
CS162
Operating Systems and
Systems Programming

Lecture 8

Semaphores, Monitors, and
Readers/Writers

February 18th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 8.22/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Synchronization problem with Threads
• One thread per transaction, each running:

Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

• Atomic Operation: an operation that always runs to
completion or not at all
– It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle

Lec 8.32/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) {\\X if (noNote A) {\\Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 8.42/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in a moment).
– Acquire(&mylock) – wait until lock is free, then grab
– Release(&mylock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
Acquire(&milklock);
if (nomilk)

buy milk;
Release(&milklock);

• Once again, section of code between Acquire() and Release() called a “Critical Section”
• Of course, you can make this even simpler: suppose

you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

Lec 8.52/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Goals for Today

• Continue with Synchronization Abstractions
– Semaphores, Monitors, and Condition variables

• Readers-Writers problem and solution
• Introduction to scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 8.62/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Better Implementation of Locks
by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

• Really only works in kernel – why?

int mylock = FREE;
Acquire(&mylock) – wait until lock is free, then grab
Release(&mylock) – Unlock, waking up anyone waiting

Acquire(int *lock) {
disable interrupts;
if (*lock == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
*lock = BUSY;

}
enable interrupts;

}

Release(int *lock) {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
*lock = FREE;

}
enable interrupts;

}

Lec 8.72/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: How to Re-enable After Sleep()?
• Interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B
..disable intssleep

sleep returnenable ints
...

disable intsleep
sleep returnenable ints..

• Why must Interrupts be disabled during context switch?
Lec 8.82/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */result = M[address];M[address] = 1;return result;}
• swap (&address, register) { /* x86 */temp = M[address];M[address] = register;register = temp;}
• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}
• load-linked&store conditional(&address) { /* R4000, alpha */loop:ll r1, M[address];movi r2, 1; /* Can do arbitrary comp */sc r2, M[address];beqz r2, loop;}

Lec 8.92/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementing Locks with test&set

• A flawed, but simple solution (that works at user-level!)
int mylock = 0; // Free
Acquire() {while (test&set(&mylock)); // while busy}
Release() {mylock = 0;}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock
is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock
• Issues with this solution

– Busy-Waiting: thread consumes cycles while waiting
– Does not take advantage of multi-core/processor caches!

Lec 8.102/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting
thread will consume cycles waiting

– Waiting thread may take cycles away from thread
holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock  no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may

wait for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

– Homework/exam solutions should not have busy-waiting!

Lec 8.112/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprocessor Spin Locks: test&test&set
• A better solution for multiprocessors:

int mylock = 0; // Free
Acquire() {

do {
while(mylock); // Wait until might be free} while(test&set(&mylock)); // exit if get lock

}

Release() {mylock = 0;}
• Simple explanation:

– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!
Lec 8.122/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• Can we build test&set locks without busy-waiting?
– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

int guard = 0;
int mylock = FREE;
Acquire(&mylock) – wait until lock is free, then grab
Release(&mylock) – Unlock, waking up anyone waiting
Acquire(int *lock) {

// Short busy-wait time
while (test&set(&guard));
if (*lock == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
*lock = BUSY;
guard = 0;

}
}

Better Locks using test&set

Release(int *lock) {
// Short busy-wait time
while (test&set(&guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
*lock = FREE;

}
guard = 0;

Lec 8.132/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• First Checkpoint due this Friday 11:59pm PST
– Yes this is graded!
– Assume design document is high level!

» You should think of this as a document for a manager
(your TA)

• Do your own work!
– Please do not try to find solutions from previous terms
– We will be look out for this…

• Basic semaphores work in PintOS!
– However, you will need to implement priority scheduling
behavior both in semaphore and ready queue

• Still could use more folks in Thursday 12-1 and
Friday 10-1 sections!
– Much better
– Try to attend the section with your project TA…?

Lec 8.142/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• compare&swap (&address, reg1, reg2) { /* 68000 */if (reg1 == M[address]) {M[address] = reg2;return success;} else {return failure;}}

Here is an atomic add to linked-list function:
addToQueue(&object) {do { // repeat until no conflictld r1, M[root] // Get ptr to current headst r1, M[object] // Save link in new object} until (compare&swap(&root,r1,object));}

Using of Compare&Swap for queues

root next next

next
New

Object

Lec 8.152/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Higher-level Primitives than Locks

• Goal of last couple of lectures:
– What is the right abstraction for synchronizing threads
that share memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would
crash every week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state
– This lecture and the next presents a couple of ways of
structuring the sharing

Lec 8.162/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
» Think of this as the wait() operation

– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

Lec 8.172/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write
value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup

from V – even if they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 8.182/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();// Critical section goes heresemaphore.V();
• Scheduling Constraints (initial value = 0)

– Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

– Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:

Initial value of semaphore = 0
ThreadJoin {semaphore.P();}
ThreadFinish {semaphore.V();}

Lec 8.192/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

Lec 8.202/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

– Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

– Only one thread can manipulate buffer queue at a time
(mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the
machine and somebody comes up and tries to stick their
money into the machine

• General rule of thumb:
Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 8.212/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = numBuffers;// Initially, num empty slots
Semaphore mutex = 1; // No one using machine
Producer(item) {emptyBuffers.P(); // Wait until spacemutex.P(); // Wait until buffer freeEnqueue(item);mutex.V();fullBuffers.V(); // Tell consumers there is// more coke}
Consumer() {fullBuffers.P(); // Check if there’s a cokemutex.P(); // Wait until machine freeitem = Dequeue();mutex.V();emptyBuffers.V(); // tell producer need morereturn item;}

Lec 8.222/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock:

Producer(item) {mutex.P(); // Wait until buffer free
emptyBuffers.P();// Could wait forever!Enqueue(item);mutex.V();fullBuffers.V(); // Tell consumers more coke

}
• Is order of V’s important?

– No, except that it might affect scheduling efficiency
• What if we have 2 producers or 2 consumers?

– Do we need to change anything?

Lec 8.232/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up, but:

– They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious
– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

Lec 8.242/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: make it possible to go to sleep inside critical
section by atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Lec 8.252/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {lock.Acquire(); // Lock shared dataqueue.enqueue(item); // Add itemlock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Lock shared dataitem = queue.dequeue();// Get next item or nulllock.Release(); // Release Lockreturn(item); // Might return null}

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

Lec 8.262/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of
lock – IGNORE HIM (this is only an optimization)

Lec 8.272/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;Queue queue;

AddToQueue(item) {lock.Acquire(); // Get Lockqueue.enqueue(item); // Add itemdataready.signal(); // Signal any waiterslock.Release(); // Release Lock}
RemoveFromQueue() {lock.Acquire(); // Get Lockwhile (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue(); // Get next itemlock.Release(); // Release Lockreturn(item);
}

Lec 8.282/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal

and wait. Consider a piece of our dequeue code:
while (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {dataready.wait(&lock); // If nothing, sleep}item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 8.292/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 8.302/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the
problem so it can be solved
– For instance: is “fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five

times as much CPU on many operating systems
• The high-level goal: Dole out CPU time to optimize

some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

Lec 8.312/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
Lec 8.322/18/15 Kubiatowicz CS162 ©UCB Spring 2015

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

Lec 8.332/18/15 Kubiatowicz CS162 ©UCB Spring 2015

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of
small items. Upside: get to read about space aliens!

P1P3P2

63 300

Lec 8.342/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Round Robin (RR)

Lec 8.352/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of RR with Time Quantum = 20
• Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Lec 8.362/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite ()?
» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 8.372/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR

always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 8.382/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 8.392/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 8.402/18/15 Kubiatowicz CS162 ©UCB Spring 2015

First peak at responsiveness scheduler:
Multi-Level Feedback Scheduling

• A method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 8.412/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Break

Lec 8.422/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Extended example: Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Lec 8.432/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()Wait until no writersAccess data baseCheck out – wake up a waiting writer
– Writer()Wait until no active readers or writersAccess databaseCheck out – wake up waiting readers or writer
– State variables (Protected by a lock called “lock”):

» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

Lec 8.442/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Code for a Reader
Reader() {
// First check self into system
lock.Acquire();
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
lock.release();
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
lock.Acquire();
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
lock.Release();

}

Lec 8.452/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Writer() {// First check self into systemlock.Acquire();
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!lock.release();
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemlock.Acquire();AW--; // No longer activeif (WW > 0){ // Give priority to writersokToWrite.signal(); // Wake up one writer} else if (WR > 0) { // Otherwise, wake readerokToRead.broadcast(); // Wake all readers}lock.Release();

}

Code for a Writer

Lec 8.462/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3
• On entry, each reader checks the following:

while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existokToRead.wait(&lock); // Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released
– Only AR is non-zero

Lec 8.472/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existokToWrite.wait(&lock); // Sleep on cond varWW--; // No longer waiting}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and
wakes up writer:

if (AR == 0 && WW > 0) // No other active readersokToWrite.signal(); // Wake up one writer

Lec 8.482/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

Lec 8.492/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Questions
• Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer
• Further, what if we turn the signal() into broadcast()

AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it “okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Lec 8.502/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {lock.Release();semaphore.P();lock.Acquire();}Signal() { semaphore.V(); }
– No: Condition vars have no history, semaphores have
history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Lec 8.512/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
lock.Release();semaphore.P();lock.Acquire();}Signal() {if semaphore queue is not emptysemaphore.V();}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 8.522/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 8.532/18/15 Kubiatowicz CS162 ©UCB Spring 2015

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();…if (exception) {lock.release();return errReturnCode;}…lock.release();return OK;}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

Lec 8.542/18/15 Kubiatowicz CS162 ©UCB Spring 2015

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without
releasing the lock

Lec 8.552/18/15 Kubiatowicz CS162 ©UCB Spring 2015

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Even Better: auto_ptr<T> facility. See C++ Spec.

» Can deallocate/free lock regardless of exit method
Lec 8.562/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;// object constructorpublic Account (int initialBalance) {balance = initialBalance;}public synchronized int getBalance() {return balance;}public synchronized void deposit(int amount) {balance += amount;}}
– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Lec 8.572/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {

…
}

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

Lec 8.582/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

t1 = time.now();while (!ATMRequest()) {wait (CHECKPERIOD);t2 = time.new();if (t2 – t1 > LONG_TIME) checkMachine();}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

Lec 8.592/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Scheduling: selecting a waiting process from the ready

queue and allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it

executes; cycle between all ready threads
– Pros: Better for short jobs
– Cons: Poor when jobs are same length

