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Recall: Namespaces for communication over IP

• Hostname
– www.eecs.berkeley.edu

• IP address
– 128.32.244.172  (ipv6?)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or 
“private”
» Automatically allocated as “ephemeral Ports”
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Recall: Use of Sockets in TCP

• Socket: an abstraction of a network I/O queue
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote 

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming 

connection request
» Each successful accept() returns a new socket for a new  

connection; can pass this off to handler thread
– On client: 

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server
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socket socketconnection
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socket
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Recall: Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values:

[ Client Addr, Client Port, Server Addr, Server Port, Protocol ]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023 
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Example: Server Protection and Parallelism

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address 
(host:port)

Listen for Connection

Accept connection

read request
write response

Close Connection 
Socket

Close Server Socket

Connection Socketchild

Close Connection 
Socket

Close Listen Socket
Parent
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Recall: Server Protocol (v3)

while (1) {
listen(lstnsockfd, MAXQUEUE);    
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen);
cpid = fork();              /* new process for connection */
if (cpid > 0) {             /* parent process */

close(consockfd);
} else if (cpid == 0) {      /* child process */

close(lstnsockfd);        /* let go of listen socket */

server(consockfd);

close(consockfd);
exit(EXIT_SUCCESS);         /* exit child normally */

}
}

close(lstnsockfd);
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Server Address - itself

• Simple form 
• Internet Protocol
• accepting any connections on the specified port
• In “network byte ordering”

memset((char *) &serv_addr,0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
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Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
char *hostname, int portno) {

struct hostent *server;
/* Get host entry associated with a hostname or IP address */
server = gethostbyname(hostname);
if (server == NULL) {

fprintf(stderr,"ERROR, no such host\n");
exit(1);

}
/* Construct an address for remote server */
memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr->sin_family = AF_INET;
bcopy((char *)server->h_addr, 

(char *)&(serv_addr->sin_addr.s_addr), server->h_length);
serv_addr->sin_port = htons(portno);

return server;
}
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BIG OS Concepts so far

• Processes
• Address Space
• Protection
• Dual Mode
• Interrupt handlers (including syscall and trap)
• File System

– Integrates processes, users, cwd, protection
• Key Layers: OS Lib, Syscall, Subsystem, Driver

– User handler on OS descriptors
• Process control

– fork, wait, signal, exec
• Communication through sockets
• Client-Server Protocol
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Course Structure: Spiral

intro

Lec 5.112/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Traditional UNIX Process

• Process: Operating system abstraction to represent 
what is needed to run a single program
– Often called a “HeavyWeight Process”
– No concurrency in a “HeavyWeight Process”

• Two parts:
– Sequential program execution stream

» Code executed as a sequential stream of execution 
(i.e., thread)

» Includes State of CPU registers
– Protected resources:

» Main memory state (contents of Address Space)
» I/O state (i.e. file descriptors)
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Process
Control
Block

How do we Multiplex Processes?
• The current state of process held in a 

process control block (PCB):
– This is a “snapshot” of the execution 
and protection environment

– Only one PCB active at a time
• Give out CPU time to different 

processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different 
processes (Protection):
– Controlled access to non-CPU resources
– Example mechanisms: 

» Memory Mapping: Give each process 
their own address space

» Kernel/User duality: Arbitrary 
multiplexing of I/O through system calls
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CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead 

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but… 
contention for resources instead
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Lifecycle of a Process

• As a process executes, it changes state:
– new:  The process is being created
– ready:  The process is waiting to run
– running:  Instructions are being executed
– waiting:  Process waiting for some event to occur
– terminated:  The process has finished execution

Lec 5.152/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are 
Scheduling decisions

– Many algorithms possible (few weeks from now)
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Ready Queue And Various I/O Device Queues

• Thread not running  TCB is in some scheduler queue
– Separate queue for each device/signal/condition 
– Each queue can have a different scheduler policy
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Administrivia

• Group signups: 4 members/group
– Link posted by Friday
– Groups need to be finished by Monday!
– Form asks which section you attend

• Moving section #109
– From Friday 10-11 (3102 Etcheverry) 
Thursday 12-1 (320 Soda)

– There is still a Friday 10-11 in 3111 Etcheverry
• Conflicts for Final: Please let me know this week!
• Need to get to know your Tas

– Consider moving out of really big sections!
• Finding info on your own is a good idea!

– Learn your tools, like “man”
– Can even type “man xxx” into google!

» Example: “man ls” 
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Modern Process with Threads

• Thread: a sequential execution stream within process 
(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number 
of different concurrent activities 
– Sometimes called multitasking, as in Ada …

• Why separate the concept of a thread from that of a 
process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (protection)
– Heavyweight Process  Process with one thread
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Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?
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Thread State

• State shared by all threads in process/addr space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread 
– Kept in TCB  Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing
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Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1
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Motivational Example for Threads

• Imagine the following C program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“clist.text”);

}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish
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Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI(“pi.txt”));
ThreadFork(PrintClassList(“clist.text”));

}

• What does “ThreadFork()” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time 
CPU1 CPU2
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Memory Footprint: Two-Threads

• If we stopped this program and examined it with a 
debugger, we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions: 
– How do we position stacks relative to 
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space
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Actual Thread Operations

• thread_fork(func, args)
– Create a new thread to run func(args)
– Pintos: thread_create

• thread_yield()
– Relinquish processor voluntarily
– Pintos: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then 
return

• thread_exit
– Quit thread and clean up, wake up joiner if any
– Pintos: thread_exit

• pThreads: POSIX standard for thread programming
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Dispatch Loop

• Conceptually, the dispatching loop of the operating system 
looks as follows:

Loop {
RunThread(); 
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

Lec 5.272/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Running a thread

Consider first portion:   RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted
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Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}
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Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch
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What do the stacks look like?

• Consider the following 
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2 
threads:
– Threads S and T

Thread S

St
ac

k 
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch
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Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
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Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch 
occurred and whether new thread uses register 4

– System will give wrong result without warning
• Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings
• Cautionary tail:

– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB
– What happened?  

» Time passed, People forgot
» Later, they added features to kernel (no one removes 

features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity
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Some Numbers

• Frequency of performing context switches: 10-100ms
• Context switch time in Linux: 3-4 secs (Current 

Intel i7 & E5).
– Thread switching faster than process switching (100 ns). 
– But switching across cores about 2x more expensive than 
within-core switching. 

• Context switch time increases sharply with the size of 
the working set*, and can increase 100x or more. 

* The working set is the subset of memory used by the 
process in a time window. 

• Moral: Context switching depends mostly on cache 
limits and the process or thread’s hunger for memory. 
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What happens when thread blocks on I/O?

• What happens when a thread requests a block of 
data from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth
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External Events

• What happens if thread never does any I/O, 
never waits, and never yields control?
– Could the ComputePI program grab all resources 
and never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!
• Answer: Utilize External Events

– Interrupts: signals from hardware or software 
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every 
some many milliseconds

• If we make sure that external events occur 
frequently enough, can ensure dispatcher runs
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Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule
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Programmer vs. Processor View
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Possible Executions
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Thread Lifecycle
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Shared vs. Per-Thread State
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Per Thread State (Kernel Supported Threads)

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter (PC), 
pointer to stack (SP)

– Scheduling info: state, priority, CPU time
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process (PCB) – user threads
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
– In Array, or Linked List, or …
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Multithreaded Processes

• PCB points to multiple TCBs:

• Switching threads within a block is a simple thread 
switch

• Switching threads across blocks requires changes 
to memory and I/O address tables.
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Examples multithreaded programs

• Embedded systems 
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with 
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done
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Example multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent 
operations

– File server, Web server, and airline reservation 
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one 
program at a time
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A typical use case

Client Browser
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render 
portion

Web Server
- fork process for each client 

connection
- thread to get request and issue 

response
- fork threads to read data, access 

DB, etc
- join and respond
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Some Actual Numbers

• Many process are multi-threaded, so thread context 
switches may be either within-process or across-
processes. 
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Kernel Use Cases

• Thread for each user process
• Thread for sequence of steps in processing I/O
• Threads for device drivers
• …

Lec 5.482/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Process

Memory

I/O State
(e.g., file, 
socket 
contexts)

CPU state 
(PC, SP, 
registers..)

Sequential 
stream of 
instructions

A(int tmp) {
if (tmp<2)

B();
printf(tmp);

}
B() {

C();
}
C() {
A(2);

}
A(1);
…

(Unix) Process

Resources
Stack

Stored in OS
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Putting it together: Processes

…

Process 1 Process 2 Process N

CPU 
sched.

OS

CPU
(1 core)

1 process 
at a time

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

• Switch overhead: high
– CPU state: low
– Memory/IO state: high

• Process creation: high
• Protection

– CPU: yes
– Memory/IO: yes

• Sharing overhead: high
(involves at least a 
context switch)
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Putting it together: Threads

Process 1

CPU 
sched.

OS

CPU
(1 core)

1 thread 
at a time

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: 
low (only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead: 
low (thread switch 
overhead low)

CPU
state

CPU
state

CPU
state

CPU
state
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Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different 

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to 

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…
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Some Threading Models

Simple One-to-One
Threading Model

Many-to-One Many-to-Many
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Threads in a Process

• Threads are useful at user-level
– Parallelism, hide I/O latency, interactivity

• Option A (early Java): user-level library, within a single-
threaded process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call 

I/O
• Option B (SunOS, Unix variants): green Threads

– User-level library does thread multiplexing
• Option C (Windows): scheduler activations

– Kernel allocates processors to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel 

mode
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Putting it together: Multi-Cores
Process 1

CPU 
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: low
(only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead: 
low (thread switch 
overhead low, may 
not need to switch 
at all!)

core 1 Core 2 Core 3 Core 4 CPU

4 threads at 
a time

CPU
state

CPU
state

CPU
state

CPU
state
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Putting it together: Hyper-Threading
Process 1

CPU 
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead 
between hardware-
threads: very-low
(done in hardware)

• Contention for 
ALUs/FPUs may 
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at 
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state
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Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and 
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion 
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing
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Single and Multithreaded Processes
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Supporting 1T and MT Processes

U
se

r
Sy

st
em ***
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Supporting 1T and MT Processes

U
se

r
Sy

st
em *** ***
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Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way, 

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that 
bugs can be intermittent
– Sometimes called “Heisenbugs”
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Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources, 
network, etc

– Extreme example: buggy device driver causes thread A to 
crash “independent thread” B

• You probably don’t realize how much you depend on 
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C 
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys
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Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives, 
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of 
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity 
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend
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High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?
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Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI 
scripts, other things

– Threads are much cheaper to create than processes, so 
this has a lower per-request overhead

• Question: would a user-level (say one-to-many) 
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg / 
Slash-dot effects?



Lec 5.652/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads, 

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue
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Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP, 

Solaris, HP-UX, OS X

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early 
Macintosh

Many

One

# threads
Per AS:

ManyOne

#
 o

f 
ad

dr
 

sp
ac

es
:

Lec 5.672/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), 
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Various Textbooks talk about processes 
– When this concerns concurrency, really talking about 
thread portion of a process

– When this concerns protection, talking about address 
space portion of a process


