CS162
Operating Systems and
Systems Programming
Lecture 6

Concurrency (Continued),
Synchronization (Start)

February 9, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Lifecycle of a Process

admitted interrupt

" terminated)

. scheduler dispatch :
1/O or event completlofo or event wait

waiting

* As a process executes, it changes state:
- new: The process is being created
- ready: The process is waiting to run
- running: Instructions are being executed
- waiting: Process waiting for some event to occur
- terminated: The process has finished execution

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.2

Recall: Use of Threads
* Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputeP 1 (“pi.txt”));
ThreadFork(PrintClassList(“clist.text™));

}

* What does "ThreadFork()" do?
- Start independent thread running given procedure
* What is the behavior here?
- Now, you would actually see the class list
- This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time ———

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.3

Recall: Thread Abstraction

Programmer Abstraction Physical Reality
r- TS T oo sl el |
Threads|S|S|S|S|S| IS|S|SSS
g1y 131415 ! P9 12 13 4 5
| [[[[| | [|
Processors'ﬁ:ﬁ:}ﬁ:m:m' '}m:}ﬁ'
12,3, 4,50 | L1 2
Running Ready
Threads Threads

» Infinite number of processors
* Threads execute with variable speed
- Programs must be designed to work with any schedule

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.4

Recall: Execution Stack Example

MIPS: Software conventions for Registers

PTRE il 0 zero constant O 16 callee saves
_ - tmp=
ACint tmp) { re2=exit 1 at reserved for assembler ... (callee must save)
if (tmp<2) B: ret=A+2 2 v0 expression evaluation & 23
BO:; 3 vl function results 24 t8 temporary (cont’'d)
printf(tmp); C: ret=B+1 4 a0 arguments 25 19
} Az tmp=2 5 al 26 kO reserved for OS kernel
BO { Stack ‘ ret=C+1 6 a2 27 k1
cO: Pointer 1 7 a3 28 gp Pointer to global area
} Stack Growth 8 t0 temporary: caller saves 29 sp Stack pointer
cO { 30 fp frame pointer
A - Stack holds femporary results 15 t7 31 ra Return Address (HW)
' * Permits recursive execution .
} Crucial q | * Before calling procedure: - After return, assume
ACL rucial to modern languages - Save caller-saves regs - Callee-saves reg OK
’ - Save V0, vi - gp.sp.fp OK (restored!)
- Save ra - Other things trashed
2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.5 2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.6
Recall: Multithreaded stack switching Example: Network Interrupt
* Consider the following 5 Eaisebplariznqlx)
. o <8O AeReenable nts
code Dlocks: hread Thread T £ add $ri1,$r2,$r3 04,04}\\“/\‘\0 Save registers
proc AQ { Thread S red §' subi $ra.sri#a oYL Dispatch to Handlef <
BO; - A A S slli $ra,$ra,#2 0\'7°q§“ =
t "E % Transfer Network =
° B(while) B(while) (= AT Packet from hardware\ I
b 5 & S Pipeline Flush to Kernel Buffers £
proc _O { § yield yield £ Iw $r2,0(%r4) g
while(TRUE) { & "2 w $r3,4(srd) Restore registers | £
yield(); W add $r2,%$r2,%$r3 <
sw 8($ra),$r2 Clear current Int H
} N Disable All Ints
}

* Suppose we have 2
threads:

- Threads S and T

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.7

Restore priority)
RTI

* An interrupt is a hardware-invoked context switch
- No separate step to choose what to run next
- Always run the interrupt handler immediately

2/9/15

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.8

Use of Timer Interrupt to Return Control

+ Solution to our dispatcher problem
- Use the timer interrupt to force scheduling decisions

Some Routine
Interrupt

y4moub 3ovig

+ Timer Interrupt routine:
TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

+ I/0 interrupt: same as timer interrupt except that
DoHousekeeping() replaced by Servicel0().

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.9

How does Thread get started?
Other Thread

A

B(while)

yield

Stack growth

New Thread

+ Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

- This really starts the new thread

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.10

What does ThreadRoot() look like?

+ ThreadRoot() is the root for the thread routine:
ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);

ThreadFinish();
}
- Startup Housekeeping 2
- Includes Thin;s like recording | Thread Code %
start time of thread ki
- Other Statistics 5

- Stack will grow and shrink
with execution of thread

* Final return from thread returns into ThreadRoot()
which calls ThreadFinish()

- ThreadFinish() wake up sleeping threads

Running Stack

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.11

Examples multithreaded programs

* Embedded systems
- Elevators, Planes, Medical systems, Wristwatches
- Single Program, concurrent operations

* Most modern OS kernels

- Internally concurrent because have to deal with
concurrent requests by multiple users

- But no protection needed within kernel

* Database Servers
- Access to shared data by many concurrent users
- Also background utility processing must be done

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.12

Example multithreaded programs (con't)

* Network Servers
- Concurrent requests from network

- Again, single program, multiple concurrent
operations

- File server, Web server, and airline reservation
systems

* Parallel Programming (More than one physical CPU)
- Split program into multiple threads for parallelism
- This is called Multiprocessing

+ Some multiprocessors are actually uniprogrammed:

- Multiple threads in one address space but one
program at a time

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.13

A typical use case

Web Server
- fork process for each client

Client Browser
- process for each tab

- thread to render page connection .

- GET in separate thread - thread to get request and issue

- multiple outstanding GETs response

- as -rhpey complete gender. - fork threads to read data, access

portion DB, etc

/ - join and respond

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.14

Some Actual Numbers

* Many process are multi-threaded, so thread context
switches may be either within-process or across-

= indows Tk Vs S o=t

File Options View Help

|Appli:ahons ‘ Processes |Ser\u'ices I Performance I Networking I Users |
Image Name FID User Mame CPU = Memory (Private Workin... = Threads Description i
thunderbird.exe =32 5544 jfc 00 422,212 K 258 Thunderbird
firefox.exe =32 6064 jfc ao 362,048 K 43 Firefox
BCU.exe *32 4752 jfc [} 108,012 K 6 Browser Configuration Utility
dwm.exe 4036 jfc o0 105,676 K. 5 Desktop Window Manager
POWERPNT.EXE 140 jfc [} 102,204 K 12 Microsoft PowerPoint
explorer.exe 1780 jfc an 73,299K 36 Windows Explorer
Dropbox.exe *32 3380 jfe i} 56,792 K 34 Dropbox L
CameraHelpershel.exe... 4832 jfc [} 15,068 K 9 Webcam Controller 3
emacs.exe *32 4856 jfc o0 12,996 K 3 GMU Emacs: The extensible self-doc
FlashPlayerPlugin_11_8... 4280 jfc [ia] 10,820 K 12 Adobe Flash Player 11.8 r800
nvxdsync.exe 3420 oo 10,192K 10 ‘
emacs.exe *32 2736 jfe i} 10,000 K 3 GMU Emacs: The extensible self-doc
BtvStack.exe 2708 ifc oo 9.444K 43 Bluetooth Stack Server

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.15

Kernel Use Cases

* Thread for each user process
* Thread for sequence of steps in processing I/0
* Threads for device drivers

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.16

Administrivia

* 6roup formation: should be completed

- Will handle stragglers tonight

* Project #1:

- Technically starts today
- Autograder should be up by tomorrow.

Released!

+ HW1 due today
- Must be submitted via the recommended “push”

Famous Quote WRT Scheduling: Dennis Richie

De!’\nis RiChie, 2230 /
Unix V6, slp.c: %
2234
2230
2236
2237
2238
2239

"If the new process paused because it was swapped out, set
the stack level to the last call to savu(u_ssav). This means
that the return which is executed /7lme3/are_ ly after the call
to aretu actually returns from the last routine which did the
sawu.

f the rnew process raused because it was
swarred ocutr set the stack level to the last call
[} sav)., This means that the return
which is executed imaediatelw after the cal to aretu
actually returns from the last routine which did

NN

You are nol exrected Lo understend this.

”

"You are not expected to understand this.

mechanism through git
Source: Dennis Ritchie, Unix V6 slp.c (context-switching
code) as per The Unix Heritage Society(tuhs.org): gif by
Eddie Koehler.
Included by Ali R. Butt in €S3204 from Virginia Tech
2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.17 2/9/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 6.18
Putting it together: Process Putting it together: Processes
(Unix) Process Processl\ Process 2 Process N - Switch overhead: high
ﬂ(int tmp) { \ Mem Mem Mem - CPU state:
if (tmp<2) ; ; ; - Memory/IO state: high
B(): Memory . ol - «we || Process creation: high
printf(tmp), Jresorces] =0 =0 =o| © Protection
} — state state state - CPU:
BO{ I(/eo St?illt: - M /I0:
Sequential C(); sdgkét ’ emory :
stream of } + Sharing overhead: high
- . contexts) CPU oS .
instructions \] ©0 sched. (involves at least a
R AQ): — context switch)
' state
} (°C, SP. N proes
AL); registers..) CPU I
\ / (1 core)

2/9/15

Kubiatowicz 5162 ©®UCB Spring 2015

Lec 6.19

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.20

Putting it together: Threads

Process 1 Process N
(threads \ f threads \
Mem Y () e | Switch overhead:
. , (only CPU state)
- 0 1+ Thread creation:
state state
+ Protection
CPU CPU CPU CPU
state state state state) - CPU:
- Memory/IO: No

+ Sharing overhead:

* We have been talking about Kernel threads

Kernel versus User-Mode threads

- Native threads supported directly by the kernel

- Every thread can run or block independently
- One process may have several threads waiting on different

things
Downside of kernel threads: a bit expensive
- Need to make a crossing into kernel mode to schedule

Even lighter weight option: User Threads
- User program provides scheduler and thread package

- May have several user threads per kernel thread
- User threads may be scheduled non-premptively relative to

each other (only switch on yield())
- Cheap

Simple One-to-One
Threading Model

CPU _
sched. 0s (thread switch
overhead low) Downside of user threads:
1 thread - When one thread blocks on I/0, all threads block
I at a time _ K . .
CPU ernel cannot adjust scheduling among all threads
(1 core) - Option: Scheduler Activations
» Have kernel inform user level when thread blocks...
2/9/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 6.21 2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.22
Some Threading Models Threads in a Process
S < * Threads are useful at user-level
: ¢ «— user thread - Parallelism, hide I/0 latency, interactivity
* Option A (early Java): user-level library, within a single-

~

L4
y S
S <
P F

IaWawa

4

L4
)

{ +—user thread
) b

L4

:f k\ +— kemel thread

¢
¢ +— user thread

*

AR i
itk) [k)] | k)+—kemelthread
h e N

Many - to-Many

2/9/15

Many-to-One

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.23

threaded process
- Library does thread context switch

- %ernel time slices between processes, e.g., on system call

/0
+ Option B (SunOS, Linux/Unix variants): green Threads
- User-level library does thread multiplexing

+ Option C (Windows): scheduler activations
- Kernel allocates processors to user-level library
- Thread library implements context switch
- System call I/0 that blocks triggers upcall
+ Option D (Linux, MacOS, Windows): use kernel threads
- System calls for thread fork, join, exit (and lock, unlock,..)

- Kernel does context switching
- Simple, but a lot of transitions between user and kernel

mode
Lec 6.24

Kubiatowicz 5162 ©®UCB Spring 2015

2/9/15

Putting it together: Multi-Cores

Putting it together: Hyper-Threading

Process 1 Process N Process 1 Process N
(threads \ f threads \ (threads \ (threads \
T T + Switch overhead: AT A + Switch overhead
Mem Mem 11 (only CPU state) Mem Mem between hardware-
10 10 ||+ Thread creation: 10 10 threads:
state | | --- state Protection state | | .- state (done in hardware)
* Protectio .
CPU CPU CPU CcPU CPU: CPU CcPU CPU CcPU * Con'ren'hon for'
state state state state) - . state state state state ALUS /FPUS may
- Memory/IO: No hurt performance
A + Sharing overhead: A
os (thread switch os
sched. sched.
overhead low may hardware-threads hread
/X 4threadsal | ot need to switch (hyperthreading) 71~ S ireadsat
atime atime
— at alll)
core 1 || Core 2 || Core 3 || Core 4 | |CPU CPU
core core core core
2/9/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 6.25 2/9/15 Kubiatowicz C5162 ©UCB Spring 2015 Lec 6.26
Multiprocessing vs Multiprogramming Single and Multithreaded Processes
* Remember Definitions:
- Mu“.!pr‘ocess'ng_ = MUH'IP|.C CPUS | code || data H files | | code || data || files |
- Multiprogramming = Multiple Jobs or Processes
- Multithreading = Multiple threads per Process | stack | [registers [[registers | registers

* What does it mean to run two threads “concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

Aﬁ
Multiprocessing B
C
A B (4
ﬁ q
Multiprogramming LA B C A B C B |
2/9/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 6.27

| stack || stack ” stack |

thread —= (g ; g g-—— thread|

single-threaded process

multithreaded process

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.28

Supporting 1T and MT Processes

| code || data “ files | |oode || data |] files |

[registsrsl | stack | |regislers |registers||registers|
| stack | stack ” stack |

= IHEES

Supporting 1T and MT Processes

||
| code || data H Tios | | [|| dala || Thas | _a
ragislors slack ragistots I rogistars I fogistars [*

slack slack slack

=]

slack slack slack

e IEEES

< <
Q Q
v v
> -
single-threaded process multithreaded process singlo-thraadad procass mullithraaded process | mllithraaded process
E E
Q Q
+ +
n n
P P
))
2/9/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 6.29 2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.30
Classification You are here.. why?
5w * Processes S
g § - Thread(s) + address space &\ﬂ [
threads & & * Address Space & °
] #* + Protection 2 g
Per AS: * Dual Mode 5 2
+ Interrupt handlers - 2 é":
- i 2,
: Interrupts, exceptions, syscall (9) o m\"“@ .99
+ File System op &
- Integrates processes, users, cwd, profec%gg (W)
*+ Key Layers: OS Lib, Syscall, Subsystem, Driver s
- User handler on OS descriptors
* Process control
. . - fork, wait, signal, exec
Real operating systems have either . Communication through sockets
- One or many address spaces - Integrates processes, protection, file ops,
- One or many threads per address space cl C‘;"C;"f‘eﬂCYP +ocol
- Did Windows 95/98/ME have real memory protection? lent-server rrotoco
. + Concurrent Execution: Threads
- No: Users could overwrite process tables/System DLLs - Scheduling
2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.31 2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.32

Perspective on ‘groking’ 162

+ Historically, OS was the most complex software

- Concurrency, synchronization, processes, devices,
communication, ...

- Core systems concepts developed there
* Today, many “applications” are complex software systems too
- These concepts appear there
- But they are realized out of the capabilities provided by the
operating system
+ Seek to understand how these capabilities are implemented
upon the basic hardware.
- See concepts multiple times from multiple perspectives
- Lecture provides conceptual framework, integration, examples,

- Book provides a reference with some additional detail
- Lots of other resources that you need to learn to use
» man pages, google, reference manuals, includes (.h)

+ Section, Homework and Project provides detail down to the
actual code AND direct hands-on experience

Operating System as Design

Software

Word Processin
Compilers \gleb Browsers

Portable OS Kern

Application / Service

Platform support, Device Drivers

Hardware

x86

PowerPC

PC

Ethernet (10/100/100802.11 a/b/g/nSCSI IDE 6raphics

2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.33 2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.34
Starting today: Pintos Projects MT Kernel 1T Process ala Pintos/x86
Process 1 Process 2 Process N . Gpoups almost all code /
)
Mem Mem Mem formed data ‘
- - : Work as onel! ‘
10 10 10 rmagic # |
state state state 10x homework \\7 \\7 ma_?ils(;‘f\ .
~ . priority = N4 _
CPU CPU CcPU P1: threads & Kernel|_ - — CEEE e
state state state scheduler‘ User \ +id
code code
P2: user process
. data data
G PintOS
sched. Feded
heap heap
v
User User
CPU
(emulated) stack stack
- Each user process/thread associated with a kernel thread, described by
a 4kb Page object containing TCB and kernel stack for the kernel thread
2/9/15 k68184 FaltdBuce spring 2015 35 Lec 6.35 2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.36

In User thread, w/ k-thread waiting

/ 7 7 code N
Z i data . e
TJ N jﬁ N
S S i il
User \ \ "’ T
code code '\\ "y
data data
heap e heap
[|TIP
User User EPSP
stack stack Proc Regs pL: 3

x86 proc holds interrupt SP high system level
During user thread exec, associate kernel thread is “standing by”

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.37

In Kernel thread

7 % _code). N

/
R

EY

W

ist

priority
stack™ .|

status "
tid N

User N
code \({ "

data da%\\
heap - heap \

Kernel

N\
=~ IP
User User SP
K sP

stack stack

Proc Regs p| . o

Kernel threads execute with small stack in thread struct

Scheduler selects among ready kernel and user threads
2/9/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 6.38

Thread Switch (switch.S)

S) e | .

/
Z \L data
j7 Q? | rmagic # |
™ N BN | _ﬁsff
Ker'nel_i T " AN Trara pr;!;):éiy\ i
s‘ra{rs N
User q N +i \\\
code \ \wge ~
data M N
vean | ™ heap \\
[~]IP
User User ﬁEPSP
stack stack Proc Regs p| . o

switch_threads: save regs on current small stack, change SP,
return from destination threads call to switch_threads
2/9/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 6.39

Switch to Kernel Thread for Process

/< 7 Vs code y \ |:’
Z i data §\
AN i A By <R
Kernel | "~ o s L\~ P backe
sfajus M
User L S
code code ‘o
data data
heap e heap
N IP
S SP
User User K SP
stack stack Proc Regs p| . o

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.40

Kernel->User

/ 7 # code p [

Z i data < —
“T ﬂj | [m=r

S U L =" B

Kernel | ™« o . =] p';f:c'ﬁy\,_

User T T
code code '\\ s "
data data
heap e heap

N
g N | 1P
User User | —- EPSP
stack stack Proc Regs pL: 3

- iret restores user stack and PL

User->Kernel

/ 7 7 code P N N
Z i data §\ e
UL i \ Bl
Kernel | = o s L\~ i
STG.‘"US \\
User tid S
code code "
data data
heap e heap
. | IP
X SP
User User K SP
stack stack Proc Regs p| . o

* Mechanism to resume k-thread goes through interrupt

vector
2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.41 2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.42
User->Kernel via interrupt vector Pintos Interrupt Processing
/ 7 7 code “ ~N 0 stubs Wrapper for
i dat = e generic handler
ata
Z 0 intr_entry:
I I . =~ push 0x20 (int #) / save regs as frame
\7 1 \7 ox20 = Jmp intr_entry /] set up kernel env.
Kernel \\N \‘x T —] push 0x20 (int #) call intr_handler
- — Jjmp intr_entry _ _
User‘ intr_exit:
code code X 255 R— restore regs
N intr vector iret
data data 255
s Hardware stubs.S
heap heap \ interrupt
N IP vector
< -
User User | &= EPSP
stack stack Proc Regs pL: 3
+ Interrupt transfers control through the IV (IDT in x86)
+ iret restores user stack and PL
2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.43 2/9/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 6.44

Recall: cs61C THE STACK FRAME

Basic Structure of a Function

Pintos Interrupt Processing

interrupt.c

Wrapper for

Intr_handler(*frame)

stubs - classify
Prol ;
ré)ngg;le;abelz ox generic handler _ dispatch
3 ; Tfrainlesize 0 7] - ack\ IRQ
save othe:arl?ggs);zif need be //?éh_OXZO (intj)/ Iﬂ;:;vgn‘:ggé as Trade - mayl thread yield
Body (call other functions...) The Stack - ox2d . imp intr_entry set ur_) kernel ernv.
Epilogue memory & SlacKreview o— push 0x20 (int #) call intr_handbler
i ' jmp int t . .
= 10=§a]1§;sli'§gf4lf Gt = Return “instruction ATp IErentty Intr_exit: ‘t|mer_|ntr(*frame)
tramasiee = PaaToRETS - restore regs 0 J| tick++
= Space for other local variables = 255 iret ; thread_tickQ)
= Stack frames contiguous frame | 0x20 " timer.c
blocks of memory; stack pointer tells Hard
where bottom of stack frame is Hardware stubs.S
= When procedure ends, stack frame mfer'r-upf
is tossed off the stack; frees - vector
memory for future stack frames -
Pintos
intr_handlers
2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.45 2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.46
Timer may trigger thread switch Pintos Return from Processing
+ thread_tick interrupt.c
- *
- l].:l;dafei 'rhre:d c:u(;uters* ol i <tubs mePer for ITtZTZ:Q?;;r(frame)
quanta exhausted, sets yield Tlag generic handler - dispatch
* thread_yield o y Pre— - ack IRQ
. — Intr_entry: _ A
- On path to rtn from interrupt LpGsh 0x20 (int ?/ save regs as frame | |>="aYPe ‘thread yield
- Sets current thread back to READY oxeg—] (JMP_Intr_entry set up kernel env.
- Pushes it back on ready_list «—fpush ox20 (int #) | call intr_hand
- Calls schedule to select next thread to run upon iret Jmp_iIntr_entry intr_exit: [timer_intr(*frame)
+ Schedule Kxk restore regs 0 , tick++
iret thread_tick()
- Selects next thread to run . / .
- Calls switch_threads to change regs to point to stack 255 0x20 ¢ fmer.
for thread fo resume Hardware stubs.S
- Sets its status to RUNNING inferrupt thread_yield()
- If user thread, activates the process vector - schedyfe
R back .7 handl P Resume Some Thread =
- Returns back to intr_handler Pintos RscheduleO
intr_handlers - switch
Lec 6.47 2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.48

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015

Correctness for systems with concurrent threads

+ If dispatcher can schedule threads in any way,
programs must work under all circumstances

- Can you test for this?

- How can you know if your program works?
* Independent Threads:

- No state shared with other threads

- Deterministic = Input state determines results

- Reproducible = Can recreate Starting Conditions, I/0

- Scheduling order doesn't matter (if switch() workslll)
+ Cooperating Threads:

- Shared State between multiple threads

- Non-deterministic

- Non-reproducible

* Non-deterministic and Non-reproducible means that
bugs can be intermittent

- Sometimes called "Heisenbugs"

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.49

Interactions Complicate Debugging

* Is any program truly independent?
- Every ?(ocess shares the file system, OS resources,

network, etfc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0
» User typing of letters used to help generate secure keys
2/9/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 6.50

Why allow cooperating threads?

+ People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

+ Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
+ Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
+ Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id
» Makes system easier to extend

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.51

High-level Example: Web Server

=

D/_\z

+ Server must handle many requests N
* Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
* What are some disadvantages of this technique?

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.52

Threaded Web Server

* Now, use a single process

Multithreaded (cooperating) version:
serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
* Looks almost the same, but has many advantages:

- Can share file caches kept in memory, results of CGI
scripts, other things

- Threads are much cheaper to create than processes, so
this has a lower per-request overhead
Question: would a user-level (say one-to-many)
thread package make sense here?
- When one request blocks on disk, all block...
What about Denial of Service attacks or digg /
Slash-dot effects?

2/9/15 Kubiatowicz €S162 ©

Thread Pools

* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

///""“-.~* AAasfe]
{::::::J Thread

Thread Pool

worker(queue) {
while(TRUE) {
con=Dequeue(queue);
if (con==null)

master() {
allocThreads(worker,queue);
while(TRUE) {
con=AcceptCon();

Enqueue(queue,con); EIszleepOn(queue);
wakeU ueue); -
3 P(q) ServiceWebPage(con);
3 }
2/9/15 Kubiatowicz €5162 ©bca Spring 2015 Lec 6.54

ATM Bank Server

oooo
oooo
oooo

L

"

oooo
oooo
oooo

|

oooo
oooo
oooo

* ATM server problem:
- Service a set of requests
- Do so without corrupting database
- Don't hand out too much money

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.55

ATM bank server example

* Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer()
while (TRUE) {
ReceiveRequest(&op, &acctld, &amount);
ProcessRequest(op, acctld, amount);

}

ProcessRequest(op, _acctld, amount) é
|T (opf:: deposit) Deposit(acctld, amount);
else if ..

Deposit(acctld, amount) {)
acct = GetAccount(acctld); /* may use disk 1/0 */
acct->balance += amount;)
StoreAccount(acct); /* Involves disk 1/0 */

}
* How could we speed this up?
- More than one request being processed at once
- Event driven (overlap computation and I/0)
- Multiple threads (multi-proc, or overlap comp and I/0)

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.56

Event Driven Version of ATM server

+ Suppose we only had one CPU
- Still like to overlap I/0 with computation

- Without threads, we would have to rewrite in event-
driven style

+ Example

BankServer() {
while(TRUE) {

event = WaitForNextEvent();

if (event == ATMRequest)
StartOnRequest();

else if (event == AcctAvail)
ContinueRequest();

else if (event == AcctStored)
FinishRequest();

}
¥
- What if we missed a blocking I/0 step?

- What if we have to split code into hundreds of pieces
which could be blocking?

- This technique is used for graphical programming
2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.57

Can Threads Make This Easier?

* Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments

- One thread per request
* Requests proceeds to completion, blocking as required:

Deposit(acctld, amount) {
acct = GetAccount(actld); /* May use disk 1/0 */
acct->balance += amount;
StoreAccount(acct);

}
* Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

/* Involves disk 1/0 */

load r1, acct->balance
add r1, amount2
store rl, acct->balance
add r1, amountl
store rl, acct->balance

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.58

Review: Multiprocessing vs Multiprogramming

* What does it mean to run two threads "concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

Aﬁ
Multiprocessin B
P I e
A B Cc
ﬁ ﬁ
Multiprogramming A B C A B C B |
I I I 1 1 1 1

+ Also recall: Hyperthreading
- Possible to interleave threads on a per-instruction basis
- Keep this in mind for our examples (like multiprocessing)

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.59

Problem is at the lowest level

* Most of the time, threads are working on separate
data, so scheduling doesn't matter:

Thread A Thread B
x=1; y=2:
* However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2:
x = y+1; y = y*2;

- What are the possible values of x?
+ Or, what are the possible values of x below?
Thread A Thread B
x=1; x = 2;
- X could be 1 or 2 (non-deterministicl)

- Could even be 3 for serial processors:
» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.60

Atomic Operations

*+ To understand a concurrent program, we need to know
what the underlying indivisible operations are!

+ Atomic Operation: an operation that always runs to
completion or not at dll

- It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

- Fundamental building block - if no atomic operations, then
have no way for threads to work together

* On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

- Consequently - weird example that produces "3" on
previous slide can't happen

* Many instructions are not atomic
- Double-precision floating point store often not atomic

- VAX and IBM 360 had an instruction to copy a whole
array

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.61

Correctness Requirements

* Threaded programs must work for all interleavings of
thread instruction sequences

- Cooperating threads inherently non-deterministic and
non-reproducible

- Really hard to debug unless carefully designed!
+ Example: Therac-25

- Machine for radiation therapy

» Software control of electron
accelerator and electron beam/
Xray production

» Software control of dosage

- Software errors caused the
death of several patients

» A series of race conditions on
shared variables and poor

software design e 1 Tyl o 23 iy

» "They determined that data entry speed durin ediﬂrig
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.62

Space Shuttle Example

* Original Space Shuttle launch aborted 20 minutes
before scheduled launch
+ Shuttle has five computers:
- Four run the "Primary Avionics PAES ﬁ
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms
- The Fifth computer is the "Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS
+ Countdown aborted because BFS disagreed with PASS
- A 1/67 chance that PASS was out of sync one cycle
- Bug due to modifications in initialization code of PASS
» A delayed init request placed into timer queue

» As a result, timer queue not empty at expected time to
force use of hardware clock

- Bug not found during extensive simulation

BFS

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.63

Another Concurrent Program Example

* Two threads, A and B, compete with each other
- One tries to increment a shared counter
- The other tries to decrement the counter

Thread A Thread B
i=0; i=0;
while (i < 10) while (i > -10)
i=i+1; i=i-1;

printf("A wins!”); printf("B winsl");
+ Assume that memory loads and stores are atomic, but
incrementing and decrementing are 7ot atomic
* Who wins? Could be either
+ Is it guaranteed that someone wins? Why or why not?

* What it both threads have their own CPU running at
same speed? Is it guaranteed that it goes on
forever?

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.64

Hand Simulation Multiprocessor Example

Motivation: "Too much milk”

* Great thing about OS's - analogy between ——
problems in OS and problems in real life

- Help you understand real life problems better \
- But, computers are much stupider than people

+ Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk

3:15 Buy milk Leave for store

3:20 Arrive home, put milk away | Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away
2/9/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 6.65 2/9/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 6.66

Definitions More Definitions

* Synchronization: using atomic operations to ensure

cooperation between threads
- For now, only loads and stores are atomic

- We are going to show that its hard to build anything

useful with only reads and writes

* Mutual Exclusion: ensuring that only one thread does

a particular thing at a time
- One thread excludes the other while doing its task

* Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will

get into this section of code.
- Critical section is the result of mutual exclusion

- Critical section and mutual exclusion are two ways of

describing the same thing.

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015

Lec 6.67

* Lock: prevents someone from doing something

- Lock before entering critical section and
before accessing shared data

- Unlock when leaving, after accessing shared da'r”

- Wait if locked

» Important idea: all synchronization involves waiting

* For example: fix the milk problem by putting a key on
the refrigerator

- Lock it and take key if you are going to go buy milk
- Fixes too much: roommate angry if only wants OJ

- Of Course - We don't know how to make a lock yet

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.68

Too Much Milk: Correctness Properties

* Need to be careful about correctness of
concurrent programs, since non-deterministic

- Always write down behavior first

- Impulse is to start coding first, then when it
doesn’t work, pull hair out

- Instead, think first, then code

* What are the correctness properties for the
“Too much milk” problem???

- Never more than one person buys
- Someone buys if needed

- Restrict ourselves to use only atomic load and
store operations as building blocks

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 6.69

Too Much Milk: Solution #1

+ Use a nofe To avoid buying Too much milk:

- Leave a note before buying (kind of “lock™)

- Remove note after buying (kind of “unlock™)

- Don't buy if note (wait)
* Suppose a computer tries this (remember, only memory
read/write are atomic):
it (?:oMl IIN<)t ~
1T (noNote

feave N%te \

y milk;
remove note

e
e

* Result?
- Still too much milk but only occasionally!

- Thread can get context swntched after checking milk and
note but befg ore buying milk!

+ Solution makes problem worse since fails intermittently
- Makes it really hard to debug...
- Must work despite what the dispatcher does!
2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.70

Too Much Milk: Solution #1%

+ Clearly the Note is not quite blocking enough
- Let's try to fix this by placing note first
* Another try at previous solution:

leave Note;

if (noMilk) {
if gnoNote)
eave Note;
buy milk;

}

remove note;
* What happens here?

- Well, with human, probably nothing bad
- With computer: no one ever buys milk

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 6.71

Too Much Milk Solution #2

* How about labeled notes?
- Now we can leave note before checking
« Algorithm looks like this:

Thread A

leave note A;
if (noNote B) {
it (noMilk) {
buy Milk;

Thread B

leave note B;
it (noNoteA) {
if (noMilk) {
buy Milk;

remove note A;
- Does this work?
* Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead
each to think that the other is going to buy

* Really insidious:

- Extremely unlikely that this would happen, but will at
worse possible time

- Probably something like this in UNIX

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.72

remove note B;

Too Much Milk Solution #2: problem!

+ I'm not getting milk, You're getting milk
+ This kind of lockup is called "starvation!”

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.73

Too Much Milk Solution #3

Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) { //X if (noNote A) { //Y
do nothing; it (noMilk) {

b buy milk;
if (noMilk) {
buy milk;

remove note B;
remove note A;

Does this work? Yes. Both can guarantee that:
- It is safe to buy, or
- Other will buy, ok to quit
At X:
- if no note B, safe for A to buy,
- otherwise wait to find out what will happen
At Y:
- if no note A, safe for B to buy
- Otherwise, A is either buying or waiting for B to quit

2/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 6.74

Solution #3 discussion

* Our solution protects a single “Critical-Section” piece
of code for each thread:

it (noMilk) {
buy milk;

- Solution #3 works, but it's really unsatisfactory
- Really complex - even for this simple an example
» Hard to convince yourself that this really works
- A’'s code is different from B's - what if lots of threads?
» Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time
» This is called “busy-waiting”
* There's a better way

- Have hardware grovide better (higher-level) primitives
than atomic load and store

- Build even higher-level programming abstractions on this
new hardware support

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.75

Too Much Milk: Solution #4
SUﬂpose we have some sort of implementation of a
lock (more in a moment).
—Lock.Acquire() - wait until lock is free, then grab
—Lock.Release() - Unlock, waking up anyone waiting

- These must be atomic operations - if two threads are
waiting for the lock and both see it's free, only one
succeeds to grab the lock

Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)
buy milk;
milklock.Release();

Once again, section of code between Acquire() and
Release() called a “Critical Section”

Of course, you can make this even simfler: suppose
you are out of ice cream instead of milk

- Skip the test since you always need more ice cream.

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.76

Where are we going with synchronization?

Programs | Shared Programs

Higher-
level

APT

Hardware |Load/Store Disable Ints Test&Set Comp&Swap

* We are going to implement various higher-level
synchronization primitives using atomic operations

- Everything is pretty painful if only atomic primitives are
load and store

- Need to provide primitives useful at user-level

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.77

Summary (1 of 2)

* Processes have two parts
- Threads (Concurrency)
- Address Spaces (Protection)
* Concurrency accomplished by multiplexing CPU Time:
- Unloading current thread (PC, registers)
- Loading new thread (PC, registers)

- Such context switching may be voluntary (yield(),
I/0 operations) or involuntary (timer, other interrupts)

* Protection accomplished restricting access:
- Memory mapping isolates processes from each other
- Dual-mode for isolating I/0, other resources

* Various Textbooks talk about processes

- When this concerns concurrency, really talking about
thread portion of a process

- When this concerns protection, talking about address
space portion of a process

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.78

Summary (2 or 2)

+ Concurrent threads are a very useful abstraction
- Allow transparent overlapping of computation and I/0
- Allow use of parallel processing when available

+ Concurrent threads introduce problems when accessing
shared data

- Programs must be insensitive to arbitrary interleavings

- Without careful design, shared variables can become
completely inconsistent

* Important concept: Atomic Operations
- An operation that runs to completion or not at all

- These are the primitives on which to construct various
synchronization primitives

+ Showed how to protect a critical section with only
atomic load and store = pretty complex!

2/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 6.79

