
CS194-24
Advanced Operating Systems

Structures and Implementation
Lecture 16

Specialized File Systems (con’t)
Scheduling

March 31st, 2014
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs194-24

Lec 16.23/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Goals for Today

• Application-Specific filesystems (con’t)
• Scheduling

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2013

Lec 16.33/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Lookup with Leaf Set

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to
node with closest ID

• Leaf set is
successors and
predecessors
– All that’s needed for
correctness

• Routing table
matches successively
longer prefixes
– Allows efficient
lookups

• Data Replication:
– On leaf set

Lec 16.43/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Dynamo Assumptions

• Query Model – Simple interface exposed to application level
– Get(), Put()
– No Delete()
– No transactions, no complex queries

• Atomicity, Consistency, Isolation, Durability
– Operations either succeed or fail, no middle ground
– System will be eventually consistent, no sacrifice of availability

to assure consistency
– Conflicts can occur while updates propagate through system
– System can still function while entire sections of network are

down
• Efficiency – Measure system by the 99.9th percentile

– Important with millions of users, 0.1% can be in the 10,000s
• Non Hostile Environment

– No need to authenticate query, no malicious queries
– Behind web services, not in front of them

Lec 16.53/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Data Versioning

• A put() call may return to its caller before the
update has been applied at all the replicas

• A get() call may return many versions of the
same object.

• Challenge: an object having distinct version sub-
histories, which the system will need to reconcile in the
future.

• Solution: uses vector clocks in order to capture causality
between different versions of the same object
– A vector clock is a list of (node, counter) pairs
– Every version of every object is associated with
one vector clock

– If the counters on the first object’s clock are
less-than-or-equal to all of the nodes in the
second clock, then the first is an ancestor of the
second and can be forgotten.

Lec 16.63/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Vector clock example

Lec 16.73/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Conflicts (multiversion data)
• Client must resolve conflicts

– Only resolve conflicts on reads
– Different resolution options:

» Use vector clocks to decide based on history
» Use timestamps to pick latest version

– Examples given in paper:
» For shopping cart, simply merge different versions
» For customer’s session information, use latest version

– Stale versions returned on reads are updated (“read repair”)
• Vary N, R, W to match requirements of applications

– High performance reads: R=1, W=N
– Fast writes with possible inconsistency: W=1
– Common configuration: N=3, R=2, W=2

• When do branches occur?
– Branches uncommon: 0.06% of requests saw > 1 version over

24 hours
– Divergence occurs because of high write rate (more

coordinators), not necessarily because of failure

Lec 16.83/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack File System
• Does it ever make sense to adapt a file system to a

particular usage pattern?
– Perhaps

• Good example: Facebook’s “Haystack” filesystem
– Specific application (Photo Sharing)

» Large files!, Many files!
» 260 Billion images, 20 PetaBytes (1015 bytes!)
» One billion new photos a week (60 TeraBytes)

– Presence of Content
Delivery Network (CDN)
» Distributed caching and

distribution network
» Facebook web servers return

special URLs that encode
requests to CDN

» Pay for service by bandwidth
– Specific usage patterns:

» New photos accessed a
lot (caching well)

» Old photos accessed little,
but likely to be requested
at any time  NEEDLES

Number of photos
requested in day

Lec 16.93/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Old Solution: NFS
• Issues with this design?
• Long Tail  Caching does not

work for most photos
– Every access to back end storage

must be fast without benefit of
caching!

• Linear Directory scheme works
badly for many photos/directory
– Many disk operations to find

even a single photo
– Directory’s block map too big to cache in memory
– “Fixed” by reducing directory size, however still not great

• Meta-Data (FFS) requires ≥ 3 disk accesses per lookup
– Caching all iNodes in memory might help, but iNodes are big

• Fundamentally, Photo Storage different from other
storage:
– Normal file systems fine for developers, databases, etc

Lec 16.103/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

New Solution: Haystack
• Finding a needle

(old photo) in Haystack
• Differentiate between old

and new photos
– How? By looking at “Writeable”

vs “Read-only” volumes
– New Photos go to Writeable

volumes
• Directory: Help locate photos

– Name (URL) of photo has
embedded volume and photo ID

• Let CDN or Haystack Cache
Serve new photos
– rather than forwarding them to

Writeable volumes
• Haystack Store: Multiple “Physical Volumes”

– Physical volume is large file (100 GB) which stores millions of
photos

– Data Accessed by Volume ID with offset into file
– Since Physical Volumes are large files, use XFS which is

optimized for large files

Lec 16.113/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack Details

• Each physical volume is stored as single file in XFS
– Superblock: General information about the volume
– Each photo (a “needle”) stored by appending to file

• Needles stored sequentially in file
– Naming: [Volume ID, Key, Alternate Key, Cookie]
– Cookie: random value to avoid guessing attacks
– Key: Unique 64-bit photo ID
– Alternate Key: four different sizes, ‘n’, ‘a’, ‘s’, ‘t’

• Deleted Needle Simply marked as “deleted”
– Overwritten Needle – new version appended at end

Lec 16.123/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Haystack Details (Con’t)
• Replication for reliability

and performance:
– Multiple physical volumes

combined into logical volume
» Factor of 3

– Four different sizes
» Thumbnails, Small, Medium, Large

• Lookup
– User requests Webpage
– Webserver returns URL of form:

» http://<CDN>/<Cache>/<Machine id>/<Logical volume,photo>
» Possibly reference cache only if old image

– CDN will strip off CDN reference if missing, forward to cache
– Cache will strip off cache reference and forward to Store

• In-memory index on Store for each volume map:
[Key, Alternate Key]  Offset

Lec 16.133/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Administrivia

• How to specify behaviors for Scheduling Algorithm?
• One option: Statistically

– Set up a bunch of jobs to run
– Let them run – keep statistics about their behavior

» How much CPU time they get
» Do they ever miss deadlines

– Sample state of scheduler regularly to make sure that
statistical behavior is good

• A more detailed option: Snapshot state machine
– We ask you to build a snapshot facility to grab state of

scheduler (or any other part of kernel!) with a set of
snapshot commands
» Think of the setup for this as a specification of a set of

snapshot commands that must run
– Then, grab results after snapshots have happened

• Export of test information?
– /proc file system

Lec 16.143/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Review: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 16.153/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 16.163/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 16.173/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Real-Time Scheduling Priorities
• Efficiency is important but predictability is essential

– In RTS, performance guarantees are:
» Task- and/or class centric
» Often ensured a priori

– In conventional systems, performance is:
» System oriented and often throughput oriented
» Post-processing (… wait and see …)

– Real-time is about enforcing predictability, and does not equal
to fast computing!!!

• Typical metrics:
– Guarantee miss ratio = 0 (hard real-time)
– Guarantee Probability(missed deadline) < X% (firm real-time)
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Minimize overall tardiness; maximize overall usefulness (soft

real-time)
• EDF (Earliest Deadline First), LLF (Least Laxity First), RMS

(Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

Lec 16.183/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Round Robin (RR)
• Round Robin Scheme

– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large  FIFO
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

Lec 16.193/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Lec 16.203/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 16.213/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 16.223/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 16.233/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?
» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

Lec 16.243/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority
tasks always running

– Deadlock: Priority Inversion
» Not strictly a problem with priority scheduling, but happens

when low priority task has lock needed by high-priority task
» Usually involves third, intermediate priority task that keeps

running even though high-priority task should be running
• How to fix problems?

– Dynamic priorities – adjust base-level priority up or down
based on heuristics about interactivity, locking, burst
behavior, etc…

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Lec 16.253/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Recall: Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 16.263/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

How to handle simultaneous mix of different
types of applications?

• Can we use Burst Time (observed) to decide which
application gets CPU time?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers,

workstations, pads, and cellphones?
• Assumptions encoded into many schedulers:

– Apps that sleep a lot and have short bursts must be
interactive apps – they should get high priority

– Apps that compute a lot should get low(er?) priority, since
they won’t notice intermittent bursts from interactive apps

• Hard to characterize apps:
– What about apps that sleep for a long time, but then compute

for a long time?
– Or, what about apps that must run under all circumstances

(say periodically)

Lec 16.273/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called “Shortest Time to
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to
Completion First” (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Lec 16.283/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time
– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 16.293/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 16.303/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 16.313/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Lec 16.323/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 16.333/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 16.343/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.
» Put in printf’s, ran much faster!

Lec 16.353/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priorityInteractive jobs suffer
Lec 16.363/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for nice values)
– Lower priority value  Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when
job finishes time slice

» 140-bit bit mask indicates presence or absence of job at
given priority level

• Two separate priority queues:
– The “active queue” and the “expired queue”
– All tasks in the active queue use up their timeslices and get

placed on the expired queue, after which queues swapped
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has

been starved for too long

Kernel/Realtime Tasks User Tasks

0 100 139

Lec 16.373/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

O(1) Scheduler Continued

• Heuristics
– User-task priority adjusted ±5 based on heuristics

» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg  more I/O bound the task, more

reward (and vice versa)
– Interactive Credit

» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing

interactivity for temporary changes in behavior
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling

amongst tasks of same priority
Lec 16.383/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

What about Linux “Real-Time Priorities” (0-99)?
• Real-Time Tasks: Strict Priority Scheme

– No dynamic adjustment of priorities (i.e. no heuristics)
– Scheduling schemes: (Actually – POSIX 1.1b)

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst

tasks of same priority
• With N processors:

– Always run N highest priority tasks that are runnable
– Rebalancing task on every transition:

» Where to place a task optimally on wakeup?
» What to do with a lower-priority task when it wakes up but

is on a runqueue running a task of higher priority?
» What to do with a low-priority task when a higher-priority

task on the same runqueue wakes up and preempts it?
» What to do when a task lowers its priority and causes a

previously lower-priority task to have the higher priority?
– Optimized implementation with global bit vectors to quickly

identify where to place tasks
• More on this later…

Lec 16.393/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Linux Completely Fair Scheduler (CFS)

• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use

heuristics to identify interactive tasks—it just makes
sure every process gets a fair share of CPU within a
set amount of time given the number of runnable
processes on the CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N
processes execute simultaneously as if they truly got
1/N of the processor
» Tries to give each process an equal fraction of the

processor
– Priorities reflected by weights such that increasing a
task’s priority by 1 always gives the same fractional
increase in CPU time – regardless of current priority

Lec 16.403/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

CFS (Continued)

• Idea: track amount of “virtual time” received by each
process when it is executing
– Take real execution time, scale by weighting factor

» Lower priority  real time divided by greater weight
» Actually – multiply by sum of all weights/current weight

– Keep virtual time advancing at same rate
• Targeted latency (ࡸࢀ): period of time after which all

processes get to run at least a little
– Each process runs with quantum ࢖ࢃ ⁄࢏ࢃ∑ ൈ ࡸࢀ
– Never smaller than “minimum granularity”

• Use of Red-Black tree to hold all runnable processes
as sorted on vruntime variable
– O(log n) time to perform insertions/deletions

» Cash the item at far left (item with earliest vruntime)
– When ready to schedule, grab version with smallest
vruntime (which will be item at the far left).

Lec 16.413/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

CFS Examples
• Suppose Targeted latency = 20ms,

Minimum Granularity = 1ms
• Two CPU bound tasks with same priorities

– Both switch with 10ms
• Two CPU bound tasks separated by nice value of 5

– One task gets 5ms, another gets 15
• 40 tasks: each gets 1ms (no longer totally fair)
• One CPU bound task, one interactive task same priority

– While interactive task sleeps, CPU bound task runs and
increments vruntime

– When interactive task wakes up, runs immediately, since it
is behind on vruntime

• Group scheduling facilities (2.6.24)
– Can give fair fractions to groups (like a user or other
mechanism for grouping processes)

– So, two users, one starts 1 process, other starts 40,
each will get 50% of CPU

Lec 16.423/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Characteristics of a RTS
• Extreme reliability and safety

– Embedded systems typically control the environment in which
they operate

– Failure to control can result in loss of life, damage to
environment or economic loss

• Guaranteed response times
– We need to be able to predict with confidence the worst case

response times for systems
– Efficiency is important but predictability is essential

» In RTS, performance guarantees are:
• Task- and/or class centric
• Often ensured a priori

» In conventional systems, performance is:
• System oriented and often throughput oriented
• Post-processing (… wait and see …)

• Soft Real-Time
– Attempt to meet deadlines with high probability
– Important for multimedia applications

Lec 16.433/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary
• Scheduling: selecting a waiting process from the ready

queue and allocating the CPU to it
• Round-Robin Scheduling:

– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs
– Cons: Poor when jobs are same length

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens
(short tasksmore tokens)

– Reserve a minimum number of tokens for every thread to
ensure forward progress/fairness

Lec 16.443/31/2014 Kubiatowicz CS194-24 ©UCB Fall 2014

Summary (Con’t)
• Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):
– Run whatever job has the least amount of computation to

do/least remaining amount of computation to do
– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in order

to approximate SJF/SRTF
• Linux O(1) Scheduler: Priority Scheduling with dynamic

Priority boost/retraction
– All operations O(1)
– Fairly complex heuristics to perform dynamic priority

alterations
– Every task gets at least a little chance to run

• Realtime Schedulers: RMS, EDF, CBS
– All attempting to provide guaranteed behavior

