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Recall: Four fundamental OS concepts

• Thread
– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ Translation
– Programs execute in an address space that is distinct from 

the memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of 
an address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs 

and user programs are isolated from one another by 
controlling the translation from program virtual addresses to 
machine physical addresses
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Recall: Process

• Process: execution environment with Restricted Rights
– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process 
resources

• Why processes? 
– Protected from each other!
– OS Protected from them
– Navigate fundamental tradeoff between protection and 
efficiency

– Processes provides memory protection
– Threads more efficient than processes (later)

• Application instance consists of one or more processes 
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Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?
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Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor.  How do we provide the 
illusion of multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 
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Simultaneous MultiThreading/Hyperthreading

• Hardware technique 
– Superscalar processors can
execute multiple instructions
that are independent.

– Hyperthreading duplicates 
register state to make a
second “thread,” allowing 
more instructions to run.

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show 
instructions executed
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Recall: User/Kernal(Priviledged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception
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Recall: A simple address translation (B&B)

• Can the program touch OS?
• Can it touch other programs?

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…
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Recall: Address Mapping

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap & 
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
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Putting it together: web server

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU
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Running Many Programs

• We have the basic mechanism to 
– switch between user processes and the kernel, 
– the kernel can switch among user processes,
– Protect OS from user processes and processes 
from each other

• Questions ???
– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?
– …
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Process Control Block

• Kernel represents each process as a process 
control block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure 
containing the PCBs

• Scheduling algorithm selects the next one to run
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Scheduler

• Scheduling: Mechanism for deciding which processes/threads 
receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if ( readyProcesses(PCBs) ) {
nextPCB = selectProcess(PCBs);
run( nextPCB );

} else {
run_idle_process();

}
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Implementing Safe Kernel Mode Transfers

• Important aspects:
– Separate kernel stack
– Controlled transfer into kernel (e.g. syscall table)

• Carefully constructed kernel code packs up the user 
process state an sets it aside.

– Details depend on the machine architecture
• Should be impossible for buggy or malicious user 

program to cause the kernel to corrupt itself.
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Need for Separate Kernel Stacks

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel 
memory) plus User stack (located in user memory)

– Syscall handler copies user args to kernel space 
before invoking specific function (e.g., open)

– Interrupts (???)
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Before
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During
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Kernel System Call Handler

• Vector through well-defined syscall entry points!
– Table mapping system call number to handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back 
– into user memory
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Hardware support: Interrupt Control
• Interrupt processing not be visible to the user process:

– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work

» wake up an existing OS thread 
• OS kernel may enable/disable interrupts

– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupt
– Mask off (disable) certain interrupts, eg., lower priority
– Certain non-maskable-interrupts (nmi)

» e.g., kernel segmentation fault
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Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt 
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable
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How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Kernel interrupt stack
– Handler works regardless of state of user code

• Interrupt masking
– Handler is non-blocking

• Atomic transfer of control
– “Single instruction”-like to change: 

» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred
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Administrivia: Getting started
• Kubiatowicz Office Hours:

– 1pm-2pm, Monday/Wednesday
• Homework 0 immediately  Due on Monday!

– Get familiar with all the cs162 tools
– Submit to autograder via git

• Should be going to section already!
• Participation: Get to know your TA!
• Friday is Drop Deadline!
• Group sign up form out next week (after drop deadine)

– Get finding groups ASAP
– 4 people in a group!

• Finals conflicts: Tell us now
– Must give us a good reason for providing an alternative
– No alternate time if the conflict is because of an 
overlapping class (e.g. EE122)!
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Question

• Process is an instance of a program executing.
– The fundamental OS responsibility

• Processes do their work by processing and calling 
file system operations

• Are their any operations on processes 
themselves?

• exit ?
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pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
int c;

pid_t pid = getpid();  /* get current processes PID */

printf("My pid: %d\n", pid);

c = fgetc(stdin);
exit(0);

}
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Can a process create a process ?

• Yes
• Fork creates a copy of process
• Return value from Fork: integer

– When > 0: 
» Running in (original) Parent process
» return value is pid of new child

– When = 0: 
» Running in new Child process

– When < 0:
» Error!  Must handle somehow
» Running in original process

• All of the state of original process duplicated in 
both Parent and Child!

– Memory, File Descriptors (next topic), etc…
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fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{

char buf[BUFSIZE];
size_t readlen, writelen, slen;
pid_t cpid, mypid;
pid_t pid = getpid();         /* get current processes PID */
printf("Parent pid: %d\n", pid);

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

}  else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror("Fork failed");
exit(1);

}
exit(0);

}
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UNIX Process Management

• UNIX fork – system call to create a copy of the 
current process, and start it running

– No arguments!
• UNIX exec – system call to change the program 

being run by the current process
• UNIX wait – system call to wait for a process to 

finish
• UNIX signal – system call to send a notification 

to another process
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fork2.c

…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d\n", mypid, tcpid);

}  else if (cpid == 0) {      /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

}
…
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UNIX Process Management
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Shell

• A shell is a job control system 
– Allows programmer to create and manage a set of 
programs to do some task

– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1
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Signals – infloop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
printf("Caught signal %d - phew!\n",signum);
exit(1);

}

int main() {
signal(SIGINT, signal_callback_handler);

while (1) {}
}
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Process races: fork.c

• Question: What does this program print?
• Does it change if you add in one of the sleep() 

statements?

if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
for (i=0; i<100; i++) {
printf("[%d] parent: %d\n", mypid, i);
//      sleep(1);                                        

}
}  else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
for (i=0; i>-100; i--) {
printf("[%d] child: %d\n", mypid, i);
//      sleep(1);                                        

}
} 
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Break
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Recall: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs
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How does the kernel provide services?

• You said that applications request services from 
the operating system via syscall, but …

• I’ve been writing all sort of useful applications 
and I never ever saw a “syscall” !!!

• That’s right.  
• It was buried in the programming language 

runtime library (e.g., libc.a)
• … Layering
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OS run-time library

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window 
Manager

…

y
OS 

library y
OS 

library y
OS 

library
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A Kind of Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call 
Interface

Portable OS Kernel

Platform support,  Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)802.11 a/b/g/nSCSI IDE Graphics
PCI

Hardware

Software

System

User
OS

Application / Service
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Key Unix I/O Design Concepts
• Uniformity

– file operations, device I/O, and interprocess
communication through open, read/write, close

– Allows simple composition of programs 
» find | grep | wc …

• Open before use
– Provides opportunity for access control and arbitration
– Sets up the underlying machinery, i.e., data structures

• Byte-oriented
– Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
– Streaming and block devices looks the same
– read blocks process, yielding processor to other task

• Kernel buffered writes
– Completion of out-going transfer decoupled from the 

application, allowing it to continue
• Explicit close
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I/O & Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA
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The file system abstraction

• File
– Named collection of data in a file system
– File data

» Text, binary, linearized objects
– File Metadata: information about the file

» Size, Modification Time, Owner, Security info
» Basis for access control

• Directory
– “Folder” containing files & Directories
– Hierachical (graphical) naming

» Path through the directory graph
» Uniquely identifies a file or directory

• /home/ff/cs162/public_html/fa14/index.html
– Links and Volumes (later)
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C high level File API – streams (review)

• Operate on “streams” - sequence of bytes, 
whether text or data, with a position

#include <stdio.h>
FILE *fopen( const char *filename, const char *mode );
int fclose( FILE *fp );

Mode Text Binary Descriptions
r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, 

write as append
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Connecting Processes, Filesystem, and Users

• Process has a ‘current working directory’
• Absolute Paths

– /home/ff/cs152
• Relative paths

– index.html, ./index.html   - current WD
– ../index.html  - parent of current WD
– ~, ~cs152  - home directory
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C API Standard Streams

• Three predefined streams are opened implicitly when 
the program is executed.
– FILE *stdin – normal source of input, can be redirected
– FILE *stdout – normal source of output, can too
– FILE *stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix
– Recall: Use of pipe symbols connects STDOUT and STDIN

» find | grep | wc …
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C high level File API – stream ops
#include <stdio.h>
// character oriented  
int fputc( int c, FILE *fp ); // rtn c or 
EOF on err
int fputs( const char *s, FILE *fp ); // rtn >0 or EOF

int fgetc( FILE * fp );
char *fgets( char *buf, int n, FILE *fp );

// block oriented
size_t fread(void *ptr, size_t size_of_elements, 

size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, 
size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict 
format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, 
... );
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C Stream API positioning

• Preserves high level abstraction of a uniform stream of 
objects

• Adds buffering for performance

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

High Level I/O  

Low Level I/O  
Syscall 

File System 

Upper I/O Driver 

Lower I/O Driver 
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What’s below the surface ??

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA
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C Low level I/O

• Operations on File Descriptors – as OS object 
representing the state of a file

– User has a “handle” on the descriptor 

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, 

…)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
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C Low Level: standard descriptors

• Crossing levels: File descriptors vs. streams
• Don’t mix them!

#include <unistd.h>

STDIN_FILENO - macro has value 0
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2

int fileno (FILE *stream)

FILE * fdopen (int filedes, const char *opentype)
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C Low Level Operations

• When write returns, data is on its way to disk and 
can be read, but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
- returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
- returns bytes written

off_t lseek (int filedes, off_t offset, int whence)

int fsync (int fildes) – wait for i/o to finish
void sync (void) – wait for ALL to finish

Lec 3.501/28/15 Kubiatowicz CS162 ©UCB Spring 2015

And lots more !

• TTYs versus files
• Memory mapped files
• File Locking
• Asynchronous I/O
• Generic I/O Control Operations
• Duplicating descriptors

int dup2 (int old, int new)
int dup (int old)
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What’s below the surface ??

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA
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SYSCALL

• Low level lib parameters are set up in registers and 
syscall instruction is issued

– A type of synchronous exception that enters well-defined 
entry points into kernel
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Internal OS File Descriptor

• Internal Data Structure describing everything 
about the file

– Where it resides
– Its status
– How to access it 
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Device Drivers
• Device Driver: Device-specific code in the kernel that 

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with 
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep 

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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File System: from syscall to driver

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{

ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file->f_op->read)

ret = file->f_op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file->f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

In fs/read_write.c
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Low Level Driver

• Associated with particular hardware device
• Registers / Unregisters itself with the kernel
• Handler functions for each of the file operations
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Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program
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So what happens when you fgetc?

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA
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Summary
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process 
resources

• Interrupts
– Hardware mechanism for regaining control from user
– Notification that events have occurred
– User-level equivalent: Signals

• Native control of Process
– Fork, Exec, Wait, Signal

• Basic Support for I/O
– Standard interface: open, read, write, seek
– Device drivers: customized interface to hardware


