CS162
Operating Systems and
Systems Programming
Lecture 5

Introduction to Networking (Finished),
Concurrency (Processes and Threads)

February 4, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Namespaces for communication over IP

* Hostname
- www.eecs.berkeley.edu
* IP address
- 128.32.244.172 (ipv6?)
* Port Number
- 0-1023 are "well known” or “system” ports
» Superuser privileges to bind to one
- 1024 - 49151 are "registered” ports (registry)
» Assigned by TANA for specific services

- 49152-65535 (215+214 to 216-1) are “dynamic” or
“private”

» Automatically allocated as “ephemeral Ports”

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.2

Recall: Use of Sockets in TCP

* Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called “network socket™)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming
connection request
» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread
- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.3

Recall: Socket Setup over TCP/IP

Client Server

+ Server Socket: Listens for new connections
- Produces new sockets for each unique connection
+ Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port “randomly” assigned
» Done by OS during client socket setup
- Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from O

2/4/15 Kubiatowicz C_S}QZZQUCB Spring 2015 Lec 5.4

Example: Server Protection and Parallelism

Client Server
Create Server Socket

. Bind it to an Address
Create Client Socket (host:port)

} } o~

Connect it to server (host:port) Listen for Conmicﬁd,n

Accept connection
child L/C'annecﬁan Soa‘KfAParerrr

_ . Close Listen Socket
7 ywrite request<- - - - - - read request

Close Connection
Socket

\

1
'__,read response- - — — — -

|

Close Client Socket

Close Server Socket

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.5

Recall: Server Protocol (v3)

while (1) {
listen(lstnsockfd, MAXQUEUE) ;
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_ addr,

&clilen) ;
cpid = fork(); /* new process for connection */
if (cpid > 0) { /* parent process */

close (consockfd) ;
} else if (cpid == 0) {
close(lstnsockfd) ;

/* child process */
/* let go of listen socket */

server (consockfd) ;

close (consockfd) ;
exit (EXIT SUCCESS) ;
}
}

close(lstnsockfd) ;

/* exit child normally */

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.6

Server Address - itself

memset ((char *) &serv addr,0, sizeof(serv _addr));
serv_addr.sin family = AF_INET;
serv_addr.sin addr.s addr = INADDR ANY;
serv_addr.sin port htons (portno) ;

- Simple form

+ Internet Protocol

* accepting any connections on the specified port
* In “"network byte ordering”

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.7

Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
char *hostname, int portno) {
struct hostent *server;

/* Get host entry associated with a hostname or IP address */
server = gethostbyname(hostname);
if (server == NULL) {
fprintf(stderr,"”ERROR, no such host\n');
exit(l);
}

/* Construct an address for remote server */
memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr->sin_family = AF_INET;
bcopy((char *)server->h_addr,

(char *)&(serv_addr->sin_addr.s_addr), server->h_length);
serv_addr->sin_port = htons(portno);

return server;

}

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.8

BIG OS Concepts so far

* Processes
+ Address Space
* Protection
* Dual Mode
* Interrupt handlers (including syscall and trap)
* File System
- Integrates processes, users, cwd, protection
* Key Layers: OS Lib, Syscall, Subsystem, Driver
- User handler on OS descriptors
* Process control
- fork, wait, signal, exec
+ Communication through sockets
+ Client-Server Protocol

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.9

Course Structure: Spiral

&) ¢lle Sys#@%

¢
. %
5 7
;| 5
3 §
o 8 s Q
%,) N 7
D .) AouaaN &
% o
oo, N
S Aygyqoye®(®
2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.10

Recall: Traditional UNIX Process

* Process: Operating system abstraction to represent
what is needed to run a single program

- Often called a "HeavyWeight Process”

- No concurrency in a "HeavyWeight Process”
* Two parts:

- Sequential program execution stream

» Code executed as a sequential stream of execution
(i.e., thread)

» Includes State of CPU registers

- Protected resources:
» Main memory state (contents of Address Space)
» I/O state (i.e. file descriptors)

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.11

How do we Multiplex Processes?

« The current state of process held in a
process control block (PCB):

- This is a "snapshot” of the execution
and protection environment

- Only one PCB active at a time

+ Give out CPU time to different
processes (Scheduling):
- Only one process “running” at a time
- Give more time to important processes

- Give pieces of resources to different
processes (Protection):
- Controlled access to non-CPU resources
- Example mechanisms:

» Memory Mapping: Give each process
their own address space

» Kernel/User dudlity: Arbitrary
multiplexing of I/O through system calls

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015

process state

process number

program counter

registers

memory limits

list of open files

L

Process
Control
Block

Lec 5.12

CPU Switch From Process to Process

process P, operating syslem process P,

interrupt or system call
Executing ﬂ

I save state into PCB,

reload state from PCB,

idle interrupt or system call

y
save state into PCB,

: idle
s

reload state from PCB,
xecuting][

idie

exaculing

+ This is also called a “"context switch”
- Code executed in kernel above is overhead

2/4/15

- Overhead sets minimum practical switching time

- Less overhead with SMT/hyperthreading, but...
contention for resources instead

Lifecycle of a Process

admitted interrupt

" terminated

< scheduler dispatc| 2
1/O or event completlofo or event wait

waiting

* As a process executes, it changes state:

new: The process is being created

ready: The process is waiting to run

running: Instructions are being executed
waiting: Process waiting for some event to occur
terminated: The process has finished execution

Kubiatowicz 5162 ®UCB Spring 2015 Lec 5.13 2/4/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 5.14
Process Scheduling Ready Queue And Various I/O Device Queues
t:l: * Thread not running = TCB is in some scheduler queue
ready queue CPU . . .
- Separate queue for each device/signal/condition
- Each queue can have a different scheduler policy
e
Ready [Head Link Link Link |
time slice Queue Tail Registers Registers Registers =
expired Other Other Other
USB Head D State State State
z . a = TCB TCB TCB
child fork a Unit O Tail k4 6 16
@7 child _—l;
. Disk | Head Link Link [——_
HoTLp! wo DEs Unit 0 Tail Registers Registers| =
occurs interrupt Other Other
Disk Head 1 State State
+ PCBs move from queue to queue as they change state Unit 2 [Tail |— TCB, TCB,
- geﬁls(;o?s at()jouf which order to remove from queues are Ether [Ticad 7» Lik 0
cneduiing aecisions Netwk O Tail Registers -
- Many algorith ible (f ks f tere
any algorithms possible (few weeks from now) State
TCB,
2/4/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 5.15 2/4/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 5.16

Administrivia

* Group signups: 4 members/group
- Link posted by Friday
- Groups need to be finished by Monday!
- Form asks which section you attend

* Moving section #109

- From Friday 10-11 (3102 Etcheverry) =
Thursday 12-1 (320 Soda)

- There is still a Friday 10-11 in 3111 Etcheverry
+ Conflicts for Final: Please let me know this week!
* Need to get to know your Tas

- Consider moving out of really big sections!
* Finding info on your own is a good ideal

- Learn your tools, like "man”

- Can even type "man xxx" into google!
» Example: "man Is"

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.17

Modern Process with Threads

+ Thread: a seguential execution stream within process
(Sometimes called a “Lightweight process™)

- Process still contains a single Address Space
- No protection between threads

* Multithreading: a single program made up of a number
of different concurrent acfivities

- Sometimes called multitasking, as in Ada ...

* Why segarate the concept of a thread from that of a
process:

- Discuss the “thread” part of a process (concurrency)
- Separate from the “address space” (protection)
- Heavyweight Process = Process with one thread

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.18

Single and Multithreaded Processes

| code || data H files | | code || data || files |

|registers] [stack l Iregisters”registersl regis!ersl

| stack || stack ” stack |

thread —» (g ; ; gﬂ—— thread

single-threaded process

multithreaded process

* Threads encapsulate concurrency: “Active” component

* Address spaces encapsulate protection: “"Passive” part
- Keeps buggy program from trashing the system

* Why have multiple threads per address space?

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.19

Thread State

- State shared by all threads in process/addr space
- Content of memory (global variables, heap)
- I/0 state (file descriptors, network connections, etc)

- State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

+ Execution Stack
- Parameters, temporary variables

- Return PCs are kept while called procedures are executing

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.20

Execution Stack Example

_ Az tmp=1
A(int tmp) { ret=exit

if

It (tmp<2) B: ret=A+2

BO:

printf(tmp); C: ret=b+1
} A: tmp=2
BO { Stack > ret=C+1

cO: Pointer 1
} Stack Growth
cO {

A - Stack holds temporary results
Y ' *+ Permits recursive execution

* Crucial to modern languages
AD;
2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.21

Motivational Example for Threads

* Imagine the following C program:

main() {
ComputePI (“pi.txt”);
PrintClassList(“clist.text™);

}

* What is the behavior here?
- Program would never print out class list
- Why? ComputePI would never finish

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.22

Use of Threads
* Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputeP 1 (“pi.txt”));
ThreadFork(PrintClassList(“clist.text™));

}

+ What does "ThreadFork()" do?
- Start independent thread running given procedure

* What is the behavior here?
- Now, you would actually see the class list
- This should behave as if there are two separate CPUs

CPU1 CPUL2 CPU1 CPU2 CPU1 CPU2

Time ———

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.23

Memory Footprint: Two-Threads

+ If we stopped this program and examined it with a
debugger, we would see

2o0dg ssauppy

- Two sets of CPU registers Stack 1
- Two sets of Stacks v
+ Questions: Stack 2
- How do we position stacks relative to v
each other?
- What maximum size should we choose 1
for the stacks? Heap
- What happens if threads violate this?
. . . Global Data
- How might you catch violations?
Code
2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.24

Actual Thread Operations

- thread_fork(func, args)
- Create a new thread to run func(args)
- Pintos: thread_create
* thread_yield()
- Relinquish processor voluntarily
- Pintos: thread_yield
* thread_join(thread)

- In parent, wait for forked thread to exit, then
return

 thread_exit
- Quit thread and clean up, wake up joiner if any
- Pintos: thread_exit

*+ pThreads: POSIX standard for thread programming

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.25

Dispatch Loop

+ Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

* This is an /nfinite loop

- One could argue that this is all that the OS does
+ Should we ever exit this loop???

- When would that be?

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.26

Running a thread

Consider first portion: RunThread()

* How do I run a thread?
- Load its state (registers, PC, stack pointer) into CPU
- Load environment (virtual memory space, etc)
- Jump to the PC

* How does the dispatcher get control back?
- Internal events: thread returns control voluntarily
- External events: thread gets preempted

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.27

Internal Events

+ Blocking on I/0

- The act of requesting I/0 implicitly yields the CPU
* Waiting on a “signal” from other thread

- Thread asks to wait and thus yields the CPU
+ Thread executes a yield()

- Thread volunteers to give up CPU

computeP1 O {
while(TRUE) {
ComputeNextDigit();

yieldQ);

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.28

Stack for Yielding Thread

ComputePI

yield
Trap to OS C

Y4moub xoo4s

+ How do we run a new thread?

run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}
 How does dispatcher switch to a new thread?
- Save anything next thread may trash: PC, regs, stack
- Maintain isolation for each thread

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.29

What do the stacks look like?

+ Consider the following

code blocks:
proc AQ { Thread S Thread T
BO:; § A A
} 8 B(while) B(while)
()]
proc BO { % yield yield
while(TRUE) { 5-;
yieldQ;
}
}
* Suppose we have 2
threads:
- Threads Sand T
2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.30

Saving/Restoring state (often called “"Context Switch)
Switch(tCur,tNew) {
/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

TCB[tCur].regs.r0 = CPU.rO;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;
CPU.rO TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.31

Switch Details (continued)

* What if you make a mistake in implementing switch?
- Suppose you forget to save/restore register 4

- Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

- System will give wrong result without warning
+ Can you devise an exhaustive test to test switch code?
- No! Too many combinations and inter-leavings
+ Cautionary tail:
- For speed, Topaz kernel saved one instruction in switch()
- Carefully documented!
» Only works As long as kernel size < 1MB
- What happened?
» Time passed, People forgot

» Later, they added features to kernel (no one removes
features!)

» Very weird behavior started happening
- Moral of story: Design for simplicity

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.32

Some Numbers

* Frequency of performing context switches: 10-100ms

+ Context switch time in Linux: 3-4 usecs (Current
Intel i7 & ED).

- Thread switching faster than process switching (100 ns).

- But switching across cores about 2x more expensive than
within-core switching.

+ Context switch time increases sharply with the size of
the working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

* Moral: Context switching depends mostly on cache
limits and the process or thread's hunger for memory.

2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.33

What happens when thread blocks on I/0?

CopyFile

read
Trap to OS C

Y4moub >opoic

* What happens when a thread requests a block of
data from the file system?

- User code invokes a system call
- Read operation is initiated
- Run new thread/switch
* Thread communication similar
- Wait for Signal/Join
- Networking

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.34

External Events

* What happens if thread never does any I/0,
never waits, and never yields control?

- Could the ComputePI program grab all resources
and never release the processor?

» What if it didn't print to console?
- Must find way that dispatcher can regain control!
+ Answer: Utilize External Events

- Interrupts: signals from hardware or software
that stop the running code and jump to kernel

- Timer: like an alarm clock that goes off every
some many milliseconds

+ If we make sure that external events occur
frequently enough, can ensure dispatcher runs

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.35

Thread Abstraction

Programmer Abstraction Physical Reality

i s TSt bl el et il

Threads|3|5|5|3|3| ISlSISSS
by 12 131 415 b7 12 I3 4 5
I | Lo | | | |

Processors'}ﬁ:ﬁ:%:}ﬁ:%' 'ﬁ:}ﬁ'
1243, 4050 | La2,

Running Ready
Threads Threads

» Infinite number of processors
* Threads execute with variable speed
- Programs must be designed to work with any schedule

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.36

Programmer vs. Processor View

Possible Executions

Thread1 1]

Programmer’s Possible Possible Possible Thread 1]
View Execution Execution Execution Thread 2 (— Thread 2
#1 #2 #3 Thread 3 C—J Thread3d — 1
a) One execution b) Another execution
X=Xx+1; X=Xx+1; X=x+1 X=x+1
y=y+x V=Y+X e y=y+X Thread 1 [] O 0
z=x+5y; z=x+D5y; threadissuspended ... Thread2 I 0 OO
other thread(s) run thread is suspended Thread 3 0 [
thread is resumed other thread(s) run
............... thread is resumed ¢) Another execution
Y=Y+HX
Z=X+ 5y z=Xx+5y
2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.37 2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.38
Thread Lifecycle Shared vs. Per-Thread State
Shared Per-Thread Per-Thread
State State State
Thread Control Thread Control
scheduler Heap Block (TCB) Block (TCB)
Thread Creation Resumes Thread ThreadExit /N | | TTTTTTTTTTttTtTTTTT/TT [T
Stack Stack
e.g., e.g., Information Information
sthread create() sthread exit() \ /(e e
B Thread Yields/ Saved Saved
Scheduler Global Registers Registers
Suspends Thread i iables | oo p
Event Occurs c.g., sthread yield() Thread Waits for Event Variables Thread Thread
calls sthread join () Metadata Metadata
sthread_join()
Code | p|
2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.40

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.39

2/4/15

Per Thread State (Kernel Supported Threads)

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter (PC),
pointer to stack (SP)

- Scheduling info: state, priority, CPU time

- Various Pointers (for implementing scheduling queues)
- Pointer to enclosing process (PCB) - user threads

- Etc (add stuff as you find a need)

+ OS Keeps track of TCBs in “kernel memory”
- In Array, or Linked List, or ..

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.41

Multithreaded Processes

+ PCB points to multiple TCBs:
| PCB H PCB H PCB |

TCB TCB

TCB

TCB]—'l TCB]—'| TCB |

- Switching threads within a block is a simple thread
switch

+ Switching threads across blocks requires changes
to memory and I/O address tables.

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.42

Examples multithreaded programs

* Embedded systems
- Elevators, Planes, Medical systems, Wristwatches
- Single Program, concurrent operations

* Most modern OS kernels

- Internally concurrent because have to deal with
concurrent requests by multiple users

- But no protection needed within kernel

* Database Servers
- Access to shared data by many concurrent users
- Also background utility processing must be done

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.43

Example multithreaded programs (con't)

* Network Servers
- Concurrent requests from network

- Again, single program, multiple concurrent
operations

- File server, Web server, and airline reservation
systems

* Parallel Programming (More than one physical CPU)
- Split program into multiple threads for parallelism
- This is called Multiprocessing

+ Some multiprocessors are actually uniprogrammed:

- Multiple threads in one address space but one
program at a time

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.44

A typical use case

Client Browser Web Server '
- process for each tab - fork process for each client
- thread to render page connection .
- GET in separate thread - thread to get request and issue
- multiple outstanding GETs response
- as 'rhpey complete gende,. - fork threads to read data, access
portion o DB, etc
/ - join and respond
2/4/15 Kubiatowicz €S162 ®UCB Spring 2015 Lec 5.45

Some Actual Numbers

* Many process are multi-threaded, so thread context
switches may be either within-process or across-

B Windows Task Manager u_lﬂn'@'
File Options View Help
| Applications ‘ Processes |SEr\rir_Es I Performance I Metworking I Users |
Image Mame PID User Name CPU = Memory (Private Workin... = Threads Description i
thunderbird.exe %32 5544 jfc [} 422,212 K 28 Thunderbird
firefox.exe *32 6064 jfc ao 362,048 K 43 Firefox
BCU.exe *32 4752 ifc i} 108,012 K & Browser Configuration Utility
dwm.exe 4036 jfc an 105,676 K 5 Desktop Window Manager
POWERPNT.EXE 140 jfc [} 102,204 K 12 Microsoft PowerPoint
explorer.exe 1780 jfc [} 73,244 K 36 Windows Explorer
M Dropbox.exe *32 3380 jfe i} 56,792 K 34 Dropbox L
CameraHelperShel.exe... 4832 ifc i} 15,068 K. 9 Webcam Controller 5
emacs.exe *32 4856 jfc an 12,996 K 3 GNU Emacs: The extensible self-doc|
FlashPlayerPlugin_11_8... 4280 jfc [ia] 10,820 K 12 Adobe Flash Player 11.8 r800
nvxdsync.exe 3420 00 10,192 K 10 '
emacs.exe *32 2736 jfe i} 10,000 K 3 GNU Emacs: The extensible self-doc|
BtvStack.exe 2708 ifc [o0] 9.444K 43 Bluetooth Stack Server
2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.46

Kernel Use Cases

* Thread for each user process
* Thread for sequence of steps in processing I/0
* Threads for device drivers

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.47

Putting it together: Process

(Unix) Process

/ (AGnttmp) {) \ _
if (tmp<2)

B(); Memory
printf(tmp);
T P
Sequential CO: et
socket
stream of } contexts)
instructions \ co{ =
N
A); CPU state
A(1); registers..)

U

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.48

Putting it together: Processes

Process1 Process 2 Process N - Switch overhead: high
™
Mem Mem Mem - CPU state:
: : : - Memory/IO state: high
10 10 10 .
state state ||+ sae || © Process creation: high
CPU CPU cru]| © Protection
state state state - CPU:
- Memory/IO:
oPU oS * Sharing overhead: high
sched. (involves at least a
context switch)
1 process
] atatime
CPU
(1 core)
2/4/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 5.49

Putting it together: Threads

Process 1 Process N
(threads \ f threads \
Mem Y () e | Switch overhead:
. , (only CPU state)
- '0 1+ Thread creation:
state DO e state
+ Protection
CcPU CcPU cPU CPU
state state state state) - CPU:

- Memory/IO: No

+ Sharing overhead:
sg:elcjj. oS (thread switch
overhead low)

1 thread
| at atime

CPU
(1 core)

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.50

Kernel versus User-Mode threads

+ We have been talking about Kernel threads
- Native threads supported directly by the kernel
- Every thread can run or block independently
- tOhrge process may have several threads waiting on different
ings
Downside of kernel threads: a bit expensive
- Need to make a crossing into kernel mode to schedule
- Even lighter weight option: User Threads
- User program provides scheduler and thread package
- May have several user threads per kernel thread

- User threads may be scheduled non-premptively relative to
each other (only switch on yield())

- Cheap
Downside of user threads:
- When one thread blocks on I/0, all threads block
- Kernel cannot adjust scheduling among all threads
- Option: Scheduler Activations
» Have kernel inform user level when thread blocks...

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.51

Some Threading Models

C 5
; ; < (>’ «— user thread
Simple One-to-One ¢ .
Threading Model L L
k Q/ (k} k\. <«—— kernel thread|
nE S 3
:/-. < / \\)-— user thread 2 & . .(i‘q— user thread
4

¢ P

P

\ k/, +— kemel thread |k) [k) [k) +—kemelthread

Many-to-One Many-to-Many

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.52

Threads in a Process

- Threads are useful at user-level
- Parallelism, hide I/O latency, interactivity

* Option A (early Java): user-level library, within a single-
threaded process

- Library does thread context switch
- %75nel time slices between processes, e.g., on system call

Option B (SunOS, Unix variants): green Threads
- User-level library does thread multiplexing
+ Option C (Windows): scheduler activations
- Kernel allocates processors to user-level library
- Thread library implements context switch
- System call I/0 that blocks triggers upcall
+ Option D (Linux, MacOS, Windows): use kernel threads
- System calls for thread fork, join, exit (and lock, unlock,..)
- Kernel does context switching

- Simple, but a lot of transitions between user and kernel
mode

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.53

Putting it together: Multi-Cores

Process 1 Process N
(threads \ (threads \
> T - Switch overhead:
Mem Mem 11 (only CPU state)
10 10 ||+ Thread creation:
state | | - e state .
* Protection
| | o e | | o - CPU:

J

- Memory/IO: No

+ Sharing overhead:
(thread switch
gy S 2 hroads o overhead low, may
a time not need to switch
— = at all!)
core 1 || Core 2 || Core 3 || Core 4 | |CPU

CPU
sched. 0S

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.54

Putting it together: Hyper-Threading

Process 1 Process N
(threads \ f threads \
T T + Switch overhead
Mem Mem between hardware-
o o threads:
state state (done in har'dwar'e)
= = = « Contention for
state state state state ALUS /FPUS may
hurt performance
CPU oS
sched.
hardware-threads
(hyperthreading) = 8 threads at
yp 9 - a time
CPU
core core core core
2/4/15 Kubiatowicz €S162 ®UCB Spring 2015 Lec 5.55

Multiprocessing vs Multiprogramming
* Remember Definitions:
- Multiprocessing = Multiple CPUs
- Multiprogramming = Multiple Jobs or Processes
- Multithreading = Multiple threads per Process
* What does it mean to run two threads “concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A

Multiprocessin B
P I C —b

A B c
ﬁ q
Multiprogramming LA, B C A B C B |
1 1 1 1 1 1 1

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.56

Single and Multithreaded Processes

| code H data H files | | code || data H files ‘
|regislers| | stack | |registers|llregislers registers

| stack || stack stack

Supporting 1T and MT Processes

| code ” data || files | | code || data || files |
| stack | |r9gislers |legislers| registersl

| stack | stack I stack |

thread —» é ; g g«—— thread

thread —> ; ; ; ;-—— thread| | 4
Q
[72]
)
single-threaded process multithreaded process
single-threaded process multithreaded process
£
Q
4=
7
>
1))
2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.57 2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.58
Supporting 1T and MT Processes Correctness for systems with concurrent threads
+ If dispatcher can skchegule 1'Il|1r'qads in any way,
I programs must work under all circumstances
| code ” data H fios] | code “ dala || Thos | _El - Can you test for this?
ngﬁlﬁlﬂ slack TOQISWI‘B‘WQWGI&IIOQ‘IBHH ﬂ - How Can you know if Your‘ progr‘am workS?
g Y P T stack [[| stack [[staek ° Independen‘l’ Threads:
- No state shared with other threads
; g g‘_ﬂw - Deterministic = Input state determines results
s ™ T - Reproducible = Can recreate Starting Conditions, I/0
g - Scheduling order doesn't matter (if switch() workslll)
- + Cooperating Threads:
single-thraaded process mulithroaded process multithreadad process - Shal”ed State between mul'l'iple fhr'eads
- Non-deterministic
g - Non-reproducible
s * Non-deterministic and Non-reproducible means that
> bugs can be intermittent
" - Sometimes called “Heisenbugs”
2/4/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 5.59 2/4/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 5.60

Interactions Complicate Debugging

* Is any program truly independent?
- Every ?(ocess shares the file system, OS resources,

network, etfc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0
» User typing of letters used to help generate secure keys
2/4/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 5.61

Why allow cooperating threads?

* People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is"a notable problem for “carefully laid plans”

+ Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
+ Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
* Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id
» Makes system easier to extend

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.62

High-level Example: Web Server

=

D/_\z

+ Server must handle many requests N
* Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
* What are some disadvantages of this technique?

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.63

Threaded Web Server

* Now, use a single process
* Multithreaded (cooperating) version:
serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
* Looks almost the same, but has many advantages:

- Can share file caches kept in memory, results of CGI
scripts, other things

- Threads are much cheaper to create than processes, so
this has a lower per-request overhead

. %uesﬁon: would a user-level (say one-to-many)
thread package make sense here?

- When one request blocks on disk, all block...

* What about Denial of Service attacks or digg /
Slash-dot effects?

i o eocde, Sl ihed moiers.

2/4/15 Kubiatowicz €S5162 ©|

Thread Pools

* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

///”"“-._* AAaste]
i:| Thread

Thread Pool

worker(queue) {
while(TRUE) {
con=Dequeue(queue);
if (con==null)

master() {
allocThreads(worker ,queue);
while(TRUE) {
con=AcceptCon();

Classification

S w
o 9
°s o M
threads 5 & ne any
Per AS: #
MS/DOS, early o
One Macintosh Traditional UNIX
Embedded systems Mach, 0s/2, Linux
(Geoworks, VxWorks, Windows 9x???
Many Java0S,etc) Win NT to XP,
Java0s, Pilot(PC) | solaris, HP-UX, OS X

* Real operating systems have either
- One or many address spaces

Enqueue(queue, con) : sleepOn(queue); - One or many threads per address space
wakeUp(queue) ; e'SgerviceWebPage (cond: + Did Windows 95/98/ME have real memory protection?
Y } } ’ - No: Users could overwrite process tables/System DLLs
2/4/15 Kubiatowicz €5162 Q‘tCB Spring 2015 Lec 5.65 2/4/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 5.66
Summary

* Processes have two parts
- Threads (Concurrency)
- Address Spaces (Protection)
+ Concurrency accomplished by multiplexing CPU Time:
- Unloading current thread (PC, registers)
- Loading new thread (PC, registers)

- Such context switching may be voluntary (yield(),
I/0 operations) or involuntary (timer, other interrupts)

* Protection accomplished restricting access:
- Memory mapping isolates processes from each other
- Dual-mode for isolating I/0, other resources

* Various Textbooks talk about processes

- When this concerns concurrency, really talking about
thread portion of a process

- When this concerns protection, talking about address
space portion of a process

2/4/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 5.67

