch prediction completes. We use this implementation 
throughout the remainder of the paper. 

Figure 4 shows the PVP and PVN for the JRS estimator for dif- 
ferent possible configurations of the hardware. As before, each 
line shows the results when we vary the number of the four-bit 
MDC entries, and each point on a line indicates the performance 
when changing the “threshold” value. The right-most point uses a 
threshold of 16; since this cannot be reached by a four-bit MDC, 
all branches are marked “low confidence”, and the PVN is equal to 
the misprediction rate. 

More branches are marked “low confidence” at a higher thresh- 
old. This increases the SPEC, but also decreases the PVN since 
more correctly predicted branches are marked as “low confidence”. 
Lowering the threshold has the opposite effect: the SENS will in- 
crease, but the PVP will decrease. Selecting the appropriate con- 
figuration of the JRS estimator, as with selecting the appropriate 
configuration of any estimator, depends very much on the intended 
application. 

3.3 Comparison of Confidence Estimators When Using a Mc- 
Farling Branch Predictor 

In the second comparison, we used a McFarling combining predic- 
tor that combines the results from a gshare predictor and a table of 
two-bit saturating counters indexed only by the program counter. 
As indicated in [ 121, this configuration offers the best performance 
for the predictor sizes we are using in this evaluation. The JRS, 
static and history pattern confidence estimators were implemented 
as before. The “saturating counters” method was modified to use 
information from both prediction mechanisms in the combining 
predictor. 

3.3.1 Saturating Counters Estimator for McFarling Predic- 
tors 

In the McFarling predictor, two different two-bit counters provide 
branch predictions, and a “meta-predictor” chooses between the 
two predictions. Each component, the gshare or bimodal predic- 
tors, uses a two-bit counter to provide hysteresis in the branch pre- 
diction. In the McFarling predictor, both component predictors 
are queried for each branch prediction. A third table. the meta- 
predictor information, is used to determine which predictor should 
be used. When the branch actually commits, both branch predictors 

jJ;fj ::;:i; ‘i,~lf~lilii;~~~~~~~:,::~,~:~~~,’:~: . . . 

sens spec pvp pvn 
64% 94% 99% 24% 
90% 40% 94% 36% 
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66% 93% 98% 30% 
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Figure 3: Performance of the JRS enhanced confidence estimator. 
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I 

Figure 4: Performance of the JRS confidence estimator when using 
the Gshare predictor, as the design parameters are varied. 
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Figure 5: Performance of the Smith confidence estimator when us- 
ing the McFarling predictor, as the design parameters are varied. 

are updated. If the component predictor results were different, the 
meta predictor moves to re-enforce the use of the correct compo- 
nent predictor. Otherwise the meta predictor is unchanged. 

There are a number of sources of information for the “satu- 
rating counters” mechanism. We found that two techniques work 
well, and that each has a benefit depending on the desired perfor- 
mance metric (PVP or PvN). We are not interested in the direction 
of a branch prediction, just the likelihood that the prediction will 
be correct. Thus, we categorize each branch component predictor 
as offering a “strong” or “weak” prediction, where the transitional 
states in the state machine are considered “weak” predictions. Ig- 
noring the information from the meta predictor, there are now four 
states: (Strong, Strong), (Strong, Weak), (Weak, Strong), (Weak, 
Weak). 

In the “Both Strong” variant, we signal “high confidence” only 
when both predictors are strongly biased in the same direction, and 
“low confidence” otherwise. In the “Either Strong” variant, we sig- 
nal “low confidence” only when both branch predictors are in the 
“weak” state, and high confidence otherwise. Table 2 shows only 
the “Both Strong” variant to simplify the data presentation. Ta- 
ble 3 compares the “Both Strong” and “Either Strong” variants. 
The “Both Strong” method has a higher SPEC and PVP since only 
“strongly” predicted branches will be marked as high confidence, 
reducing the total number of correctly estimated low-confidence 
branches. Conversely, the “Either Strong” method will have a high 
SENS, lower PVN and higher PVP, since more branches will be 
considered “low confidence”. 

We also looked at a number of variations on these techniques 
which use the saturation state of only the selected counter to deter- 
mine the confidence, information from the meta-predictor, or dif- 
ferent combinations of the state information. However, these meth- 
ods generally had a lower SPEC and PVN. Since we were mainly 
interested in applications of confidence estimation that emphasize 
the SPEC and PVN, we do not include those results in the paper. 

The relative merits of the different estimators change when 
considering the McFarling branch predictor, as shown in the mid- 
dle column of Table 2. In this configuration, the JRS, saturating 
counter and profile-based techniques are roughly similar. The JRS 
mechanism is more specific than the other methods, meaning it will 
identify more incorrectly predicted branches, but the PVN is about 
the same for each of those estimators. 

saturated Countera 
Both Strona nither Stmna 

applmtmn sens 1 spec 1 pvp 1 pvn 1 *ens 1 spec 1 pvp 1 pvn 
compress 66% 77% 96% 97% 16% 91% 38% 

WC 54% 80% 95% 96% 15% 89% 36% perl 
I I 

52% 83% 96% 96% 17% 90% 36% 

90 36% 64% 68% 91% 18% 78% 39% 
m88ksim 79% 52% 97% 99% 12% 96% 33% 
xlisD 78% 68% 97% 98% 15% 94% 34% 

Table 3: Performance of Low-Confidence vs. High-Confidence 
thresholds with the McFarling branch predictor 

The SPEC of the JRS method decreases when we switch to the 
McFarling predictor. We believe this happens because the predic- 
tion accuracy is higher, and there are fewer incorrect predictions to 
identify. Identifying those few remaining incorrect predictions is 
more difficult. Essentially, the branch predictor is finding the eas- 
ier mispredictions and thus improving the misprediction rate. The 
SPEC for the saturating counter estimator improves greatly when 
compared to the Gshare predictor, in part because the two-bit pre- 
dictor in the Gshare has such a low specificity to begin with. The 
PVN of all the branch estimators is significantly lower when using 
the McFarling branch predictor. In part, this occurs because the 
underlying branch predictor is more accurate and the confidence 
estimator has to work harder to find mispredictions. 

Figure 5 shows the performance of the JRS estimator as the 
hardware configuration is varied. The trends are similar to that 
explained in $3.2, but the overall PVN is lower. 

3.4 Comparison of Confidence Estimators When Using a SAg 
Branch Predictor 

The third comparison, shown in column three of Table 2, uses a 
SAg predictor with 2048 branch history entries and an 8192-entry 
counter table. Each branch history register was 13 bits long. 

Since the counter entries are only two bits, the saturating coun- 
ters estimation method performs poorly in this configuration, just 
as it did when using the Gshare predictor. Similarly, the JRS and 
static estimators have similar performance to that seen when using 
the gshare predictor. The performance of the history pattern esti- 
mator improves dramatically for SAg, where it performs roughly 
equivalent to the static and JRS methods. In addition, it has a much 
lower implementation cost than JRS and does not require profiling 
like the static method. Therefore, the history pattern estimator is 
very competitive for a SAg branch predictor. 

3.5 Summary of Compadsons 

Several observations arise from our comparison of confidence esti- 
mation techniques. First, the performance of a confidence estimator 
appears to be very dependent on the branch predictor and conli- 
dence estimator having a similar design or indexing method. For 
example, the JRS estimator has better performance for the gshare 
mechanism (to which it is similar) than for the McFarling predictor, 
and the History Pattern technique has excellent performance when 
using a SAg, but poor performance when using a global history, 
as in Gshare or McFarling. This indicates that we may be able to 
design a better variant of JRS for the McFarling predictor. Second, 
our improvement to the JRS method indicates the value of includ- 
ing more recent information in the confidence estimation process. 

Our comparison also shows the value of inexpensive confi- 
dence estimators such as static profiling, the “saturating counters” 
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method, and the History Pattern technique. These methods per- 
formed almost as well as the JRS technique when using different 
branch predictors, but they require very little additional hardware 
to implement. It also shows that it is unlikely, albeit not impossible, 
that confidence estimation may be used to directly improve branch 
prediction, since none of the confidence estimators we examined 
had a PVN consistently greater than 50%. 

4 Temporal Aspects of Branch Prediction and Confidence Es- 
timation 

We originally began studying confidence estimators because we 
are using them for a number of applications, including some of 
those mentioned in $2.2. We wanted to focus on confidence esti- 
mators with a low implementation cost. During our investigation, 
we made a number of observations concerning the temporal aspects 
of branch prediction and we have used these observations to design 
alternative confidence estimators. 

4.1 Branch Misprediction Clustering 

If branch mispredictions are clustered, then we may be able to use 
the distance since the last mispredicted branch as a confidence es- 
timation mechanism. Our measurements confirm the observation 
of Heil and Smith [6] that mispredictions in a trace were clustered. 
However, we have found the degree of clustering is different when 
you look at all branches (e.g., during a pipeline-level simulation) 
or only at the committed branches (e.g., branches in a normal pro- 
gram trace). We use the information from all branches because that 
is what is actually of interest to an architect in a real pipeline or a 
pipeline level simulation. 

Our data shows that mispredictions are tightly clustered, with 
few branches between mispredicted branches. Heil and Smith [6] 
plotted the probability distribution function of the branch mispre- 
diction distance. If branches are independent (and not clustered), 
that graph has a geometric distribution with a parameter equal to 
the misprediction rate. We found that presentation difficult to un- 
derstand, and found it easier to understand if we plot the data as in 
Figure 6. In this figure, we graph the misprediction rate vs. the dis- 
tance to the previous mispredicted branch. If mispredictions were 
not clustered, we would expect the misprediction rates to all be 
the same, as indicated by the average lines. Instead, we find that 
branches immediately following a misprediction are more likely to 
be m&predicted. InFigure 6, we plot two views of the data from our 
simulations. The data marked “all branches” includes both commit- 
ted and uncommitted branches, whereas the “committed branches” 
includes only committed branches. Heil and Smith used a trace for 
their analysis, and only report the data for committed branches. We 
used a gshare branch predictor to generate the data in Figure 6, but 
we also used a precise value for the distance to the previous mis- 
predicted branch - the processor model has complete knowledge 
of the pipeline state. Again, this corresponds to the information 
that would be recorded by a trace when we consider the commit- 
ted branches without a pipeline-level simulator. Figure 7 shows a 
similar plot using the McFarling branch predictor. 

A real architecture determines m&predictions when a branch is 
resolved, and not when a misprediction is actually made, as in our 
“precise” model. This will lengthen the time, and thus the number 
of branches executed, until the misprediction is actually detected, 
and should skew the branch clustering such that it appears to occur 
over a larger branch distance. Figure 8 shows the corresponding 
misprediction rate vs. misprediction distance when we only use in- 
formation from resolved branches, using the same gshare branch 
predictor. Figure 9 shows similar information for the McFarling 
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Figure 6: Mlsprediction distance using a gshare branch predictor 
and precise misprediction information. The vertical axis shows the 
misprediction rate of predictions that are made a specific number 
of branches after a previously mispredicted branch. 
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Figure 7: Misprediction distance using a McFarling branch predic- 
tor and precise misprediction information. 

Figure 8: Perceived n-&prediction distance for Gshare predictor. 
This shows the misprediction rate of branches a specified number 
of branches after the most recent misprediction detected by the pro- 
cessor. 

Figure 9: Perceived misprediction distance for McFarling predic- 
tor. 
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>= 15 &hare 
ntm N.A. &hare 88X 42% 88% 41% 

> 90% &hare 55% 89% 96% 28% 
, >l &hare 88% 38% 88% 32% 
, >2 Qshare 7i% 58% 90% 30% 
I >3 Gshare 89% 87% 92% 28% 
I z-4 Gshare 64% 74% 93% 27% 
I k-5 Gshare 59% 78% 94% 28% 
, >8 Gshare 55% 81% 94% 25% 

Gshara 52% 

Satur. Cntrs N.A. McFatiing 67% 
StaUc z 90% McFariing 7% 
Distance >l McFarting 90% 
Distance > 2 McFarting 81% 
Distance > 3 McFarling 75% 
Distance > 4 McFariing 69% 
Distance > 5 McFatiing 64% 
Distance > 8 McFatilng 60% 

78% 96% 
88% 96% 
19% 92% 
34% 9% 
48% 93% 
55% 94% 
62% 94% 
67% 95% 

21% 
28% 
18% 
16% 
16% 
15% 
15% 
15% 

Table 4: Using misprediction distance as confidence estimator 

branch predictor. As expected, both Figure 8 and Figure 9 still 
show clustering, but the results are skewed to higher misprediction 
distances. Interestingly, the distribution for all branches using Mc- 
Farling predictor has a different shape than when using the gshare 
predictor; however, the committed branches have a very similar 
distribution. This occurs because of the variable time needed to 
determine if a branch misprediction has occurred. 

Precise pipeline information is unavailable to a processor dur- 
ing execution, but it illustrates why the JRS estimator works. The 
JRS miss distance counters (MDC) are reset every time a branch 
misprediction is detected, and branches are not marked as “high 
confidence” until several branches mapping to that MDC register 
have been correctly predicted. Since branches are clustered, the 
“reset and count” insures that enough branches have executed to 
bypass the cluster of poorly predictable branches. You can use this 
same behavior to design a misprediction distance confidence esti- 
mator, which is essentially a JRS confidence estimator with a sin- 
gle MDC register. If more than a specific number of branches have 
been fetched since the last resolved (but not necessarily committed) 
misprediction, we consider the branch to have “high confidence”. 
Table 4 shows the average performance of this technique vs. other 
confidence estimators, using a range of distance thresholds. We can 
vary the distance threshold to achieve different values of S PEC and 
PVN. Jacobsen ef al [7] examined a related configuration, where 
a global MDC was used to index into a table of correct-incorrect 
registers. This solution still has a large MDC table, and [7] pri- 
marily investigated using the global indexing MDC as a way to 
improve accuracy - they were not looking for inexpensive confi- 
dence estimators. The variation used in [7] probably did not work 
well for the reasons illustrated in our earlier data - unless the in- 
dexing structure of a table-based confidence estimator matches that 
of the underlying branch predictor, the performance will suffer. By 
comparison, the misprediction distance confidence estimator uses 
the property that mispredicted branches are clustered to achieve its 
performance. 

We conducted a similar set of experiments to see if confidence 

estimators also cluster their “correct” confidence estimates. We 
measured the JRS estimator with the gshare and McFarling pre- 
dictors and the saturating counters estimator with McFarling, and 
recorded a “mis-estimation distance” similar to the misprediction 
distance previously discussed. In each of these configurations, we 
found that correct confidence estimations are slightly clustered, but 
only over large distances - e.g., the confidence estimations ranged 
from being correct 45% of the time immediately following a mis- 
estimated branch, decaying to a 41% misestimation rate at a dis- 
tance of four branches and a 33% misestimation rate for a branch 
distance greater than 8. 

4.2 Using Clustering to Improve Confidence Estimation 

Since confidence mis-estimations are only slightly clustered, we 
can loosely approximate confidence estimation as a Bernoulli trial, 
particularly over the small number of branches actually resident 
in a pipeline. Doing this, we can boost specific metrics, such as 
the PVN, by waiting for several low (or high) confidence events to 
occur. Recall that PVN = P[IILC], the probability of an incor- 
rect prediction given a low-confidence estimation. Now, assume 
we only consider low confidence estimates - if we see two low- 
confidence estimates, the probability of both of those estimates be- 
ing wrong is 1 - (1 - PvN)‘, since the PVN is effectively the 
probability of being incorrect. In certain applications, we can use 
this to “boost” our confidence estimates. For example, two low 
confidence estimates from an estimator with a PVN of 30% would 
have an overall PVN z 50%. 

Not all applications can benefit from this boosting, because 
boosting doesn’t identify which of the two low-confident branches 
are incorrect. Boosting only indicates the probability that one of 
the two branches is incorrect, and thus describes the state of the 
pipeline rather than the state of a particular branch. An eager- 
execution architecture that evaluates multiple paths following a 
low-confidence estimate would need to start evaluation down the 
alternate paths of both of the low-confidence branches. An SMT 
processor could use the two low-confidence estimates as evidence 
that fhe instructions from the current thread are unlikely to commit, 
and switch to an alternate thread. Likewise, a bandwidth multi- 
threading processor can use boosting with the PVP. 

5 Conclusions and Future Work 

In this paper, we have focused on developing metrics that can be 
used to compare confidence estimators, and then used those metrics 
to evaluate different confidence estimators. We have also improved 
variants of specialized confidence estimators and shown how exist- 
ing branch prediction resources can be used for confidence estima- 
tion. Equally important, we have shown that confidence estimators 
appear to work best if their structure mimics that of the underlying 
branch predictor. Furthermore, our pipeline-level simulations have 
shown that branch predictors exhibit characteristics, such as clus- 
tering, that can be exploited to provide better confidence estimators. 
This points out the importance of using pipeline level simulations 
for this kind of work. 

Our motivation for this work is a broad study into specula- 
tion control, where we hope to control how a superscalar proces- 
sor uses speculative execution. Two applications are described at 
this conference. One application involves controlling instruction 
fetch and issue based on confidence estimators to reduce power 
demands in speculative processors [ 111. The second involves con- 
trolling variants of eager execution [8]. We are also working on 
adaptive control of multithreaded processors to better utilize pro- 
cessor resources. Each of these applications emphasizes the PVN 
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and SPEC metrics, and is very sensitive to the branch prediction ac- 
curacy. This study has shown that as prediction accuracy increases, 
the PVN decreases in every confidence estimator we examined, in 
a large part because there are fewer incorrectly predicted branches 
to discover. We think most applications of confidence estimation 
are going to be similar to our work in speculation control, and that 
confidence estimation will be useful even in the presence of highly 
accurate branch predictors. We have focused on inexpensive mech- 
anisms such as the “saturating counters” method, and methods to 
improve those estimates in particular problem domains, such as ap- 
plying the boosting techniques to multithreading. 

There is considerable work to be done in speculation control, 
particularly when applied to eager execution, control of multi- 
threaded processors, control of the memory resources and power 
conservation. Speculation control will require better and more pre- 
cise confidence estimators, and we look forward to progress in this 
area. In particular, we are working on an algorithm to “tune” static 
confidence estimation to achieve a particular goal for PVN or SPEC. 
We are also working on a confidence estimator similar to the JRS 
mechanism designed to better exploit the structure of the McFarling 
two-level branch predictor. 
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