
CS162
Operating Systems and
Systems Programming

Lecture 6

Concurrency (Continued),
Synchronization (Start)

February 9th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 6.22/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Lifecycle of a Process

• As a process executes, it changes state:
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Lec 6.32/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI(“pi.txt”));
ThreadFork(PrintClassList(“clist.text”));

}

• What does “ThreadFork()” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

Lec 6.42/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule

Lec 6.52/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

Lec 6.62/9/15 Kubiatowicz CS162 ©UCB Spring 2015

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (callee must save)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

MIPS: Software conventions for Registers

• Before calling procedure:
– Save caller-saves regs
– Save v0, v1
– Save ra

• After return, assume
– Callee-saves reg OK
– gp,sp,fp OK (restored!)
– Other things trashed

Lec 6.72/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Multithreaded stack switching

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 6.82/9/15 Kubiatowicz CS162 ©UCB Spring 2015


add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler



Transfer Network
Packet from hardware
to Kernel Buffers


Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2



Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 6.92/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• I/O interrupt: same as timer interrupt except that
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 6.102/9/15 Kubiatowicz CS162 ©UCB Spring 2015

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield
run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 6.112/9/15 Kubiatowicz CS162 ©UCB Spring 2015

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack growth
Thread Code

Lec 6.122/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Examples multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 6.132/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Example multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent
operations

– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one
program at a time

Lec 6.142/9/15 Kubiatowicz CS162 ©UCB Spring 2015

A typical use case

Client Browser
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render
portion

Web Server
- fork process for each client

connection
- thread to get request and issue

response
- fork threads to read data, access

DB, etc
- join and respond

Lec 6.152/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Some Actual Numbers

• Many process are multi-threaded, so thread context
switches may be either within-process or across-
processes.

Lec 6.162/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel Use Cases

• Thread for each user process
• Thread for sequence of steps in processing I/O
• Threads for device drivers
• …

Lec 6.172/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Group formation: should be completed
– Will handle stragglers tonight

• Project #1: Released!
– Technically starts today
– Autograder should be up by tomorrow.

• HW1 due today
– Must be submitted via the recommended “push”
mechanism through git

Lec 6.182/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie,
Unix V6, slp.c:

“If the new process paused because it was swapped out, set
the stack level to the last call to savu(u_ssav). This means
that the return which is executed immediately after the call
to aretu actually returns from the last routine which did the
savu.”

“You are not expected to understand this.”

Source: Dennis Ritchie, Unix V6 slp.c (context-switching
code) as per The Unix Heritage Society(tuhs.org); gif by
Eddie Koehler.

Included by Ali R. Butt in CS3204 from Virginia Tech

Lec 6.192/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Process

Memory

I/O State
(e.g., file,
socket
contexts)

CPU state
(PC, SP,
registers..)

Sequential
stream of
instructions

A(int tmp) {
if (tmp<2)

B();
printf(tmp);

}
B() {

C();
}
C() {
A(2);

}
A(1);
…

(Unix) Process

Resources
Stack

Stored in OS

Lec 6.202/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Processes

…

Process 1 Process 2 Process N

CPU
sched.

OS

CPU
(1 core)

1 process
at a time

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

• Switch overhead: high
– CPU state: low
– Memory/IO state: high

• Process creation: high
• Protection

– CPU: yes
– Memory/IO: yes

• Sharing overhead: high
(involves at least a
context switch)

Lec 6.212/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Threads

Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead:
low (only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low (thread switch
overhead low)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.222/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

Lec 6.232/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Some Threading Models

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 6.242/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Threads in a Process

• Threads are useful at user-level
– Parallelism, hide I/O latency, interactivity

• Option A (early Java): user-level library, within a single-
threaded process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call

I/O
• Option B (SunOS, Linux/Unix variants): green Threads

– User-level library does thread multiplexing
• Option C (Windows): scheduler activations

– Kernel allocates processors to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel

mode

Lec 6.252/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Multi-Cores
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: low
(only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low (thread switch
overhead low, may
not need to switch
at all!)

core 1 Core 2 Core 3 Core 4 CPU

4 threads at
a time

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.262/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Hyper-Threading
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead
between hardware-
threads: very-low
(done in hardware)

• Contention for
ALUs/FPUs may
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.272/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 6.282/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Single and Multithreaded Processes

Lec 6.292/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Supporting 1T and MT Processes
U
se

r
Sy

st
em ***

Lec 6.302/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Supporting 1T and MT Processes

U
se

r
Sy

st
em *** ***

Lec 6.312/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr

sp
ac

es
:

Lec 6.322/9/15 Kubiatowicz CS162 ©UCB Spring 2015

You are here… why?
• Processes

– Thread(s) + address space
• Address Space
• Protection
• Dual Mode
• Interrupt handlers

– Interrupts, exceptions, syscall
• File System

– Integrates processes, users, cwd, protection
• Key Layers: OS Lib, Syscall, Subsystem, Driver

– User handler on OS descriptors
• Process control

– fork, wait, signal, exec
• Communication through sockets

– Integrates processes, protection, file ops,
concurrency

• Client-Server Protocol
• Concurrent Execution: Threads
• Scheduling

Lec 6.332/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Perspective on ‘groking’ 162

• Historically, OS was the most complex software
– Concurrency, synchronization, processes, devices,

communication, …
– Core systems concepts developed there

• Today, many “applications” are complex software systems too
– These concepts appear there
– But they are realized out of the capabilities provided by the

operating system
• Seek to understand how these capabilities are implemented

upon the basic hardware.
• See concepts multiple times from multiple perspectives

– Lecture provides conceptual framework, integration, examples,
…

– Book provides a reference with some additional detail
– Lots of other resources that you need to learn to use

» man pages, google, reference manuals, includes (.h)
• Section, Homework and Project provides detail down to the

actual code AND direct hands-on experience

Lec 6.342/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Operating System as Design

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)802.11 a/b/g/nSCSI IDE Graphics
PCI

Hardware

Software

System
User

OS

Application / Service

Lec 6.352/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Starting today: Pintos Projects

• Groups almost all
formed

• Work as one!
• 10x homework
• P1: threads &

scheduler
• P2: user process

cs162 fa14 L7 35

…

Process 1 Process 2 Process N

CPU
sched.

PintOS

CPU
(emulated)

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

Lec 6.362/9/15 Kubiatowicz CS162 ©UCB Spring 2015

MT Kernel 1T Process ala Pintos/x86

• Each user process/thread associated with a kernel thread, described by
a 4kb Page object containing TCB and kernel stack for the kernel thread

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

magic #

tid
status
stack

priority
list

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Lec 6.372/9/15 Kubiatowicz CS162 ©UCB Spring 2015

In User thread, w/ k-thread waiting

• x86 proc holds interrupt SP high system level
• During user thread exec, associate kernel thread is “standing by”

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 3

Lec 6.382/9/15 Kubiatowicz CS162 ©UCB Spring 2015

d
status
stack
priority
list

magic #

In Kernel thread

• Kernel threads execute with small stack in thread struct
• Scheduler selects among ready kernel and user threads

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.392/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Switch (switch.S)

• switch_threads: save regs on current small stack, change SP,
return from destination threads call to switch_threads

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.402/9/15 Kubiatowicz CS162 ©UCB Spring 2015

d
status
stack
priority
list

magic #

Switch to Kernel Thread for Process

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.412/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel->User

• iret restores user stack and PL

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 3

Lec 6.422/9/15 Kubiatowicz CS162 ©UCB Spring 2015

d
status
stack
priority
list

magic #

User->Kernel

• Mechanism to resume k-thread goes through interrupt
vector

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.432/9/15 Kubiatowicz CS162 ©UCB Spring 2015

User->Kernel via interrupt vector

• Interrupt transfers control through the IV (IDT in x86)
• iret restores user stack and PL

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 3

0

255
intr vector

Lec 6.442/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Pintos Interrupt Processing

0

255
Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

Lec 6.452/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: cs61C THE STACK FRAME

CS61C L10 Introduction to MIPS : Procedures I (18) Garcia, Spring 2014 © UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (3) Garcia, Spring 2014 © UCB

The Stack (review)
 Stack frame includes:
 Return “instruction” address
 Parameters
 Space for other local variables
 Stack frames contiguous

blocks of memory; stack pointer tells
where bottom of stack frame is

 When procedure ends, stack frame
is tossed off the stack; frees
memory for future stack frames frame

frame

frame

frame

$sp

0xFFFFFFFF

Lec 6.462/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Pintos Interrupt Processing

0

255

Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

0x20

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

interrupt.c

stubs.S

Lec 6.472/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Timer may trigger thread switch

• thread_tick
– Updates thread counters
– If quanta exhausted, sets yield flag

• thread_yield
– On path to rtn from interrupt
– Sets current thread back to READY
– Pushes it back on ready_list
– Calls schedule to select next thread to run upon iret

• Schedule
– Selects next thread to run
– Calls switch_threads to change regs to point to stack

for thread to resume
– Sets its status to RUNNING
– If user thread, activates the process
– Returns back to intr_handler

Lec 6.482/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Pintos Return from Processing

Hardware
interrupt
vector thread_yield()

- schedule

schedule()
- switch

Resume Some Thread

0

255
Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

interrupt.c

Lec 6.492/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 6.502/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 6.512/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 6.522/9/15 Kubiatowicz CS162 ©UCB Spring 2015

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 6.532/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 6.542/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool
queue

Lec 6.552/9/15 Kubiatowicz CS162 ©UCB Spring 2015

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 6.562/9/15 Kubiatowicz CS162 ©UCB Spring 2015

ATM bank server example
• Suppose we wanted to implement a server process to

handle requests from an ATM network:
BankServer() {while (TRUE) {ReceiveRequest(&op, &acctId, &amount);ProcessRequest(op, acctId, amount);}}
ProcessRequest(op, acctId, amount) {if (op == deposit) Deposit(acctId, amount);else if …}
Deposit(acctId, amount) {acct = GetAccount(acctId); /* may use disk I/O */acct->balance += amount;StoreAccount(acct); /* Involves disk I/O */}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 6.572/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-
driven style

• Example
BankServer() {

while(TRUE) {event = WaitForNextEvent();if (event == ATMRequest)StartOnRequest();else if (event == AcctAvail)ContinueRequest();else if (event == AcctStored)FinishRequest();}}
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces
which could be blocking?

– This technique is used for graphical programming
Lec 6.582/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 6.592/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Multiprocessing vs Multiprogramming
• What does it mean to run two threads “concurrently”?

– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

• Also recall: Hyperthreading
– Possible to interleave threads on a per-instruction basis
– Keep this in mind for our examples (like multiprocessing)

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 6.602/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Problem is at the lowest level
• Most of the time, threads are working on separate

data, so scheduling doesn’t matter:
Thread A Thread B
x = 1; y = 2;

• However, What about (Initially, y = 12):
Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B
x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

Lec 6.612/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Atomic Operations
• To understand a concurrent program, we need to know

what the underlying indivisible operations are!
• Atomic Operation: an operation that always runs to

completion or not at all
– It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then
have no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic
– Consequently – weird example that produces “3” on
previous slide can’t happen

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole
array

Lec 6.622/9/15 Kubiatowicz CS162 ©UCB Spring 2015

• Threaded programs must work for all interleavings of
thread instruction sequences
– Cooperating threads inherently non-deterministic and
non-reproducible

– Really hard to debug unless carefully designed!
• Example: Therac-25

– Machine for radiation therapy
» Software control of electron

accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the
death of several patients
» A series of race conditions on

shared variables and poor
software design

» “They determined that data entry speed during editing
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the
overdose occurred.”

Correctness Requirements

Lec 6.632/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Space Shuttle Example
• Original Space Shuttle launch aborted 20 minutes

before scheduled launch
• Shuttle has five computers:

– Four run the “Primary Avionics
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms

– The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS

• Countdown aborted because BFS disagreed with PASS
– A 1/67 chance that PASS was out of sync one cycle
– Bug due to modifications in initialization code of PASS

» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to

force use of hardware clock
– Bug not found during extensive simulation

PASS

BFS

Lec 6.642/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Another Concurrent Program Example

• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > -10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What it both threads have their own CPU running at

same speed? Is it guaranteed that it goes on
forever?

Lec 6.652/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

r1=0 load r1, M[i]
r1=0 load r1, M[i]

r1=1 add r1, r1, 1
r1=-1 sub r1, r1, 1

M[i]=1 store r1, M[i] M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor?
– Yes! Unlikely, but if you depending on it not happening,
it will and your system will break…

Lec 6.662/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Motivation: “Too much milk”

• Great thing about OS’s – analogy between
problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 6.672/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Definitions

• Synchronization: using atomic operations to ensure
cooperation between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything
useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does
a particular thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread
can execute at once. Only one thread at a time will
get into this section of code.
– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of
describing the same thing.

Lec 6.682/9/15 Kubiatowicz CS162 ©UCB Spring 2015

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on

the refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

Lec 6.692/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk: Correctness Properties

• Need to be careful about correctness of
concurrent programs, since non-deterministic
– Always write down behavior first
– Impulse is to start coding first, then when it
doesn’t work, pull hair out

– Instead, think first, then code
• What are the correctness properties for the

“Too much milk” problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and
store operations as building blocks

Lec 6.702/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory
read/write are atomic):

if (noMilk) {if (noNote) {leave Note;buy milk;remove note;}}
• Result?

– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and
note but before buying milk!

• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 6.712/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {if (noNote) {leave Note;buy milk;}}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 6.722/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;if (noNote B) { if (noNoteA) {if (noMilk) { if (noMilk) {buy Milk; buy Milk;} }} }remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at
worse possible time

– Probably something like this in UNIX

Lec 6.732/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 6.742/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;while (note B) { //X if (noNote A) { //Ydo nothing; if (noMilk) {} buy milk;if (noMilk) { }buy milk; }} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 6.752/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives
than atomic load and store

– Build even higher-level programming abstractions on this
new hardware support

Lec 6.762/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a

lock (more in a moment).
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

• Once again, section of code between Acquire() and Release() called a “Critical Section”
• Of course, you can make this even simpler: suppose

you are out of ice cream instead of milk
– Skip the test since you always need more ice cream.

Lec 6.772/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are
load and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 6.782/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (1 of 2)
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Various Textbooks talk about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

Lec 6.792/9/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (2 or 2)

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing
shared data
– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become
completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Showed how to protect a critical section with only
atomic load and store  pretty complex!

