Cs162
Operating Systems and
Systems Programming
Lecture 7

Synchronization (Continued)
February 11t, 2015

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: How does Thread get started?

Other Thread
A

B(while)

yield

Stack growth

New Thread

+ Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

- This really starts the new thread

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.2

Goals for Today

+ Synchronization Operations
+ Higher-level Synchronization Abstractions
- Semaphores, monitors, and condition variables
* Programming paradigms for concurrent programs

MY PROTECT I3
A WHOLE NEW
PARADIGM

&

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.3

Correctness for systems with concurrent threads
+ If dispatcher can schedule threads in any way,
programs must work under all circumstances
- Can you test for this?
- How can you know if your program works?
* Independent Threads:
- No state shared with other threads
- Deterministic = Input state determines results
- Reproducible = Can recreate Starting Conditions, I/0
- Scheduling order doesn't matter (if switch() workslll)
+ Cooperating Threads:
- Shared State between multiple threads
- Non-deterministic
- Non-reproducible

* Non-deterministic and Non-reproducible means that
bugs can be intermittent

- Sometimes called “"Heisenbugs”

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.4

Interactions Complicate Debugging

* Is any program truly independent?
- Every ?(ocess shares the file system, OS resources,

network, etfc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0
» User typing of letters used to help generate secure keys
2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.5

Why allow cooperating threads?

* People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is"a notable problem for “carefully laid plans”

+ Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
+ Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
* Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id
» Makes system easier to extend

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.6

High-level Example: Web Server

=

D/_\z

+ Server must handle many requests N
* Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
* What are some disadvantages of this technique?

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.7

Threaded Web Server

* Now, use a single process
* Multithreaded (cooperating) version:
serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
* Looks almost the same, but has many advantages:

- Can share file caches kept in memory, results of CGI
scripts, other things

- Threads are much cheaper to create than processes, so
this has a lower per-request overhead

. %uesﬁon: would a user-level (say one-to-many)
thread package make sense here?

- When one request blocks on disk, all block...

* What about Denial of Service attacks or digg /
Slash-dot effects?

Slashdot

i o eocde, Sl ihed moiers.

2/11/15 Kubiatowicz €S5162 ©|

Thread Pools
* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

///""“-.~* AAasfe]
{::::::J Thread

Thread Pool

worker(queue) {
while(TRUE) {
con=Dequeue(queue);
if (con==null)

master() {
allocThreads(worker ,queue);
while(TRUE) {
con=AcceptCon();

Enqueue(queue,con); EISzleepOn(queue);
wakeU ueue); -
} p(a) ServiceWebPage(con);
3 }
2/11/15 Kubiatowicz €5162 ©‘t)CB Spring 2015 Lec 7.9

ATM Bank Server

D /\%Z

P
////,f" 4\
7

/

oooo
oooo
oooo

L]

oooo
oooo
oooo

* ATM server problem:
- Service a set of requests
- Do so without corrupting database
- Don't hand out too much money

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.10

ATM bank server example

*+ Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer() {
while (TRUE) {
ReceiveRequest(&op, &acctld, &amount);
ProcessRequest(op, acctld, amount);

}

ProcessRequest(op, _acctld, amount) é
|T (opf:: deposit) Deposit(acctld, amount);
else if ..

Deposit(acctld, amount) {)
acct = GetAccount(acctld); /* may use disk 1/0 */
acct->balance += amount;)
StoreAccount(acct); /* Involves disk 1/0 */

}
* How could we speed this up?
- More than one request being processed at once
- Event driven (overlap computation and I/0)
- Multiple threads (multi-proc, or overlap comp and I/0)

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.11

Event Driven Version of ATM server

* Suppose we only had one CPU
- Still like to overlap I/0 with computation
- Without threads, we would have to rewrite in event-
driven style

+ Example

BankServer() {
while(TRUE) {

event = WailtForNextEvent();

if (event == ATMRequest)
StartOnRequest();

else if (event == AcctAvail)
ContinueRequest();

else if (event == AcctStored)
FinishRequest();

}
}
- What if we missed a blocking I/0 step?

- What if we have to split code into hundreds of pieces
which could be blocking?

- This technique is used for graphical programming

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.12

Can Threads Make This Easier?

* Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments

- One thread per request

* Requests proceeds to completion, blocking as required:

Deposit(acctld, amount) {
acct = GetAccount(actld); /* May use disk 1/0 */
acct->balance += amount;
StoreAccount(acct);

}

* Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load rl1, acct->balance

/* Involves disk 1/0 */

load r1, acct->balance
add r1, amount2
store rl, acct->balance
add ri1, amountl
store rl, acct->balance

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.13

Review: Multiprocessing vs Multiprogramming

* What does it mean to run two threads "concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks
A ﬁ

Multiprocessin B
P I C

A B (o
ﬁ q
Multiprogramming LA B C A B C B
1 1 1 1 1 1 1

+ Also recall: Hyperthreading
- Possible to interleave threads on a per-instruction basis
- Keep this in mind for our examples (like multiprocessing)

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.14

Problem is at the lowest level

* Most of the time, threads are working on separate
data, so scheduling doesn't matter:

Thread A Thread B
x=1; y=2:
* However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2;
x = y+1; y = y*Z;

- What are the possible values of x?

+ Or, what are the possible values of x below?
Thread A Thread B
x=1; x = 2;
- X could be 1 or 2 (non-deterministicl)
- Could even be 3 for serial processors:
» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.15

Atomic Operations
* To understand a concurrent program, we need to know
what the underlying indivisible operations are!

- Atomic Operation: an operation that always runs to
completion or not at dll

- It is /indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

- Fundamental building block - if no atomic operations, then
have no way for threads to work together

* On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

- Consequently - weird example that produces “3" on
previous slide can't happen

* Many instructions are not atomic
- Double-precision floating point store often not atomic

- VAX and IBM 360 had an instruction to copy a whole
array

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.16

Correctness Requirements

* Threaded programs must work for all interleavings of
thread instruction sequences

- Cooperating threads inherently non-deterministic and
non-reproducible

- Really hard to debug unless carefully designed!
+ Example: Therac-25

- Machine for radiation therapy

» Software control of electron
accelerator and electron beam/
Xray production

» Software control of dosage
- Software errors caused the
death of several patients

» A series of race conditions on
shared variables and poor

software design Fan 1 Tyl o 3 ey

» "They determined that data entry speed durin ediﬂrig
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.17

Space Shuttle Example

* Original Space Shuttle launch aborted 20 minutes
before scheduled launch
- Shuttle has five computers:
- Four run the "Primary Avionics PAES ﬁ
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms
- The Fifth computer is the "Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS
+ Countdown aborted because BFS disagreed with PASS
- A 1/67 chance that PASS was out of sync one cycle
- Bug due to modifications in initialization code of PASS
» A delayed init request placed into timer queue

» As a result, timer queue not empty at expected time to
force use of hardware clock

- Bug not found during extensive simulation

BFS

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.18

Another Concurrent Program Example

* Two threads, A and B, compete with each other
- One tries to increment a shared counter
- The other tries to decrement the counter

Thread A Thread B
i=0; i=0;
while (i < 10) while (i > -10)
i=i+1; i=i-1;

printf("A wins!”); printf("B winsl");

+ Assume that memory loads and stores are atomic, but
incrementing and decrementing are ot atomic

* Who wins? Could be either
+ Is it guaranteed that someone wins? Why or why not?

* What if both threads have their own CPU running at
same speed? Is it guaranteed that it goes on
forever?

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.19

Hand Simulation Multiprocessor Example

* Inner loop looks like this:
Thread A Thread B
r1=0 load r1, M[i]
r1=0 load r1, M[i]
ri=1 add ri1, ri1, 1
ri=-1 sub rl1, ri, 1
ML1]=1 store ri. ML1) M[i]=-1 store ri1, M[i]
*+ Hand Simulation:
- And we're off. A gets off to an early start
- B says "hmph, better go fast” and tries really hard
- A goes ahead and writes "1”
- B goes and writes "-1"
- A says "HUH??? I could have sworn I put a 1 there”
* Could this happen on a uniprocessor?
- Yes! Unlikely, but if you are depending on it not
happening, it will and your system will break...

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.20

Administrivia

* Don't Forget New Section!
- Thursday 12-1, 320 Soda Hall
- Need to know your TAl
* Sorry about HW 1
- 6ot a little longer than we expected

- Due next Monday! (HW 2 not handed out until
Monday)

* No class on Monday! (Holiday)

Motivation: "Too much milk”

* Great thing about OS's - analogy between ——
problems in OS and problems in real life

- Help you understand real life problems better \
- But, computers are much stupider than people

+ Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk

3:15 Buy milk Leave for store
3:20 Arrive home, put milk away | Arrive at store
3:25 Buy milk
3:30 Arrive home, put milk away
2/11/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 7.21 2/11/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 7.22
Definitions More Definitions

* Synchronization: using atomic operations to ensure
cooperation between threads

- For now, only loads and stores are atomic

- We are going to show that its hard to build anything
useful with only reads and writes

* Mutual Exclusion: ensuring that only one thread does
a particular thing at a time

- One thread excludes the other while doing its task

* Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into this section of code.

- Critical section is the result of mutual exclusion

- Critical section and mutual exclusion are two ways of
describing the same thing.

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.23

* Lock: prevents someone from doing something

- Lock before entering critical section and
before accessing shared data

- Unlock when leaving, after accessing shared da'r”

- Wait if locked

» Important idea: all synchronization involves waiting

* For example: fix the milk problem by putting a key on
the refrigerator

- Lock it and take key if you are going to go buy milk
- Fixes too much: roommate angry if only wants OJ

- Of Course - We don't know how to make a lock yet

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.24

Too Much Milk: Correctness Properties

* Need to be careful about correctness of
concurrent programs, since non-deterministic

- Always write down behavior first

- Impulse is to start coding first, then when it
doesn’t work, pull hair out

- Instead, think first, then code

* What are the correctness properties for the
“Too much milk” problem???

- Never more than one person buys
- Someone buys if needed

- Restrict ourselves to use only atomic load and
store operations as building blocks

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015

Lec 7.25

Too Much Milk: Solution #1

+ Use a nofe To avoid buying Too much milk:
- Leave a note before buying (kind of “lock™)
- Remove note after buying (kind of “unlock™)
- Don't buy if note (wait)
* Suppose a computer tries this (remember, only memory
read/write are atomic):
it (?:oMl IIN<)t "
1T (noNote
feave N%te \ =

y milk;
remove note

* Result?
- Still too much milk but only occasionally!

- Thread can get context swntched after checking milk and
note but befg ore buying milk!

+ Solution makes problem worse since fails intermittently
- Makes it really hard to debug...
- Must work despite what the dispatcher does!
2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.26

Too Much Milk: Solution #1%

+ Clearly the Note is not quite blocking enough
- Let's try to fix this by placing note first
* Another try at previous solution:

leave Note;

if (noMilk) {
if gnoNote)
eave Note;
buy milk;

}

remove note;
* What happens here?

- Well, with human, probably nothing bad
- With computer: no one ever buys milk

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015

Lec 7.27

Too Much Milk Solution #2

* How about labeled notes?
- Now we can leave note before checking
« Algorithm looks like this:

Thread A

leave note A;
if (noNote B) {
it (noMilk) {
buy Milk;

Thread B

leave note B;
it (noNoteA) {
if (noMilk) {
buy Milk;

remove note A;
- Does this work?
* Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead
each to think that the other is going to buy

* Really insidious:

- Extremely unlikely that this would happen, but will at
worse possible time

- Probably something like this in UNIX

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.28

remove note B;

Too Much Milk Solution #2: problem!

+ I'm not getting milk, You're getting milk
+ This kind of lockup is called "starvation!”

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.29

Too Much Milk Solution #3

Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) { //X if (noNote A) { //Y
do nothing; it (noMilk) {

b buy milk;
if (noMilk) {
buy milk;

remove note B;
remove note A;

Does this work? Yes. Both can guarantee that:
- It is safe to buy, or
- Other will buy, ok to quit
At X:
- if no note B, safe for A to buy,
- otherwise wait to find out what will happen
At Y:
- if no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.30

Solution #3 discussion

* Our solution protects a single “Critical-Section” piece
of code for each thread:

it (noMilk) {
buy milk;

- Solution #3 works, but it's really unsatisfactory
- Really complex - even for this simple an example
» Hard to convince yourself that this really works
- A’'s code is different from B's - what if lots of threads?
» Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time
» This is called “busy-waiting”
* There's a better way

- Have hardware grovide better (higher-level) primitives
than atomic load and store

- Build even higher-level programming abstractions on this
new hardware support

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.31

Too Much Milk: Solution #4
SUﬂpose we have some sort of implementation of a
lock (more in a moment).
—Lock.Acquire() - wait until lock is free, then grab
—Lock.Release() - Unlock, waking up anyone waiting

- These must be atomic operations - if two threads are
waiting for the lock and both see it's free, only one
succeeds to grab the lock

Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)
buy milk;
milklock.Release();

Once again, section of code between Acquire() and
Release() called a “Critical Section”

Of course, you can make this even simfler: suppose
you are out of ice cream instead of milk

- Skip the test since you always need more ice cream.

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.32

Where are we going with synchronization?

Programs | Shared Programs

Higher-
level

APT

Hardware |Load/Store Disable Ints Test&Set Comp&Swap

* We are going to implement various higher-level
synchronization primitives using atomic operations

- Everything is pretty painful if only atomic primitives are
load and store

- Need to provide primitives useful at user-level

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.33

How to implement Locks?

* Lock: prevents someone from doing something

- Lock before entering critical section and ‘
before accessing shared data
- Unlock when leaving, after accessing shared data

- Wait if locked
» Important idea: all synchronization involves waiting
» Should s/eep if waiting for a long time
+ Atomic Load/Store: get solution like Milk #3
- Looked at this last lecture
- Pretty complex and error prone
+ Hardware Lock instruction
- Is this a good idea?
- What about putting a task to sleep?

» How do you handle the interface between the hardware and
scheduler?

- Complexity?
» Done in the Intel 432
» Each feature makes hardware more complex and slow

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.34

Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations?
- Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
- On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts
+ Consequently, naive Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }
* Problems with this approach:
- Can't let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

- Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long
- What happens with I/0 or other important events?
» “"Reactor about to meltdown. Help?”
2/11/15 Kubiatowicz C5162 ©UCB Spring 2015 Lec 7.35

Better Implementation of Locks by Disabling Interrupts

* Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; g

Acquire(Q {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

Release() {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue
Place on ready queue;

// Enable interrupts? } else {
} else { P value = FREE;
} value = BUSY; enable interrupts;
enable interrupts; ¥

}

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.36

New Lock Implementation: Discussion

* Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock
Acquire({
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep(Q);

// Enable interrupts? Critica
} else { Section
value = BUSY;

}

enable interrupts;
+

* Note: unlike previous solution, the critical section
(inside Acquire()) is very short

- User of lock can take as long as they like in their own
critical section: doesn't impact global machine behavior

- Critical interrupts taken in time!
2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.37

Interrupt re-enable in going to sleep

* What about re-enabling ints when going to sleep?
Acquire(Q) {
disable interrupts;
if (value == BUSY) {

nable Position —— - .
e put thread on wait queue;
nable Position ——¢= ~ sleep() -

Enable Position —eie {

value = BUSY;
b

enable interrupts;
1

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.38

How to Re-enable After Sleep()?

* In scheduler, since interrupts are disabled when you
call sleep:

- Responsibility of the next thread to re-enable ints

- When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B

disable ints

sleep context
-~35ﬁzﬁ‘*-sleep return

enable iInts

N disable iInt
onteX

c sleep
sleep return‘?ﬁﬁfﬁ——_—

enable ints

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.39

Atomic Read-Modify-Write instructions

* Problems with previous solution:
- Can't give lock implementation to users

- Doesn't work well on multiprocessor

» Disabling interrupts on all processors requires messages
and would be very time consuming

+ Alternative: atomic instruction sequences

- These instructions read a value from memory and write
a new value atomically

- Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)

» and multiprocessors (requires help from cache coherence
protocol)

- Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.40

Examples of Read-Modify-Write

testé&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;
return result;

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

e compareé&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

}

load-linked&store conditional(&address) {
/* R4000, alpha */

loop:
1l r1, M[address];
movi r2, 1; /* Can do arbitrary comp */

sc r2, M[address];
3 beqz r2, loop;

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.41

Implementing Locks with test&set

* Another flawed, but simple solution:

int value = 0; // Free
Acquire() {

while (test&set(value)); 7/ while busy
}

Release() {
value = 0;
3

- Simple explanation:

- If lock is free, testé&set reads O and sets value=1, so
lock is now busy. It returns O so while exits.

- If lock is busy, testdset reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

- When we set value = O, someone else can get lock
* Busy-Waiting: thread consumes cycles while waiting

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.42

Problem: Busy-Waiting for Lock

+ Positives for this solution
- Machine can receive interrupts
- User code can use this lock
- Works on a multiprocessor {
- Negatives i
- This is very inefficient because the busy-waiting
thread will consume cycles waiting

- Waiting thread may take cycles away from thread
holding lock (no one wins!)

- Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock = no progress!
Priority Inversion problem with original Martian rover
+ For semaphores and monitors, waiﬁn|g thread may
wait for an arbitrary length of timel!

- Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

- Homework/exam solutions should not have busy-waiting!

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.43

Better Locks using test&set

* Can we build testdset locks without busy-waiting?
- Can't entirely, but can minimize!
- Idea: only busy-wait to atomically check lock value
int guard

= O;
int value = FREE; g

Acquire(Q) { Release() {))
// short busy-wait time // Short busy-wait time
while (test&set(guard)); while (testé&set(guard));

if (value == BUSY if anyone on wait queue {
;it thread on &;ﬁi queue; take thread off wait queue

go to sleep() & guard = O; } éatiféton ready queue;

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}

}+ Note: sleep has to be sure to reset the guard variable
- Why can't we do it just before or just after the sleep?

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.44

Higher-level Primitives than Locks

* Goal of last couple of lectures:

- What is the right abstraction for synchronizing threads
that share memory?

- Want as high a level primitive as possible
* Good primitives and practices important!

- Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

- UNIX is pretty stable now, but up until about mid-80s
(10 Kear‘s after started), systems running UNIX would
crash every week or so - concurrency bugs

+ Synchronization is a way of coordinating multiple
concurrent activities that are using shared state

- This lecture and the next presents a couple of ways of
structuring the sharing

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.45

Semaphores @ |

+ Semaphores are a kind of generalized lock a
- First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX
+ Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

- P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
» Think of this as the wait() operation
- V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation

- Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.46

Semaphores Like Integers Except
- Semaphores are like integers, except
- No negative values

- Only operations allowed are P and V - can't read or write
value, except to set it initially

- Operations must be atomic
» Two P's together can't decrement value below zero

» Similarly, thread going to sleep in P won't miss wakeup
from V - even if they both happen at same time

+ Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

g

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.47

Two Uses of Semaphores

* Mutual Exclusion (initial value = 1)
- Also called "Binary Semaphore”.
- Can be used for mutual exclusion:

semaphore.PQ);
// Critical section goes here
semaphore.V(Q);

* Scheduling Constraints (initial value = 0)

- Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

- Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:
Initial value of semaphore = 0

ThreadJoin {
semaphore.PQ);

ThreadFinish {
semaphore.V(Q);

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.48

Producer-consumer with a bounded buffer

Producer |==»Buffer j==»Consumer

* Problem Definition
- Producer puts things into a shared buffer
- Consumer takes them out
- Need synchronization to coordinate producer/consumer

+ Don't want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

- Need to synchronize access to this buffer

- Producer needs to wait if buffer is full

- Consumer needs to wait if buffer is empty
+ Example 1: GCC compiler

-cpplcel | cc2 | as | Id :
- Example 2: Coke machine g

- Producer can put limited number of cokes in machine

- Consumer can't take cokes out if machine is empty

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.49

Correctness constraints for solution

« Correctness Constraints:

- Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

- Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

- Only one thread can manipulate buffer queue at a time
(mutual exclusion)

+ Remember why we need mutual exclusion
- Because computers are stupid

- Imaﬂine if in real life: the delivery J:er'son is filling the
machine and somebody comes up and tries to stick their
money into the machine

* General rule of thumb:
Use a separate semaphore for each constraint

—Semaphore fullBuffers; // consumer’s constraint
— Semaphore emptyBuffers;// producer’s constraint
— Semaphore mutex; // mutual exclusion

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.50

Full Solution to Bounded Buffer

Semaphore fullBuffer = 0; // Initially, no coke

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine
Producer(item) {
emptyBuffers.P(); // Wait until space
mutex.PQ); // Wait until buffer free
Enqueue(item);
mutex.VQ;
fullBuffers.V(Q); // Tell consumers there is
3 // more coke
Consumer() {
fullBuffers.PQ; // Check if there’s a coke
mutex.PQ); // Wait until machine free
item = Dequeue();
mutex.V(Q);
emptyBuffers.V(); // tell producer need more
return item;
}
2/11/15 Kubiatowicz €S162 ®UCB Spring 2015 Lec 7.51

Discussion about Solution

* Why asymmetry?
- Producer does: emptyBuffer.P(), fullBuffer.v()
- Consumer does: fullBuffer.P(), emptyBuffer.vV()

+ Is order of P's important?

* Is order of V's important?

* What if we have 2 producers or 2 consumers?
- Do we need to change anything?

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.52

Motivation for Monitors and Condition Variables

+ Semaphores are a huge step up; just think of trying
to do the bounded buffer with only loads and stores
- Problem is that semaphores are dual purpose:
» They are used for both mutex and scheduling constraints

» Example: the fact that flipping of P's in bounded buffer
gives deadlock is not immediately obvious. How do you
prove correctness to someone?

* Cleaner idea: Use /ocks for mutual exclusion and
condition variables for scheduling constraints

+ Definition: Monitor: a lock and zero or more
condition variables for managing concurrent access to
shared data

- Some languages like Java provide this natively
- Most others use actual locks and condition variables

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.53

Monitor with Condition Variab

¢ Lock: the lock provides mutual exclusion to shared data
- Always acquire before accessing shared data structure
- Always release after finishing with shared data
- Lock initially free
* Condition Variable: a queue of threads waiting for
something /nside a critical section

- Key idea: make it Ioossible to go to sleep inside critical
section by atomically releasing lock at time we go to sleep

- Contrast to semaphores: Can't wait inside critical section
2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.54

Simple Monitor Example
* Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire();
queue.enqueue(item);
dataready.signal(Q);
lock.Release();

}

RemoveFromQueue() {
lock.Acquire();
while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

// Get Lock

// Add item

// Signal any waiters
// Release Lock

// Get Lock

item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.55

Summary

+ Important concept: Atomic Operations
- An operation that runs to completion or not at all

- These are the primitives on which to construct various
synchronization primitives
* Talked about hardware atomicity primitives:

- Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional

- Showed several constructions of Locks

- Must be very careful not to waste/tie up machine
resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

- Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable

* Talked about Semaphores, Monitors, and Condition
Variables

- Higher level constructs that are harder to “screw up”
2/11/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 7.56

