
CS162
Operating Systems and
Systems Programming

Lecture 3

Processes (con’t), Fork,
Introduction to I/O

January 28th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 3.21/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Four fundamental OS concepts

• Thread
– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ Translation
– Programs execute in an address space that is distinct from

the memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by
controlling the translation from program virtual addresses to
machine physical addresses

Lec 3.31/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Process

• Process: execution environment with Restricted Rights
– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process
resources

• Why processes?
– Protected from each other!
– OS Protected from them
– Navigate fundamental tradeoff between protection and
efficiency

– Processes provides memory protection
– Threads more efficient than processes (later)

• Application instance consists of one or more processes

Lec 3.41/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 3.51/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 3.61/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Simultaneous MultiThreading/Hyperthreading

• Hardware technique
– Superscalar processors can
execute multiple instructions
that are independent.

– Hyperthreading duplicates
register state to make a
second “thread,” allowing
more instructions to run.

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

Lec 3.71/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: User/Kernal(Priviledged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 3.81/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: A simple address translation (B&B)

• Can the program touch OS?
• Can it touch other programs?

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

Lec 3.91/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Address Mapping

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 3.101/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: web server

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

Lec 3.111/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Running Many Programs

• We have the basic mechanism to
– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes
from each other

• Questions ???
– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?
– …

Lec 3.121/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Process Control Block

• Kernel represents each process as a process
control block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

• Scheduling algorithm selects the next one to run

Lec 3.131/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduler

• Scheduling: Mechanism for deciding which processes/threads
receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Lec 3.141/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementing Safe Kernel Mode Transfers

• Important aspects:
– Separate kernel stack
– Controlled transfer into kernel (e.g. syscall table)

• Carefully constructed kernel code packs up the user
process state an sets it aside.

– Details depend on the machine architecture
• Should be impossible for buggy or malicious user

program to cause the kernel to corrupt itself.

Lec 3.151/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Need for Separate Kernel Stacks

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel
memory) plus User stack (located in user memory)

– Syscall handler copies user args to kernel space
before invoking specific function (e.g., open)

– Interrupts (???)

Lec 3.161/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Before

Lec 3.171/28/15 Kubiatowicz CS162 ©UCB Spring 2015

During

Lec 3.181/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel System Call Handler

• Vector through well-defined syscall entry points!
– Table mapping system call number to handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

Lec 3.191/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Hardware support: Interrupt Control
• Interrupt processing not be visible to the user process:

– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work

» wake up an existing OS thread
• OS kernel may enable/disable interrupts

– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupt
– Mask off (disable) certain interrupts, eg., lower priority
– Certain non-maskable-interrupts (nmi)

» e.g., kernel segmentation fault
Lec 3.201/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 3.211/28/15 Kubiatowicz CS162 ©UCB Spring 2015

How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Kernel interrupt stack
– Handler works regardless of state of user code

• Interrupt masking
– Handler is non-blocking

• Atomic transfer of control
– “Single instruction”-like to change:

» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Lec 3.221/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia: Getting started
• Kubiatowicz Office Hours:

– 1pm-2pm, Monday/Wednesday
• Homework 0 immediately  Due on Monday!

– Get familiar with all the cs162 tools
– Submit to autograder via git

• Should be going to section already!
• Participation: Get to know your TA!
• Friday is Drop Deadline!
• Group sign up form out next week (after drop deadine)

– Get finding groups ASAP
– 4 people in a group!

• Finals conflicts: Tell us now
– Must give us a good reason for providing an alternative
– No alternate time if the conflict is because of an
overlapping class (e.g. EE122)!

Lec 3.231/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Question

• Process is an instance of a program executing.
– The fundamental OS responsibility

• Processes do their work by processing and calling
file system operations

• Are their any operations on processes
themselves?

• exit ?

Lec 3.241/28/15 Kubiatowicz CS162 ©UCB Spring 2015

pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
int c;

pid_t pid = getpid(); /* get current processes PID */

printf("My pid: %d\n", pid);

c = fgetc(stdin);
exit(0);

}

Lec 3.251/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Can a process create a process ?

• Yes
• Fork creates a copy of process
• Return value from Fork: integer

– When > 0:
» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• All of the state of original process duplicated in
both Parent and Child!

– Memory, File Descriptors (next topic), etc…
Lec 3.261/28/15 Kubiatowicz CS162 ©UCB Spring 2015

fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{

char buf[BUFSIZE];
size_t readlen, writelen, slen;
pid_t cpid, mypid;
pid_t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror("Fork failed");
exit(1);

}
exit(0);

}

Lec 3.271/28/15 Kubiatowicz CS162 ©UCB Spring 2015

UNIX Process Management

• UNIX fork – system call to create a copy of the
current process, and start it running

– No arguments!
• UNIX exec – system call to change the program

being run by the current process
• UNIX wait – system call to wait for a process to

finish
• UNIX signal – system call to send a notification

to another process

Lec 3.281/28/15 Kubiatowicz CS162 ©UCB Spring 2015

fork2.c

…
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d\n", mypid, tcpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…

Lec 3.291/28/15 Kubiatowicz CS162 ©UCB Spring 2015

UNIX Process Management

Lec 3.301/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of
programs to do some task

– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1

Lec 3.311/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Signals – infloop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
printf("Caught signal %d - phew!\n",signum);
exit(1);

}

int main() {
signal(SIGINT, signal_callback_handler);

while (1) {}
}

Lec 3.321/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Process races: fork.c

• Question: What does this program print?
• Does it change if you add in one of the sleep()

statements?

if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<100; i++) {
printf("[%d] parent: %d\n", mypid, i);
// sleep(1);

}
} else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-100; i--) {
printf("[%d] child: %d\n", mypid, i);
// sleep(1);

}
}

Lec 3.331/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Break

Lec 3.341/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 3.351/28/15 Kubiatowicz CS162 ©UCB Spring 2015

How does the kernel provide services?

• You said that applications request services from
the operating system via syscall, but …

• I’ve been writing all sort of useful applications
and I never ever saw a “syscall” !!!

• That’s right.
• It was buried in the programming language

runtime library (e.g., libc.a)
• … Layering

Lec 3.361/28/15 Kubiatowicz CS162 ©UCB Spring 2015

OS run-time library

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…

y
OS

library y
OS

library y
OS

library

Lec 3.371/28/15 Kubiatowicz CS162 ©UCB Spring 2015

A Kind of Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)802.11 a/b/g/nSCSI IDE Graphics
PCI

Hardware

Software

System

User
OS

Application / Service

Lec 3.381/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Key Unix I/O Design Concepts
• Uniformity

– file operations, device I/O, and interprocess
communication through open, read/write, close

– Allows simple composition of programs
» find | grep | wc …

• Open before use
– Provides opportunity for access control and arbitration
– Sets up the underlying machinery, i.e., data structures

• Byte-oriented
– Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
– Streaming and block devices looks the same
– read blocks process, yielding processor to other task

• Kernel buffered writes
– Completion of out-going transfer decoupled from the

application, allowing it to continue
• Explicit close

Lec 3.391/28/15 Kubiatowicz CS162 ©UCB Spring 2015

I/O & Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Lec 3.401/28/15 Kubiatowicz CS162 ©UCB Spring 2015

The file system abstraction

• File
– Named collection of data in a file system
– File data

» Text, binary, linearized objects
– File Metadata: information about the file

» Size, Modification Time, Owner, Security info
» Basis for access control

• Directory
– “Folder” containing files & Directories
– Hierachical (graphical) naming

» Path through the directory graph
» Uniquely identifies a file or directory

• /home/ff/cs162/public_html/fa14/index.html
– Links and Volumes (later)

Lec 3.411/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C high level File API – streams (review)

• Operate on “streams” - sequence of bytes,
whether text or data, with a position

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *fp);

Mode Text Binary Descriptions
r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning,

write as append

Lec 3.421/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Connecting Processes, Filesystem, and Users

• Process has a ‘current working directory’
• Absolute Paths

– /home/ff/cs152
• Relative paths

– index.html, ./index.html - current WD
– ../index.html - parent of current WD
– ~, ~cs152 - home directory

Lec 3.431/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C API Standard Streams

• Three predefined streams are opened implicitly when
the program is executed.
– FILE *stdin – normal source of input, can be redirected
– FILE *stdout – normal source of output, can too
– FILE *stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix
– Recall: Use of pipe symbols connects STDOUT and STDIN

» find | grep | wc …

Lec 3.441/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C high level File API – stream ops
#include <stdio.h>
// character oriented
int fputc(int c, FILE *fp); // rtn c or
EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict
format, ...);
int fscanf(FILE *restrict stream, const char *restrict format,
...);

Lec 3.451/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C Stream API positioning

• Preserves high level abstraction of a uniform stream of
objects

• Adds buffering for performance

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

High Level I/O

Low Level I/O
Syscall

File System

Upper I/O Driver

Lower I/O Driver

Lec 3.461/28/15 Kubiatowicz CS162 ©UCB Spring 2015

What’s below the surface ??

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Lec 3.471/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C Low level I/O

• Operations on File Descriptors – as OS object
representing the state of a file

– User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends,

…)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

Lec 3.481/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C Low Level: standard descriptors

• Crossing levels: File descriptors vs. streams
• Don’t mix them!

#include <unistd.h>

STDIN_FILENO - macro has value 0
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2

int fileno (FILE *stream)

FILE * fdopen (int filedes, const char *opentype)

Lec 3.491/28/15 Kubiatowicz CS162 ©UCB Spring 2015

C Low Level Operations

• When write returns, data is on its way to disk and
can be read, but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
- returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
- returns bytes written

off_t lseek (int filedes, off_t offset, int whence)

int fsync (int fildes) – wait for i/o to finish
void sync (void) – wait for ALL to finish

Lec 3.501/28/15 Kubiatowicz CS162 ©UCB Spring 2015

And lots more !

• TTYs versus files
• Memory mapped files
• File Locking
• Asynchronous I/O
• Generic I/O Control Operations
• Duplicating descriptors

int dup2 (int old, int new)
int dup (int old)

Lec 3.511/28/15 Kubiatowicz CS162 ©UCB Spring 2015

What’s below the surface ??

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Lec 3.521/28/15 Kubiatowicz CS162 ©UCB Spring 2015

SYSCALL

• Low level lib parameters are set up in registers and
syscall instruction is issued

– A type of synchronous exception that enters well-defined
entry points into kernel

Lec 3.531/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Internal OS File Descriptor

• Internal Data Structure describing everything
about the file

– Where it resides
– Its status
– How to access it

Lec 3.541/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 3.551/28/15 Kubiatowicz CS162 ©UCB Spring 2015

File System: from syscall to driver

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{

ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file->f_op->read)

ret = file->f_op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file->f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

In fs/read_write.c

Lec 3.561/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Low Level Driver

• Associated with particular hardware device
• Registers / Unregisters itself with the kernel
• Handler functions for each of the file operations

Lec 3.571/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 3.581/28/15 Kubiatowicz CS162 ©UCB Spring 2015

So what happens when you fgetc?

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Lec 3.591/28/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process
resources

• Interrupts
– Hardware mechanism for regaining control from user
– Notification that events have occurred
– User-level equivalent: Signals

• Native control of Process
– Fork, Exec, Wait, Signal

• Basic Support for I/O
– Standard interface: open, read, write, seek
– Device drivers: customized interface to hardware

