
CS162
Operating Systems and
Systems Programming

Lecture 5

Introduction to Networking (Finished),
Concurrency (Processes and Threads)

February 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 5.22/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Namespaces for communication over IP

• Hostname
– www.eecs.berkeley.edu

• IP address
– 128.32.244.172 (ipv6?)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or
“private”
» Automatically allocated as “ephemeral Ports”

Lec 5.32/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Use of Sockets in TCP

• Socket: an abstraction of a network I/O queue
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 5.42/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Server
Socket

socket socketconnection

new
socket

ServerClient

Recall: Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values:

[Client Addr, Client Port, Server Addr, Server Port, Protocol]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

Lec 5.52/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Server Protection and Parallelism

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept connection

read request
write response

Close Connection
Socket

Close Server Socket

Connection Socketchild

Close Connection
Socket

Close Listen Socket
Parent

Lec 5.62/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Server Protocol (v3)

while (1) {
listen(lstnsockfd, MAXQUEUE);
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen);
cpid = fork(); /* new process for connection */
if (cpid > 0) { /* parent process */

close(consockfd);
} else if (cpid == 0) { /* child process */

close(lstnsockfd); /* let go of listen socket */

server(consockfd);

close(consockfd);
exit(EXIT_SUCCESS); /* exit child normally */

}
}

close(lstnsockfd);

Lec 5.72/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Server Address - itself

• Simple form
• Internet Protocol
• accepting any connections on the specified port
• In “network byte ordering”

memset((char *) &serv_addr,0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);

Lec 5.82/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
char *hostname, int portno) {

struct hostent *server;
/* Get host entry associated with a hostname or IP address */
server = gethostbyname(hostname);
if (server == NULL) {

fprintf(stderr,"ERROR, no such host\n");
exit(1);

}
/* Construct an address for remote server */
memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr->sin_family = AF_INET;
bcopy((char *)server->h_addr,

(char *)&(serv_addr->sin_addr.s_addr), server->h_length);
serv_addr->sin_port = htons(portno);

return server;
}

Lec 5.92/4/15 Kubiatowicz CS162 ©UCB Spring 2015

BIG OS Concepts so far

• Processes
• Address Space
• Protection
• Dual Mode
• Interrupt handlers (including syscall and trap)
• File System

– Integrates processes, users, cwd, protection
• Key Layers: OS Lib, Syscall, Subsystem, Driver

– User handler on OS descriptors
• Process control

– fork, wait, signal, exec
• Communication through sockets
• Client-Server Protocol

Lec 5.102/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Course Structure: Spiral

intro

Lec 5.112/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Traditional UNIX Process

• Process: Operating system abstraction to represent
what is needed to run a single program
– Often called a “HeavyWeight Process”
– No concurrency in a “HeavyWeight Process”

• Two parts:
– Sequential program execution stream

» Code executed as a sequential stream of execution
(i.e., thread)

» Includes State of CPU registers
– Protected resources:

» Main memory state (contents of Address Space)
» I/O state (i.e. file descriptors)

Lec 5.122/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Process
Control
Block

How do we Multiplex Processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution
and protection environment

– Only one PCB active at a time
• Give out CPU time to different

processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Example mechanisms:

» Memory Mapping: Give each process
their own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

Lec 5.132/4/15 Kubiatowicz CS162 ©UCB Spring 2015

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but…
contention for resources instead

Lec 5.142/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Lifecycle of a Process

• As a process executes, it changes state:
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Lec 5.152/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

Lec 5.162/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Ready Queue And Various I/O Device Queues

• Thread not running  TCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Other
State
TCB8

Link
Registers

Other
State
TCB2

Link
Registers

Other
State
TCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Lec 5.172/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Group signups: 4 members/group
– Link posted by Friday
– Groups need to be finished by Monday!
– Form asks which section you attend

• Moving section #109
– From Friday 10-11 (3102 Etcheverry) 
Thursday 12-1 (320 Soda)

– There is still a Friday 10-11 in 3111 Etcheverry
• Conflicts for Final: Please let me know this week!
• Need to get to know your Tas

– Consider moving out of really big sections!
• Finding info on your own is a good idea!

– Learn your tools, like “man”
– Can even type “man xxx” into google!

» Example: “man ls”

Lec 5.182/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Modern Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number
of different concurrent activities
– Sometimes called multitasking, as in Ada …

• Why separate the concept of a thread from that of a
process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (protection)
– Heavyweight Process  Process with one thread

Lec 5.192/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 5.202/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread State

• State shared by all threads in process/addr space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread
– Kept in TCB  Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

Lec 5.212/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Lec 5.222/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Motivational Example for Threads

• Imagine the following C program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“clist.text”);

}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish

Lec 5.232/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI(“pi.txt”));
ThreadFork(PrintClassList(“clist.text”));

}

• What does “ThreadFork()” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

Lec 5.242/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Memory Footprint: Two-Threads

• If we stopped this program and examined it with a
debugger, we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

Lec 5.252/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Actual Thread Operations

• thread_fork(func, args)
– Create a new thread to run func(args)
– Pintos: thread_create

• thread_yield()
– Relinquish processor voluntarily
– Pintos: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then
return

• thread_exit
– Quit thread and clean up, wake up joiner if any
– Pintos: thread_exit

• pThreads: POSIX standard for thread programming

Lec 5.262/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Dispatch Loop

• Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

Lec 5.272/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

Lec 5.282/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

Lec 5.292/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 5.302/4/15 Kubiatowicz CS162 ©UCB Spring 2015

What do the stacks look like?

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 5.312/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
Lec 5.322/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

– System will give wrong result without warning
• Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings
• Cautionary tail:

– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes

features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

Lec 5.332/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Some Numbers

• Frequency of performing context switches: 10-100ms
• Context switch time in Linux: 3-4 secs (Current

Intel i7 & E5).
– Thread switching faster than process switching (100 ns).
– But switching across cores about 2x more expensive than
within-core switching.

• Context switch time increases sharply with the size of
the working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

• Moral: Context switching depends mostly on cache
limits and the process or thread’s hunger for memory.

Lec 5.342/4/15 Kubiatowicz CS162 ©UCB Spring 2015

What happens when thread blocks on I/O?

• What happens when a thread requests a block of
data from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth

Lec 5.352/4/15 Kubiatowicz CS162 ©UCB Spring 2015

External Events

• What happens if thread never does any I/O,
never waits, and never yields control?
– Could the ComputePI program grab all resources
and never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!
• Answer: Utilize External Events

– Interrupts: signals from hardware or software
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every
some many milliseconds

• If we make sure that external events occur
frequently enough, can ensure dispatcher runs

Lec 5.362/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule

Lec 5.372/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Programmer vs. Processor View

Lec 5.382/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Possible Executions

Lec 5.392/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Lifecycle

Lec 5.402/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Shared vs. Per-Thread State

Lec 5.412/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Per Thread State (Kernel Supported Threads)

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter (PC),
pointer to stack (SP)

– Scheduling info: state, priority, CPU time
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process (PCB) – user threads
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
– In Array, or Linked List, or …

Lec 5.422/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Multithreaded Processes

• PCB points to multiple TCBs:

• Switching threads within a block is a simple thread
switch

• Switching threads across blocks requires changes
to memory and I/O address tables.

Lec 5.432/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Examples multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 5.442/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Example multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent
operations

– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one
program at a time

Lec 5.452/4/15 Kubiatowicz CS162 ©UCB Spring 2015

A typical use case

Client Browser
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render
portion

Web Server
- fork process for each client

connection
- thread to get request and issue

response
- fork threads to read data, access

DB, etc
- join and respond

Lec 5.462/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Some Actual Numbers

• Many process are multi-threaded, so thread context
switches may be either within-process or across-
processes.

Lec 5.472/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel Use Cases

• Thread for each user process
• Thread for sequence of steps in processing I/O
• Threads for device drivers
• …

Lec 5.482/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Process

Memory

I/O State
(e.g., file,
socket
contexts)

CPU state
(PC, SP,
registers..)

Sequential
stream of
instructions

A(int tmp) {
if (tmp<2)

B();
printf(tmp);

}
B() {

C();
}
C() {
A(2);

}
A(1);
…

(Unix) Process

Resources
Stack

Stored in OS

Lec 5.492/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Processes

…

Process 1 Process 2 Process N

CPU
sched.

OS

CPU
(1 core)

1 process
at a time

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

• Switch overhead: high
– CPU state: low
– Memory/IO state: high

• Process creation: high
• Protection

– CPU: yes
– Memory/IO: yes

• Sharing overhead: high
(involves at least a
context switch)

Lec 5.502/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Threads

Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead:
low (only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low (thread switch
overhead low)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 5.512/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

Lec 5.522/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Some Threading Models

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 5.532/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Threads in a Process

• Threads are useful at user-level
– Parallelism, hide I/O latency, interactivity

• Option A (early Java): user-level library, within a single-
threaded process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call

I/O
• Option B (SunOS, Unix variants): green Threads

– User-level library does thread multiplexing
• Option C (Windows): scheduler activations

– Kernel allocates processors to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel

mode

Lec 5.542/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Multi-Cores
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: low
(only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low (thread switch
overhead low, may
not need to switch
at all!)

core 1 Core 2 Core 3 Core 4 CPU

4 threads at
a time

CPU
state

CPU
state

CPU
state

CPU
state

Lec 5.552/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: Hyper-Threading
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead
between hardware-
threads: very-low
(done in hardware)

• Contention for
ALUs/FPUs may
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 5.562/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 5.572/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Single and Multithreaded Processes

Lec 5.582/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Supporting 1T and MT Processes

U
se

r
Sy

st
em ***

Lec 5.592/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Supporting 1T and MT Processes

U
se

r
Sy

st
em *** ***

Lec 5.602/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 5.612/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 5.622/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 5.632/4/15 Kubiatowicz CS162 ©UCB Spring 2015

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 5.642/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 5.652/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 5.662/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr

sp
ac

es
:

Lec 5.672/4/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Various Textbooks talk about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

