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Recall: Two Phase (2PC) Commit

• Distributed transaction: Two or more machines agree to do 
something, or not do it, atomically 

• Two Phase Commit:
– One coordinator 
– N workers (replicas) 

• High level algorithm description
– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator 

broadcasts “GLOBAL-COMMIT”, 
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep track 

of what you are doing
– If a machine crashes, when it wakes up it first checks its log 

to recover state of world at time of crash
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Brief aside: Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:fileSysRead(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling” 
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing 
objects, copying arguments passed by reference, etc. 
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RPC Details
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition 
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for 

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack 

results, send them off
• Cross-platform issues:

– What if client/server machines are different 
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded 

(avoids unnecessary conversions).
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RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network 
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name 
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of servicembox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a 
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same 

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while 
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free 

» Caching can help, but may make failure handling complex
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address 
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)
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Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces 
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer.

App App
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Threads

App

Monolithic Structure

App File
sys windows

RPC address
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threads
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Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes 

partitioned
• Consistency, Availability, Partition-Tolerance (CAP) Theorem: 

Cannot have all three at same time
– Otherwise known as “Brewer’s Theorem”

Network
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mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System: 
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes 
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file 
in the world has unique name
» Location Transparency: servers 

can change and files can move 
without involving user

Network
Read File

Data
Client Server
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file 
system calls into remote requests 

– No local caching/can be caching at server-side
• Advantage: Server provides completely consistent view 

of file system to multiple clients
• Problems?  Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client
cache
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Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done 
locally, don’t need to do any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2
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Failures

• What if server crashes? Can client wait until server 
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after 
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does 
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with 

two-phase commit protocol, but NFS takes a more ad hoc 
approach)

• Stateless protocol: A protocol in which all information 
required to process a request is passed with request
– Server keeps no state about client, except as hints to 
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can 
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!
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Administrivia

• Midterm 2 grading
– In progress. Hopefully done by end of week.
– Solutions have been posted

• Final Exam
– Friday, May 15th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course

» With slightly more focus on second half, but you are still 
responsible for all the material

– Two sheets of notes, both sides
– Will need dumb calculator

• Should be working on Project 3!
– Checkpoint 1 this Wednesday
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Administrivia (con’t)
• Final Lecture topics submitted to me:

– Real Time Operating systems
– Peer to peer systems and/or Distributed Systems
– OS trends in the mobile phone industry (Android, etc)

» Differences from traditional OSes?
– GPU and ManyCore programming (and/or OSes?)
– Virtual Machines and/or Trusted Hardware for security
– Systems programming for non-standard computer systems

» i.e. Quantum Computers, Biological Computers, …
– Net Neutrality and/or making the Internet Faster
– Mesh networks
– Device drivers
– A couple of votes for Dragons…

• This is a lot of topics…
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Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close 
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to 
server’s disk before results are returned to the client 
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice 
changes! (more on this later)
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NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such 
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has 
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message 
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”?  NFS does operation 
twice and second time returns an advisory error 

• Failure Model: Transparent to client system
– Is this a good idea?  What if you are in the middle of 
reading a file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know 

they are talking over network)
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, 
but other clients use old version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, 
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the 
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new 

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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Andrew File System

• Andrew File System (AFS, late 80’s)  DCE DFS 
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only 
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch 

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask 
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Implementation of NFS
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Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to 

be used for different types of file systems
– The API is to the VFS interface, rather than any specific 
type of file system

• In linux, “VFS” stands for “Virtual Filesystem Switch”
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VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry 
– file object: represents open file associated with process

• There is no specific directory object (VFS treats 
directories as files)

• May need to fit the model by faking it
– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.
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Linux VFS

• An operations object is contained within each primary 
object type to set operations of specific filesystems
– “super_operations”: methods that kernel can invoke on a 
specific filesystem, i.e. write_inode() and sync_fs().

– “inode_operations”: methods that kernel can invoke on a 
specific file, such as create() and link()

– “dentry_operations”: methods that kernel can invoke on a 
specific directory entry, such as d_compare() or d_delete()

– “file_operations”: methods that process can invoke on an 
open file, such as read() and write()

• There are a lot of operations

write() sys_write() filesystem’s
write method

user-space VFS filesystem physical
media
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Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated 
with “key”

– value = get(key); // get/read data associated with 
“key”

• Used sometimes as a simpler but more scalable 
“database”
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit 
card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, 
friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Examples

• Amazon
– DynamoDB: internal key value store used to power Amazon.com

(shopping cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed 
by Facebook)

• Memcached: in-memory key-value store for small chunks of 
arbitrary data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many 

machines
key, value

…
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Challenges

• Fault Tolerance: handle machine failures without 
losing data  and without degradation in 
performance

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of 
node failures and message losses 

• Heterogeneity (if deployed as peer-to-peer 
systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…
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Key Questions

• put(key, value): where do you store a new 
(key, value) tuple?

• get(key): where is the value associated with a given 
“key” stored?

• And, do the above while providing 
– Fault Tolerance
– Scalability
– Consistency
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Directory-Based Architecture

• Have a node maintain the mapping between keys 
and the machines (nodes) that store the values 
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)
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Directory-Based Architecture

• Have a node maintain the mapping between keys and 
the machines (nodes) that store the values associated 
with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14
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Directory-Based Architecture

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3
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Directory-Based Architecture

• Having the master relay the requests  recursive query
• Another method: iterative query

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3
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Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages: 

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can 

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go 

through  master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data 

consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative
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Fault Tolerance

• Replicate value on several nodes
• Usually, place replicas on different racks in a 

datacenter to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)
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Fault Tolerance

• Again, we can have 
– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14
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Fault Tolerance

• Or we can use recursive query and iterative 
replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

K14 V14
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Scalability

• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value 
is stored in parallel

– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by 
different masters/directories
» How do you partition? 
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Scalability: Load Balancing

• Directory keeps track of the storage availability at each 
node
– Preferentially insert new values on nodes with more 
storage available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes
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Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every 

node? 
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets
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Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) 
may need to make sure that updates happen in 
the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 and N3 in reverse  order

• What does get(K14) return?
• Undefined!

• put(K14, V14’) and put(K14, V14’’) 
reach N1 and N3 in reverse  order

• What does get(K14) return?
• Undefined!
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Consistency (cont’d)

• Large variety of consistency models:
– Atomic consistency (linearizability): reads/writes 
(gets/puts) to replicas appear as if there was a single 
underlying replica (single system image)
» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will 
propagate through the system
» One of the weakest form of consistency; used by many 

systems in practice

– And many others: causal consistency, sequential 
consistency, strong consistency, …
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Quorum Consensus

• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W 
replicas

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the 
update

• Why might you use W+R > N+1? 
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Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)
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Quorum Consensus Example

• Now, issuing get() to any two nodes out of three 
will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K
14)

nill
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Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to 
number of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in 
the system!

• Solution: consistent hashing
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1
– Partition this space across m machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the 
smallest ID larger than Key
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Key to Node Mapping Example

• m = 6  ID space: 0..63
• Node  8 maps keys [5,8]
• Node 15 maps keys [9,15]
• Node 20 maps keys [16, 20]
• …
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0
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Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to 
node with closest ID

• Leaf set is 
successors and 
predecessors
– All that’s needed for 
correctness

• Routing table 
matches successively 
longer prefixes
– Allows efficient 
lookups

• Data Replication:
– On leaf set
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DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its 
functionality in a bounded 
time: 
– Every dependency in the 

platform needs to deliver its 
functionality with even tighter 
bounds.

• Example: service guaranteeing 
that it will provide a response 
within 300ms for 99.9% of its 
requests for a peak client load 
of 500 requests per second

• Contrast to services which 
focus on mean response time

Service-oriented architecture of 
Amazon’s platform
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What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining 
characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker 
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a 

computer security problem!
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Protection vs. Security

• Protection: mechanisms for controlling access of 
programs, processes, or users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mech. to prevent misuse 
of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external environment the system 
operates in
» Most well-constructed system cannot protect information 

if user accidentally reveals password – social engineering 
challenge
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Security Requirements

• Authentication 
– Ensures that a user is who is claiming to be

• Data integrity 
– Ensure that data is not changed from source to 
destination or after being written on a storage device 

• Confidentiality 
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data
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Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct 

password  must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of 

providing long passwords or satisfying 
challenge  response queries

» May have display to allow reading of password
» Or can be plugged in directly; several 

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or 
behavioral traits to identify someone

» Examples: fingerprint reader, 
palm reader, retinal scan

» Becoming quite a bit more common
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Passwords: Secrecy
• System must keep copy of secret to 

check against passwords
– What if malicious user gains access to list 
of passwords?
» Need to obscure information somehow

– Mechanism: utilize a transformation that is difficult to 
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwdone way transform(hash)encrypted passwd
– System stores only encrypted version, so OK even if 
someone reads the file!

– When you type in your password, system compares 
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released; 
Berkeley grad students cracked in a few hours

“eggplant”
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Passwords: How easy to guess?
• Ways of Compromising Passwords

– Password Guessing: 
» Often people use obvious information like birthday, 

favorite color, girlfriend’s name, etc…
– Dictionary Attack: 

» Work way through dictionary and compare encrypted 
version of dictionary words with entries in /etc/passwd

– Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox: 
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords: 
total of 265=10million passwords
» In 1975, 10ms to check a password1 day to crack
» In 2005, .01μs to check a password0.1 seconds to crack
» Even faster today (use multiple processors)

– Takes less time to check for all words in the dictionary!
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https://xkcd.com/936/
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Securing Communication: Cryptography 

• Cryptography: communication in the presence of 
adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent, 
highly readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t 
extract it, but a friend can

• General premise: there is a key, possession of which 
allows decoding, but without which decoding is 
infeasible
– Thus, key must be kept secret and not guessable
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Using Symmetric Keys 

• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext
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Symmetric Keys

• Can just XOR plaintext with the key
– Easy to implement, but easy to 
break using frequency analysis

– Unbreakable alternative: XOR with 
one-time pad
» Use a different key for each 

message
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Symmetric Keys

• More sophisticated (e.g., block cipher) algorithms 
– Works with a block size (e.g., 64 bits)

» To encrypt a stream, can encrypt blocks separately, or 
link them
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Symmetric Key Ciphers - DES & AES

• Data Encryption Standard (DES)
– Developed by IBM in 1970s, standardized by NBS/NIST
– 56-bit key (decreased from 64 bits at NSA’s request)
– Still fairly strong other than brute-forcing the key 
space
» But custom hardware can crack a key in < 24 hours

– Today many financial institutions use Triple DES
» DES applied 3 times, with 3 keys totaling 168 bits

• Advanced Encryption Standard (AES)
– Replacement for DES standardized in 2002
– Key size: 128, 192 or 256 bits

• How fundamentally strong are they?
– No one knows (no proofs exist)
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Authentication via Secret Key

• Main idea: entity proves identity by decrypting a 
secret encrypted with its own key
– K – secret key shared only by A and B

• A can asks B to authenticate itself by decrypting a 
nonce, i.e., random value, x
– Avoid replay attacks (attacker impersonating client or 
server)

• Vulnerable to man-in-the middle attack
A B

Notation: E(m,k) –
encrypt message m 
with key k
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Integrity: Cryptographic Hashes

• Basic building block for integrity: cryptographic hashing
– Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally – or 
maliciously

• Approach: 
– Sender computes a secure digest of message m using H(x)

» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K  |  H (K  |  m))
» HMAC(K, m) is a hash-based message authentication 

function

– Send digest d and message m to receiver

– Upon receiving m and d, receiver uses shared secret key, 
K, to recompute HMAC(K, m) and see whether result 
agrees with d
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Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality
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Standard Cryptographic Hash Functions

• MD5 (Message Digest version 5)
– Developed in 1991 (Rivest), produces 128 bit hashes
– Widely used (RFC 1321)
– Broken (1996-2008): attacks that find collisions

• SHA-1 (Secure Hash Algorithm)
– Developed in 1995 (NSA) as MD5 successor with 160 bit 

hashes
– Widely used (SSL/TLS, SSH, PGP, IPSEC)
– Broken in 2005, government use discontinued in 2010

• SHA-2 (2001) 
– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

• HMAC’s are secure even with older “insecure” hash 
functions
–
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Asymmetric Encryption (Public Key)

• Idea: use two different keys, one to encrypt (e) 
and one to decrypt (d)
– A key pair

• Crucial property: knowing e does not give away d

• Therefore e can be public: everyone knows it!

• If Alice wants to send to Bob, she fetches Bob’s 
public key (say from Bob’s home page) and encrypts 
with it
– Alice can’t decrypt what she’s sending to Bob …
– …  but then, neither can anyone else (except Bob)
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Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Lec 23.714/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Public Key Cryptography

• Invented in the 1970s
– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

• How can we construct an encryption/decryption 
algorithm using a key pair with the public/private 
properties? 
– Answer: Number Theory

• Most fully developed approach: RSA
– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., ssh, SSL/TLS for https)
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Properties of RSA

• Requires generating large, random prime numbers
– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiating very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange a 

(short) symmetric session key 
» Use that key then with AES or such

• How difficult is recovering d, the private key? 
– Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard 
(= brute force only)

» (Though quantum computers can do so in polynomial time!)
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Simple Public Key Authentication

• Each side need only to know the 
other side’s public key
– No secret key need be shared

• A encrypts a nonce (random num.) x
– Avoid replay attacks, e.g., 
attacker impersonating client or 
server

• B proves it can recover x

• A can authenticate itself to B in the 
same way

• Many more details to make this work 
securely in practice!

A B

Notation: E(m,k) –
encrypt message m 
with key k
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Summary (1/2)
• Distributed File System: 

– Transparent access to files stored on a remote disk
– Caching for performance

• Cache Consistency: Keeping client caches consistent with 
one another
– If multiple clients, some reading and some writing, how do 
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of 
changes

• Remote Procedure Call (RPC): Call procedure on remote 
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface 
for different types of file systems
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Summary
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

• Distributed identity: Use cryptography
• Symmetrical (or Private Key) Encryption

– Single Key used to encode and decode
– Introduces key-distribution problem

• Public-Key Encryption
– Two keys: a public key and a private key
– Slower than private key, but simplifies key-distribution

• Secure Hash Function
– Used to summarize data
– Hard to find another block of data with same hash


