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What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining 
characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker 
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a 

computer security problem!
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Protection vs. Security

• Protection: mechanisms for controlling access of 
programs, processes, or users to resources

– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mech. to prevent misuse 
of resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external environment the system 
operates in

» Most well-constructed system cannot protect information 
if user accidentally reveals password – social engineering 
challenge
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Security Requirements

• Authentication 
– Ensures that a user is who is claiming to be

• Data integrity 
– Ensure that data is not changed from source to 
destination or after being written on a storage device 

• Confidentiality 
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data
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Securing Communication: Cryptography 

• Cryptography: communication in the presence of 
adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent, 
highly readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t 
extract it, but a friend can

• General premise: there is a key, possession of which 
allows decoding, but without which decoding is 
infeasible

– Thus, key must be kept secret and not guessable
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Using Symmetric Keys 

• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext
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Symmetric Keys

• Can just XOR plaintext with the key
– Easy to implement, but easy to 
break using frequency analysis

– Unbreakable alternative: XOR with 
one-time pad

» Use a different key for each 
message
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Symmetric Keys

• More sophisticated (e.g., block cipher) algorithms 
– Works with a block size (e.g., 64 bits)

» To encrypt a stream, can encrypt blocks separately, or 
link them
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Symmetric Key Ciphers - DES & AES

• Data Encryption Standard (DES)
– Developed by IBM in 1970s, standardized by NBS/NIST
– 56-bit key (decreased from 64 bits at NSA’s request)
– Still fairly strong other than brute-forcing the key 
space

» But custom hardware can crack a key in < 24 hours
– Today many financial institutions use Triple DES

» DES applied 3 times, with 3 keys totaling 168 bits
• Advanced Encryption Standard (AES)

– Replacement for DES standardized in 2002
– Key size: 128, 192 or 256 bits

• How fundamentally strong are they?
– No one knows (no proofs exist)
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Authentication via Secret Key

• Main idea: entity proves identity by decrypting a 
secret encrypted with its own key

– K – secret key shared only by A and B
• A can asks B to authenticate itself by decrypting a 

nonce, i.e., random value, x
– Avoid replay attacks (attacker impersonating client or 
server)

• Vulnerable to man-in-the middle attack
A B

Notation: E(m,k) –
encrypt message m 
with key k
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Integrity: Cryptographic Hashes

• Basic building block for integrity: cryptographic hashing
– Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally – or 
maliciously

• Approach: 
– Sender computes a secure digest of message m using H(x)

» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K  |  H (K  |  m))
» HMAC(K, m) is a hash-based message authentication 

function

– Send digest d and message m to receiver

– Upon receiving m and d, receiver uses shared secret key, 
K, to recompute HMAC(K, m) and see whether result 
agrees with d
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Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality
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Standard Cryptographic Hash Functions

• MD5 (Message Digest version 5)
– Developed in 1991 (Rivest), produces 128 bit hashes
– Widely used (RFC 1321)
– Broken (1996-2008): attacks that find collisions

• SHA-1 (Secure Hash Algorithm)
– Developed in 1995 (NSA) as MD5 successor with 160 bit 

hashes
– Widely used (SSL/TLS, SSH, PGP, IPSEC)
– Broken in 2005, government use discontinued in 2010

• SHA-2 (2001) 
– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

• HMAC’s are secure even with older “insecure” hash 
functions

–
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Asymmetric Encryption (Public Key)

• Idea: use two different keys, one to encrypt (e) 
and one to decrypt (d)

– A key pair

• Crucial property: knowing e does not give away d

• Therefore e can be public: everyone knows it!

• If Alice wants to send to Bob, she fetches Bob’s 
public key (say from Bob’s home page) and encrypts 
with it

– Alice can’t decrypt what she’s sending to Bob …
– …  but then, neither can anyone else (except Bob)
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Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext
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Public Key Cryptography

• Invented in the 1970s
– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

• How can we construct an encryption/decryption 
algorithm using a key pair with the public/private 
properties? 

– Answer: Number Theory
• Most fully developed approach: RSA

– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., ssh, SSL/TLS for https)

• Also mature approach: Eliptic Curve Cryptography (ECC)
– Based on curves in a Galois-field space
– Shorter keys and signatures than RSA
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Properties of RSA

• Requires generating large, random prime numbers
– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiating very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange a 

(short) symmetric session key 
» Use that key then with AES or such

• How difficult is recovering d, the private key? 
– Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard 
(= brute force only)

» (Though quantum computers could do so in polynomial time!)
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Simple Public Key Authentication

• Each side need only to know the 
other side’s public key

– No secret key need be shared

• A encrypts a nonce (random num.) x
– Avoid replay attacks, e.g., 
attacker impersonating client or 
server

• B proves it can recover x, generates 
second nonce y

• A can authenticate itself to B in the 
same way

• Many more details to make this work 
securely in practice!

A B

Notation: E(m,k) –
encrypt message m 
with key k
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Non-Repudiation: RSA Crypto & Signatures

• Suppose Alice has published public key KE
• If she wishes to prove who she is, she can send a 

message x encrypted with her private key KD (i.e., 
she sends E(x, KD))

– Anyone knowing Alice’s public key KE can recover x, 
verify that Alice must have sent the message

» It provides a signature
– Alice can’t deny it  non-repudiation

• Could simply encrypt a hash of the data to sign a 
document that you wanted to be in clear text 

• Note that either of these signature techniques work 
perfectly well with any data (not just messages)

– Could sign every datum in a database, for instance
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RSA Crypto & Signatures (cont’d)

I will pay 
Bob $500

I will pay 
Bob $500
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Digital Certificates

• How do you know KE is Alice’s public key?

• Trusted authority (e.g., Verisign) signs binding 
between Alice and KE with its private key KVprivate

– C = E({Alice, KE}, KVprivate)
– C: digital certificate 

• Alice: distribute her digital certificate, C

• Anyone: use trusted authority’s KVpublic, to extract 
Alice’s public key from C

– D(C, KVpublic) = 
D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}
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Summary of Our Crypto Toolkit

• If we can securely distribute a key, then
– Symmetric ciphers (e.g., AES) offer fast, 
presumably strong confidentiality

• Public key cryptography does away with 
(potentially major) problem of secure key 
distribution

– But: not as computationally efficient
» Often addressed by using public key crypto to 

exchange a session key

• Digital signature binds the public key to an entity
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Putting It All Together - HTTPS
• What happens when you click on 

https://www.amazon.com?

• https = “Use HTTP over SSL/TLS”
– SSL = Secure Socket Layer
– TSL = Transport Layer Security

» Successor to SSL
– Provides security layer (authentication, encryption) 
on top of TCP

» Fairly transparent to applications
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HTTPS Connection (SSL/TLS) (cont’d)

• Browser (client) connects 
via TCP to Amazon’s 
HTTPS server

• Client sends over list of 
crypto protocols it 
supports

• Server picks protocols to 
use for this session

• Server sends over its 
certificate

• (all of this is in the clear)

Browser Amazon
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Inside the Server’s Certificate

• Name associated with cert (e.g., Amazon)
• Amazon’s RSA public key
• A bunch of auxiliary info (physical address, type of 

cert, expiration time)
• Name of certificate’s signatory (who signed it)
• A public-key signature of a hash (SHA-256) of all this

– Constructed using the signatory’s private RSA key, i.e.,
– Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))

» KApublic: Amazon’s public key
» KSprivate: signatory (certificate authority) private key 

• …
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Validating Amazon’s Identity
• How does the browser authenticate certificate signatory?

– Certificates of several certificate authorities (e.g., Verisign) 
are hardwired into the browser (or OS)

• If can’t find cert, warn user that site has not been 
verified

– And may ask whether to continue
– Note, can still proceed, just without authentication

• Browser uses public key in signatory’s cert to decrypt 
signature

– Compares with its own SHA-256 hash of Amazon’s cert
• Assuming signature matches, now have high confidence it’s 

indeed Amazon …
– … assuming signatory is trustworthy
– DigiNotar CA breach (July-Sept 2011): Google, Yahoo!, 

Mozilla, Tor project, Wordpress, … (531 total certificates)
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Certificate Validation

E(HSHA256(KApublic, www.amazon.com, …), KSprivate)), 
KApublic, www.amazon.com, …

HSHA256(KApublic, www.amazon.com, …)

E(HSHA256(…), KSpublic))
(recall, KSpublic hardwired)

=

Yes

Validation successful

Validation failed
No

HSHA256(KApublic, www.amazon.com, …)

HSHA256(KApublic, www.amazon.com, ..)

Certificate

Can also validate using peer approach: https://www.eff.org/observatory
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• Browser constructs a random 
session key K used for data 
communication

– Private key for bulk crypto
• Browser encrypts K using 

Amazon’s public key
• Browser sends E(K, KApublic) 

to server
• Browser displays
• All subsequent comm. encrypted 

w/ symmetric cipher 
(e.g., AES128) using key K

– E.g., client can authenticate using 
a password

Browser Amazon

K

HTTPS Connection (SSL/TLS) cont’d

K
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Administrivia

• Midterm 2 grading
– In progress. To be done by Sunday
– Solutions have been posted

• Project grades
– Project 1 done by tomorrow
– Project 2 done by middle of RRR

• Final Exam
– Friday, May 15th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course
– Two sheets of notes, both sides
– Will need dumb calculator

• Targeted reviews: See posts on Piazza
– Possibly 3 different sessions focused on parts of course

Lec 24.304/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia (2)

• Final topics (Monday, 5/4):
– Go to poll on Piazza!
– Current front runners:

» Internet of Things
» Quantum Computing
» Mobile OS
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Background of Cloud Computing

• 1980’s and 1990’s: 52% growth in performance per year!

• 2002: The thermal wall
– Speed (frequency) peaks,
but transistors keep
shrinking

• 2000’s: Multicore revolution
– 15-20 years later than 
predicted, we have hit 
the performance wall

• 2010’s: Rise of Big Data
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Sources Driving Big Data

It’s All Happening On-line
Every:
Click
Ad impression
Billing event
Fast Forward, pause,…
Friend Request
Transaction
Network message
Fault
…

User Generated (Web & 
Mobile)

…
..

Internet of Things / M2M Scientific Computing
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Data Deluge

• Billions of users connected through the net
– WWW, FB, twitter, cell phones, …
– 80% of the data on FB was produced last year

• Storage getting cheaper
– Store more data!
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Data Grows Faster than Moore’s Law

Projected Growth
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Solving the Impedance Mismatch

• Computers not getting faster, 
and we are drowning in data

– How to resolve the dilemma?

• Solution adopted by web-scale 
companies

– Go massively distributed
and parallel
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Enter the World of Distributed Systems

• Distributed Systems/Computing
– Loosely coupled set of computers, communicating through 
message passing, solving a common goal

– Tools: Msg passing, Distributed shared memory, RPC

• Distributed computing is challenging
– Dealing with partial failures (examples?)
– Dealing with asynchrony (examples?)
– Dealing with scale (examples?)
– Dealing with consistency (examples?)

• Distributed Computing versus Parallel Computing?
– distributed computing 

parallel computing + partial failures
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The Datacenter is the new Computer

• “The datacenter as a computer” still in its infancy
– Special purpose clusters, e.g., Hadoop cluster
– Built from less reliable components
– Highly variable performance
– Complex concepts are hard to program (low-level 
primitives)

= ?
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Datacenter/Cloud Computing OS

• If the datacenter/cloud is the new computer
– What is its Operating System?
– Note that we are not talking about a host OS

• Could be equivalent in benefit as the LAMP stack 
was to the .com boom – every startup secretly
implementing the same functionality!

• Open source stack for a Web 2.0 company: 
– Linux OS
– Apache web server
– MySQL, MariaDB or MongoDB DBMS
– PHP, Perl, or Python languages for dynamic web pages
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Classical Operating Systems

• Data sharing
– Inter-Process Communication, RPC, files, pipes, …

• Programming Abstractions
– Libraries (libc), system calls, …

• Multiplexing of resources
– Scheduling, virtual memory, file allocation/protection, 
…
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Datacenter/Cloud Operating System

• Data sharing
– Google File System, key/value stores
– Apache project: Hadoop Distributed File System

• Programming Abstractions
– Google MapReduce
– Apache projects: Hadoop, Pig, Hive, Spark

• Multiplexing of resources
– Apache projects: Mesos, YARN (MapReduce v2), 
ZooKeeper, BookKeeper, …
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Google Cloud Infrastructure

• Google File System (GFS), 2003
– Distributed File System for entire 
cluster

– Single namespace

• Google MapReduce (MR), 2004
– Runs queries/jobs on data
– Manages work distribution & fault-
tolerance

– Collocated with file system

• Apache open source versions: 
Hadoop DFS and Hadoop MR 
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GFS/HDFS Insights 

• Petabyte storage
– Files split into large blocks (128 MB) and replicated 
across several nodes

– Big blocks allow high throughput sequential reads/writes

• Data striped on hundreds/thousands of servers
– Scan 100 TB on 1 node @ 50 MB/s = 24 days
– Scan on 1000-node cluster = 35 minutes
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GFS/HDFS Insights (2) 

• Failures will be the norm
– Mean time between failures for 1 node = 3 years
– Mean time between failures for 1000 nodes = 1 day

• Use commodity hardware
– Failures are the norm anyway, buy cheaper hardware

• No complicated consistency models
– Single writer, append-only data
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MapReduce Programming Model

• Data type: key-value records

• Map function:
(Kin, Vin)  list(Kinter, Vinter)

• Reduce function:
(Kinter, list(Vinter))  list(Kout, Vout)



Lec 24.454/29/15 Kubiatowicz CS162 ©UCB Spring 2015

Word Count Execution

the quick
brown fox

the fox ate 
the mouse

how now
brown 
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output
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MapReduce Insights

• Restricted key-value model
– Same fine-grained operation (Map & Reduce) repeated 
on big data

– Operations must be deterministic
– Operations must be idempotent/no side effects
– Only communication is through the shuffle
– Operation (Map & Reduce) output saved (on disk)
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What is MapReduce Used For?

• At Google:
– Index building for Google Search
– Article clustering for Google News
– Statistical machine translation

• At Yahoo!:
– Index building for Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection
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MapReduce Pros
• Distribution is completely transparent

– Not a single line of distributed programming (ease, 
correctness)

• Automatic fault-tolerance
– Determinism enables running failed tasks somewhere else 
again

– Saved intermediate data enables just re-running failed 
reducers

• Automatic scaling
– As operations as side-effect free, they can be distributed 
to any number of machines dynamically

• Automatic load-balancing
– Move tasks and speculatively execute duplicate copies of 
slow tasks (stragglers)
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MapReduce Cons

• Restricted programming model
– Not always natural to express problems in this model
– Low-level coding necessary
– Little support for iterative jobs (lots of disk access)
– High-latency (batch processing)

• Addressed by follow-up research and Apache projects
– Pig and Hive for high-level coding
– Spark for iterative and low-latency jobs
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Example Problem

Given user data in one 
file, and website data in 
another, find the top 5 
most visited pages by 
users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5
Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt
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In MapReduce

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt
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Apache Pig

• High-level language:
– Expresses sequences of MapReduce jobs
– Provides relational (SQL) operators
(JOIN, GROUP BY, etc)

– Easy to plug in Java functions

• Started at Yahoo! Research
– Runs about 50% of Yahoo!’s jobs

• https://pig.apache.org/

• Similar to Google’s (internal) Sawzall project
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In Pig Latin

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users    = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25; 
Pages    = load ‘pages’ as (user, url);
Joined   = join Filtered by name, Pages by user;
Grouped  = group Joined by url;
Summed   = foreach Grouped generate group,

count(Joined) as clicks;
Sorted   = order Summed by clicks desc;
Top5     = limit Sorted 5;

store Top5 into ‘top5sites’;
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Translation to MapReduce

Notice how naturally the components of the  job translate into Pig Latin

Users = load …
Filtered = filter … 
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Job 1

Job 2

Job 3
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Future?

• Complete location transparency
– Mobile Data, encrypted all the time
– Computation anywhere any time
– Cryptographic-based identities
– Large Cloud-centers, Fog Computing

• Internet of Things?
– Everything connected, all the time!
– Huge Potential
– Very Exciting and Scary at same time

• Better programming models need to be developed!
• Perhaps talk about this on Monday
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Truly Distributed Apps: The Swarm of Resources

Cloud/FOG Services

The Local Swarm:
Person, House, Office, Café Enterprise Services



Lec 24.574/29/15 Kubiatowicz CS162 ©UCB Spring 2015

An New Application Model

• A Swarm Application is a 
Connected graph of Components

– Globally distributed, but locality and QoS aware
– Avoid Stovepipe solutions through reusability

• Many components are Shared Services written by 
programmers with a variety of skill-sets and motivations

– Service Level Agreements (SLA) with micropayments

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel
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Thank you!

• Let’s Thank the TAs!
• Thanks for helping us with this experimental version 

of the course… I think that it is going to be great!
• Good Bye!

intro


