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Review: Semaphores
• Definition: a Semaphore has a non-negative integer 

value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to 
become positive, then decrements it by 1 
» Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore 
by 1, waking up a waiting P, if any
» This of this as the signal() operation

– Only time can set integer directly is at initialization time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=2Value=1Value=0Value=1Value=0Value=2
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Review: Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = numBuffers;// Initially, num empty slots
Semaphore mutex = 1; // No one using machine
Producer(item) {emptyBuffers.P(); // Wait until spacemutex.P(); // Wait until buffer freeEnqueue(item);mutex.V();fullBuffers.V(); // Tell consumers there is// more coke}
Consumer() {fullBuffers.P(); // Check if there’s a cokemutex.P(); // Wait until machine freeitem = Dequeue();mutex.V();emptyBuffers.V(); // tell producer need morereturn item;}
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Monitors and Condition Variables
• Monitor: a lock and zero or more condition variables 

for managing concurrent access to shared data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the 
language

• Condition Variable: a queue of threads waiting for 
something inside a critical section
– Key idea: allow sleeping inside critical section by 
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep. 
Re-acquire lock later, before returning. 

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of 
lock – IGNORE HIM (this is only an optimization)
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Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;Queue queue;

AddToQueue(item) {lock.Acquire(); // Get Lockqueue.enqueue(item); // Add itemdataready.signal(); // Signal any waiterslock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Get Lockwhile (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue(); // Get next itemlock.Release(); // Release Lockreturn(item);
}
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Recall: Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal 

and wait.  Consider a piece of our dequeue code:
while (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it 

exits critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait
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Extended example: Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W
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Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()Wait until no writersAccess data baseCheck out – wake up a waiting writer
– Writer()Wait until no active readers or writersAccess databaseCheck out – wake up waiting readers or writer
– State variables (Protected by a lock called “lock”):

» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL
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Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}
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Writer() {// First check self into systemlock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!lock.release();
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemlock.Acquire();AW--; // No longer activeif (WW > 0){ // Give priority to writersokToWrite.signal(); // Wake up one writer} else if (WR > 0) { // Otherwise, wake readerokToRead.broadcast(); // Wake all readers}lock.Release();

}

Code for a Writer
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Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3
• On entry, each reader checks the following:

while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existokToRead.wait(&lock); // Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released
– Only AR is non-zero

Lec 9.122/23/15 Kubiatowicz CS162 ©UCB Spring 2015

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and 
wakes up writer:

if (AR == 0 && WW > 0) // No other active readersokToWrite.signal(); // Wake up one writer
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Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){           // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished
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Questions
• Can readers starve?  Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
• Further, what if we turn the signal() into broadcast()

AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call 
it “okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()
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Administrivia

• Midterm coming up soon
– Currently scheduled for Wednesday 3/11
– Still working out the details
– Intend this to be a 1.5-2 hour exam in 3 hour slot 

• Topics will include the material from that Monday
• No class that day, extra office hours
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Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait()   { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {lock.Release();semaphore.P();lock.Acquire();}Signal() { semaphore.V(); }
– No: Condition vars have no history, semaphores have 
history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue
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Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter 
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
lock.Release();semaphore.P();lock.Acquire();}Signal() {if semaphore queue is not emptysemaphore.V();}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock 
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?
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Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads 
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables
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C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a 
critical section
int Rtn() {

lock.acquire();…if (exception) {lock.release();return errReturnCode;}…lock.release();return OK;}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack 

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth
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C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy 
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without 
releasing the lock
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C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Even Better: auto_ptr<T> facility.  See C++ Spec.

» Can deallocate/free lock regardless of exit method
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Java Language Support for Synchronization

• Java has explicit support for threads and thread 
synchronization

• Bank Account example:
class Account {

private int balance;// object constructorpublic Account (int initialBalance) {balance = initialBalance;}public synchronized int getBalance() {return balance;}public synchronized void deposit(int amount) {balance += amount;}}
– Every object has an associated lock which gets 
automatically acquired and released on entry and exit 
from a synchronized method.
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Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {

…
}

– Since every Java object has an associated lock, this 
type of statement acquires and releases the object’s 
lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}
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Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of 
time. This is useful for handling exception cases:

t1 = time.now();while (!ATMRequest()) {wait (CHECKPERIOD);t2 = time.new();if (t2 – t1 > LONG_TIME) checkMachine();}
– Not all Java VMs equivalent! 

» Different scheduling policies, not necessarily preemptive!
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Recall: Better Implementation of Locks 
by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual 
exclusion only during operations on that variable

• Really only works in kernel – why?

int mylock = FREE;
Acquire(&mylock) – wait until lock is free, then grab
Release(&mylock) – Unlock, waking up anyone waiting

Acquire(int *lock) {
disable interrupts;
if (*lock == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
*lock = BUSY;

}
enable interrupts;

}

Release(int *lock) {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
*lock = FREE;

}
enable interrupts;

}
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Kernel Lock: Simulation

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}
Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

lock.Acquire();
…
critical section;
…

lock.Release();

FREE waiters owner

Thread A Thread B
Running

READY
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INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}

Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

lock.Acquire();
…
critical section;
…

lock.Release();

BUSY

Thread A Thread B

waiters owner READY

Running
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INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}
Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

lock.Acquire();
…
critical section;
…

lock.Release();

BUSY waiters owner

Thread A Thread B

Kernel Lock: Simulation

READY

Running Running
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lock.Acquire();
…
critical section;
…

lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

BUSY waiters owner

Thread A Thread B

Kernel Lock: Simulation

READY

RunningRunning INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}
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INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

BUSY waiters owner

Thread A Thread B

Kernel Lock: Simulation

READY

Running
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INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;

}
enable interrupts;

}
Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…

lock.Release();

lock.Acquire();
…
critical section;
…

lock.Release();

BUSY waiters owner

Thread A Thread B

Kernel Lock: Simulation

READY

Running Running
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Discussion

• Notice that Scheduling here involves deciding who 
to take off the wait queue
– Could do by priority, etc.

• Same type of code works for condition variables
– The Wait queue becomes unique for each condition 
variable

– Once again, transition two and from queues occurs 
with interrupts disabled
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Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to 
Running to various waiting queues.

• Question: How is the OS to decide which of several 
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access 
to resources from moment to moment  
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Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the 
problem so it can be solved
– For instance: is “fair” about fairness among users or 
programs?  
» If I run one compilation job and you run five, you get five 

times as much CPU on many operating systems
• The high-level goal: Dole out CPU time to optimize 

some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time 
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Assumption: CPU Bursts

• Execution model: programs alternate between bursts of 
CPU and I/O
– Program typically uses the CPU for some period of time, 
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the 
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU 
before finishing current CPU burst

Weighted toward small bursts
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Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context 
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
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First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program 

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks 

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time:  (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time:   (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27) 

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of 
small items. Upside: get to read about space aliens!

P1P3P2

63 300
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Round Robin (RR)
• FCFS Scheme: Potentially bad for short jobs!

– Depends on submit order
– If you are first in line at supermarket with milk, you 
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time 
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted 
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time 
» In chunks of at most q time units 
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch, 
otherwise overhead is too high (all overhead)
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Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153
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Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers! 

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo 

each keystroke!
– In practice, need to balance short-job performance 
and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching
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Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR 

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with 

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000
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Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5
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What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of 
computation to do

– Sometimes called “Shortest Time to 
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a 
shorter time to completion than the remaining time on 
the current job, immediately preempt CPU

– Sometimes called “Shortest Remaining Time to 
Completion First” (SRTCF)

• These can be applied either to a whole program or 
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time
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Discussion

• SJF/SRTF are the best you can do at minimizing 
average response time
– Provably optimal (SJF among non-preemptive, SRTF 
among preemptive)

– Since SRTF is always at least as good as SJF, focus 
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can 
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

• Three jobs:
– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B 
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?
– Easier to see with a timeline

C

C’s 
I/O

C’s 
I/O

C’s 
I/O

A or B
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SRTF Example continued:

C’s 
I/O

CABAB… C

C’s 
I/O

RR 1ms time slice

C’s 
I/O

C’s 
I/O

CA BC

RR 100ms time slice

C’s 
I/O

AC

C’s 
I/O

AA

SRTF

Disk Utilization:
~90% but lots of 
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%
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SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this? 
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting 
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick 
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)
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Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts: 
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths. 
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series 
estimation schemes (Kalman filters, etc)

– For instance, 
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 9.502/23/15 Kubiatowicz CS162 ©UCB Spring 2015

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing 

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to 

Low Priority

Lec 9.512/23/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduling Details
• Result approximates SRTF:

– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time 
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of 
the OS designer
– For multilevel feedback, put in a bunch of meaningless 
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing 
at higher priority the competitors. 
» Put in printf’s, ran much faster!
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Scheduling Fairness
• What about fairness?

– Strict fixed-priority scheduling between queues is unfair 
(run highest, then next, etc):
» long running jobs may never get CPU 
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even 
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU 
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express 

lanes get so long, get better service by going into one of 
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so 

everyone increases in priorityInteractive jobs suffer
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Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of 
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more, 
long running jobs get fewer

– To avoid starvation, every job gets at least one 
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves 
gracefully as load changes
– Adding or deleting a job affects all jobs 
proportionally, independent of how many tickets each 
job possesses
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Lottery Scheduling Example

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable 
response time?  
» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

# short jobs/
# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%
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How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the 
performance of each algorithm  for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run 
against actual data.  Most flexible/general.
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Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Scheduling: selecting a waiting process from the ready 

queue and allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling: 
– Give each thread a small amount of CPU time when it 

executes; cycle between all ready threads
– Pros: Better for short jobs 
– Cons: Poor when jobs are same length 
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Summary (2)
• Shortest Job First (SJF)/Shortest Remaining Time 

First (SRTF):
– Run whatever job has the least amount of computation 
to do/least remaining amount of computation to do

– Pros: Optimal (average response time) 
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in 
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of 
tokens (short tasksmore tokens)

– Reserve a minimum number of tokens for every thread 
to ensure forward progress/fairness

• Evaluation of mechanisms:
– Analytical, Queuing Theory, Simulation


