
CS162
Operating Systems and
Systems Programming

Lecture 23

Distributed Storage,
Key-Value Stores,

Security

April 27th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 23.24/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Two Phase (2PC) Commit

• Distributed transaction: Two or more machines agree to do 
something, or not do it, atomically 

• Two Phase Commit:
– One coordinator 
– N workers (replicas) 

• High level algorithm description
– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator 

broadcasts “GLOBAL-COMMIT”, 
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep track 

of what you are doing
– If a machine crashes, when it wakes up it first checks its log 

to recover state of world at time of crash

Lec 23.34/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Brief aside: Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:fileSysRead(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling” 
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing 
objects, copying arguments passed by reference, etc. 

Lec 23.44/27/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2



Lec 23.54/27/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Details
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition 
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for 

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack 

results, send them off
• Cross-platform issues:

– What if client/server machines are different 
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded 

(avoids unnecessary conversions).

Lec 23.64/27/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network 
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name 
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of servicembox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 23.74/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a 
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same 

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while 
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free 

» Caching can help, but may make failure handling complex

Lec 23.84/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address 
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)



Lec 23.94/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces 
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 23.104/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes 

partitioned
• Consistency, Availability, Partition-Tolerance (CAP) Theorem: 

Cannot have all three at same time
– Otherwise known as “Brewer’s Theorem”

Network

Lec 23.114/27/15 Kubiatowicz CS162 ©UCB Spring 2015

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System: 
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes 
look like local reads and writes to user
e.g. /users/sue/foo/sue/foo on server

– A single, global name space: every file 
in the world has unique name
» Location Transparency: servers 

can change and files can move 
without involving user

Network
Read File

Data
Client Server

Lec 23.124/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file 
system calls into remote requests 

– No local caching/can be caching at server-side
• Advantage: Server provides completely consistent view 

of file system to multiple clients
• Problems?  Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client
cache



Lec 23.134/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done 
locally, don’t need to do any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Lec 23.144/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Failures

• What if server crashes? Can client wait until server 
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after 
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does 
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with 

two-phase commit protocol, but NFS takes a more ad hoc 
approach)

• Stateless protocol: A protocol in which all information 
required to process a request is passed with request
– Server keeps no state about client, except as hints to 
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can 
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 23.154/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm 2 grading
– In progress. Hopefully done by end of week.
– Solutions have been posted

• Final Exam
– Friday, May 15th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course

» With slightly more focus on second half, but you are still 
responsible for all the material

– Two sheets of notes, both sides
– Will need dumb calculator

• Should be working on Project 3!
– Checkpoint 1 this Wednesday

Lec 23.164/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia (con’t)
• Final Lecture topics submitted to me:

– Real Time Operating systems
– Peer to peer systems and/or Distributed Systems
– OS trends in the mobile phone industry (Android, etc)

» Differences from traditional OSes?
– GPU and ManyCore programming (and/or OSes?)
– Virtual Machines and/or Trusted Hardware for security
– Systems programming for non-standard computer systems

» i.e. Quantum Computers, Biological Computers, …
– Net Neutrality and/or making the Internet Faster
– Mesh networks
– Device drivers
– A couple of votes for Dragons…

• This is a lot of topics…



Lec 23.174/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close 
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to 
server’s disk before results are returned to the client 
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice 
changes! (more on this later)

Lec 23.184/27/15 Kubiatowicz CS162 ©UCB Spring 2015

NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such 
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has 
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message 
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”?  NFS does operation 
twice and second time returns an advisory error 

• Failure Model: Transparent to client system
– Is this a good idea?  What if you are in the middle of 
reading a file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know 

they are talking over network)

Lec 23.194/27/15 Kubiatowicz CS162 ©UCB Spring 2015

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, 
but other clients use old version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 23.204/27/15 Kubiatowicz CS162 ©UCB Spring 2015

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, 
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the 
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new 

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time



Lec 23.214/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Andrew File System

• Andrew File System (AFS, late 80’s)  DCE DFS 
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only 
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 23.224/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch 

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask 
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 23.234/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementation of NFS

Lec 23.244/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to 

be used for different types of file systems
– The API is to the VFS interface, rather than any specific 
type of file system

• In linux, “VFS” stands for “Virtual Filesystem Switch”



Lec 23.254/27/15 Kubiatowicz CS162 ©UCB Spring 2015

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry 
– file object: represents open file associated with process

• There is no specific directory object (VFS treats 
directories as files)

• May need to fit the model by faking it
– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.

Lec 23.264/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Linux VFS

• An operations object is contained within each primary 
object type to set operations of specific filesystems
– “super_operations”: methods that kernel can invoke on a 
specific filesystem, i.e. write_inode() and sync_fs().

– “inode_operations”: methods that kernel can invoke on a 
specific file, such as create() and link()

– “dentry_operations”: methods that kernel can invoke on a 
specific directory entry, such as d_compare() or d_delete()

– “file_operations”: methods that process can invoke on an 
open file, such as read() and write()

• There are a lot of operations

write() sys_write() filesystem’s
write method

user-space VFS filesystem physical
media

Lec 23.274/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated 
with “key”

– value = get(key); // get/read data associated with 
“key”

• Used sometimes as a simpler but more scalable 
“database”

Lec 23.284/27/15 Kubiatowicz CS162 ©UCB Spring 2015

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit 
card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, 
friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 



Lec 23.294/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Examples

• Amazon
– DynamoDB: internal key value store used to power Amazon.com

(shopping cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed 
by Facebook)

• Memcached: in-memory key-value store for small chunks of 
arbitrary data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …

Lec 23.304/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many 

machines
key, value

…

Lec 23.314/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Challenges

• Fault Tolerance: handle machine failures without 
losing data  and without degradation in 
performance

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of 
node failures and message losses 

• Heterogeneity (if deployed as peer-to-peer 
systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

Lec 23.324/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Key Questions

• put(key, value): where do you store a new 
(key, value) tuple?

• get(key): where is the value associated with a given 
“key” stored?

• And, do the above while providing 
– Fault Tolerance
– Scalability
– Consistency



Lec 23.334/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory-Based Architecture

• Have a node maintain the mapping between keys 
and the machines (nodes) that store the values 
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

Lec 23.344/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory-Based Architecture

• Have a node maintain the mapping between keys and 
the machines (nodes) that store the values associated 
with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

Lec 23.354/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory-Based Architecture

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3

Lec 23.364/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory-Based Architecture

• Having the master relay the requests  recursive query
• Another method: iterative query

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3



Lec 23.374/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages: 

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can 

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go 

through  master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data 

consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

Lec 23.384/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Fault Tolerance

• Replicate value on several nodes
• Usually, place replicas on different racks in a 

datacenter to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)

Lec 23.394/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Fault Tolerance

• Again, we can have 
– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

Lec 23.404/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Fault Tolerance

• Or we can use recursive query and iterative 
replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

K14 V14



Lec 23.414/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Scalability

• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value 
is stored in parallel

– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by 
different masters/directories
» How do you partition? 

Lec 23.424/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Scalability: Load Balancing

• Directory keeps track of the storage availability at each 
node
– Preferentially insert new values on nodes with more 
storage available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

Lec 23.434/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every 

node? 
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets

Lec 23.444/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) 
may need to make sure that updates happen in 
the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 and N3 in reverse  order

• What does get(K14) return?
• Undefined!

• put(K14, V14’) and put(K14, V14’’) 
reach N1 and N3 in reverse  order

• What does get(K14) return?
• Undefined!



Lec 23.454/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Consistency (cont’d)

• Large variety of consistency models:
– Atomic consistency (linearizability): reads/writes 
(gets/puts) to replicas appear as if there was a single 
underlying replica (single system image)
» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will 
propagate through the system
» One of the weakest form of consistency; used by many 

systems in practice

– And many others: causal consistency, sequential 
consistency, strong consistency, …

Lec 23.464/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Quorum Consensus

• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W 
replicas

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the 
update

• Why might you use W+R > N+1? 

Lec 23.474/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Lec 23.484/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Quorum Consensus Example

• Now, issuing get() to any two nodes out of three 
will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K
14)

nill



Lec 23.494/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to 
number of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in 
the system!

• Solution: consistent hashing
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1
– Partition this space across m machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the 
smallest ID larger than Key

Lec 23.504/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Key to Node Mapping Example

• m = 6  ID space: 0..63
• Node  8 maps keys [5,8]
• Node 15 maps keys [9,15]
• Node 20 maps keys [16, 20]
• …
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0

Lec 23.514/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to 
node with closest ID

• Leaf set is 
successors and 
predecessors
– All that’s needed for 
correctness

• Routing table 
matches successively 
longer prefixes
– Allows efficient 
lookups

• Data Replication:
– On leaf set

Lec 23.524/27/15 Kubiatowicz CS162 ©UCB Spring 2015

DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its 
functionality in a bounded 
time: 
– Every dependency in the 

platform needs to deliver its 
functionality with even tighter 
bounds.

• Example: service guaranteeing 
that it will provide a response 
within 300ms for 99.9% of its 
requests for a peak client load 
of 500 requests per second

• Contrast to services which 
focus on mean response time

Service-oriented architecture of 
Amazon’s platform



Lec 23.534/27/15 Kubiatowicz CS162 ©UCB Spring 2015

What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining 
characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker 
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a 

computer security problem!

Lec 23.544/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Protection vs. Security

• Protection: mechanisms for controlling access of 
programs, processes, or users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mech. to prevent misuse 
of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external environment the system 
operates in
» Most well-constructed system cannot protect information 

if user accidentally reveals password – social engineering 
challenge

Lec 23.554/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Security Requirements

• Authentication 
– Ensures that a user is who is claiming to be

• Data integrity 
– Ensure that data is not changed from source to 
destination or after being written on a storage device 

• Confidentiality 
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data

Lec 23.564/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct 

password  must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of 

providing long passwords or satisfying 
challenge  response queries

» May have display to allow reading of password
» Or can be plugged in directly; several 

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or 
behavioral traits to identify someone

» Examples: fingerprint reader, 
palm reader, retinal scan

» Becoming quite a bit more common



Lec 23.574/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Passwords: Secrecy
• System must keep copy of secret to 

check against passwords
– What if malicious user gains access to list 
of passwords?
» Need to obscure information somehow

– Mechanism: utilize a transformation that is difficult to 
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwdone way transform(hash)encrypted passwd
– System stores only encrypted version, so OK even if 
someone reads the file!

– When you type in your password, system compares 
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released; 
Berkeley grad students cracked in a few hours

“eggplant”

Lec 23.584/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Passwords: How easy to guess?
• Ways of Compromising Passwords

– Password Guessing: 
» Often people use obvious information like birthday, 

favorite color, girlfriend’s name, etc…
– Dictionary Attack: 

» Work way through dictionary and compare encrypted 
version of dictionary words with entries in /etc/passwd

– Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox: 
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords: 
total of 265=10million passwords
» In 1975, 10ms to check a password1 day to crack
» In 2005, .01μs to check a password0.1 seconds to crack
» Even faster today (use multiple processors)

– Takes less time to check for all words in the dictionary!

Lec 23.594/27/15 Kubiatowicz CS162 ©UCB Spring 2015

https://xkcd.com/936/

Lec 23.604/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Securing Communication: Cryptography 

• Cryptography: communication in the presence of 
adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent, 
highly readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t 
extract it, but a friend can

• General premise: there is a key, possession of which 
allows decoding, but without which decoding is 
infeasible
– Thus, key must be kept secret and not guessable



Lec 23.614/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Symmetric Keys 

• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext

Lec 23.624/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Symmetric Keys

• Can just XOR plaintext with the key
– Easy to implement, but easy to 
break using frequency analysis

– Unbreakable alternative: XOR with 
one-time pad
» Use a different key for each 

message

Lec 23.634/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Symmetric Keys

• More sophisticated (e.g., block cipher) algorithms 
– Works with a block size (e.g., 64 bits)

» To encrypt a stream, can encrypt blocks separately, or 
link them

Lec 23.644/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Symmetric Key Ciphers - DES & AES

• Data Encryption Standard (DES)
– Developed by IBM in 1970s, standardized by NBS/NIST
– 56-bit key (decreased from 64 bits at NSA’s request)
– Still fairly strong other than brute-forcing the key 
space
» But custom hardware can crack a key in < 24 hours

– Today many financial institutions use Triple DES
» DES applied 3 times, with 3 keys totaling 168 bits

• Advanced Encryption Standard (AES)
– Replacement for DES standardized in 2002
– Key size: 128, 192 or 256 bits

• How fundamentally strong are they?
– No one knows (no proofs exist)



Lec 23.654/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Authentication via Secret Key

• Main idea: entity proves identity by decrypting a 
secret encrypted with its own key
– K – secret key shared only by A and B

• A can asks B to authenticate itself by decrypting a 
nonce, i.e., random value, x
– Avoid replay attacks (attacker impersonating client or 
server)

• Vulnerable to man-in-the middle attack
A B

Notation: E(m,k) –
encrypt message m 
with key k

Lec 23.664/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Integrity: Cryptographic Hashes

• Basic building block for integrity: cryptographic hashing
– Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally – or 
maliciously

• Approach: 
– Sender computes a secure digest of message m using H(x)

» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K  |  H (K  |  m))
» HMAC(K, m) is a hash-based message authentication 

function

– Send digest d and message m to receiver

– Upon receiving m and d, receiver uses shared secret key, 
K, to recompute HMAC(K, m) and see whether result 
agrees with d

Lec 23.674/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality

Lec 23.684/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Standard Cryptographic Hash Functions

• MD5 (Message Digest version 5)
– Developed in 1991 (Rivest), produces 128 bit hashes
– Widely used (RFC 1321)
– Broken (1996-2008): attacks that find collisions

• SHA-1 (Secure Hash Algorithm)
– Developed in 1995 (NSA) as MD5 successor with 160 bit 

hashes
– Widely used (SSL/TLS, SSH, PGP, IPSEC)
– Broken in 2005, government use discontinued in 2010

• SHA-2 (2001) 
– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

• HMAC’s are secure even with older “insecure” hash 
functions
–



Lec 23.694/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Asymmetric Encryption (Public Key)

• Idea: use two different keys, one to encrypt (e) 
and one to decrypt (d)
– A key pair

• Crucial property: knowing e does not give away d

• Therefore e can be public: everyone knows it!

• If Alice wants to send to Bob, she fetches Bob’s 
public key (say from Bob’s home page) and encrypts 
with it
– Alice can’t decrypt what she’s sending to Bob …
– …  but then, neither can anyone else (except Bob)

Lec 23.704/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Lec 23.714/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Public Key Cryptography

• Invented in the 1970s
– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

• How can we construct an encryption/decryption 
algorithm using a key pair with the public/private 
properties? 
– Answer: Number Theory

• Most fully developed approach: RSA
– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., ssh, SSL/TLS for https)

Lec 23.724/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Properties of RSA

• Requires generating large, random prime numbers
– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiating very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange a 

(short) symmetric session key 
» Use that key then with AES or such

• How difficult is recovering d, the private key? 
– Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard 
(= brute force only)

» (Though quantum computers can do so in polynomial time!)



Lec 23.734/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Public Key Authentication

• Each side need only to know the 
other side’s public key
– No secret key need be shared

• A encrypts a nonce (random num.) x
– Avoid replay attacks, e.g., 
attacker impersonating client or 
server

• B proves it can recover x

• A can authenticate itself to B in the 
same way

• Many more details to make this work 
securely in practice!

A B

Notation: E(m,k) –
encrypt message m 
with key k

Lec 23.744/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (1/2)
• Distributed File System: 

– Transparent access to files stored on a remote disk
– Caching for performance

• Cache Consistency: Keeping client caches consistent with 
one another
– If multiple clients, some reading and some writing, how do 
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of 
changes

• Remote Procedure Call (RPC): Call procedure on remote 
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface 
for different types of file systems

Lec 23.754/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

• Distributed identity: Use cryptography
• Symmetrical (or Private Key) Encryption

– Single Key used to encode and decode
– Introduces key-distribution problem

• Public-Key Encryption
– Two keys: a public key and a private key
– Slower than private key, but simplifies key-distribution

• Secure Hash Function
– Used to summarize data
– Hard to find another block of data with same hash


