Cs162
Operating Systems and
Systems Programming
Lecture 23

Distributed Storage,
Key-Value Stores,
Security

April 27th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Two Phase (2PC) Commit

- Distributed transaction: Two or more machines agree to do

something, or not do it, atomically

* Two Phase Commit:

- One coordinator
- N workers (replicas)

+ High level algorithm description

- Coordinator asks all workers if they can commit

- If all workers regly “"VOTE-COMMIT", then coordinator
broadcasts “"GLOBAL-COMMIT",

Otherwise coordinator broadcasts “"GLOBAL-ABORT"
- Workers obey the GLOBAL messages

+ Use a persistent, stable log on each machine to keep track

of what you are doing

- If a machine crashes, when it wakes up it first checks its log
to recover state of world at time of crash

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.2

Brief aside: Remote Procedure Call

+ Raw messaging is a bit too low-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—Read(“rutabaga’);
- Translated automatically into call on server:
fileSys—»Read(“rutabaga™);
* Implementation:
- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “"marshalling” arguments and
“unmarshalling” the return values
» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.
* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.3

RPC Information Flow

bundle
args
D . .
\‘ E Client call » Client send »| Packet
Wi | (caller) Stub [« - Handlef
< :I return receive
unbundle mbo, X
Machine A ret vals 5 E
------------------------------------------------------------------------------------ ; s
. +|
Machine B bundle E S
ret vals mbox1
Server return Serve send Packet
(callee Stub |« - Handle
call receive
unbundle
args
4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.4




RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them ofF
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.5

RPC Details (continued)

*+ How does client know which mbox to send to?
- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “"naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
+ Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—>mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
* What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
4/27/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 23.6

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.7

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

* RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

4/27/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 23.8




Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

] ] ] o
sys

file system windowing RPc  address
M Networking h s;:jaces
Threads Threads
Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.9

Network-Attached Storage and the CAP Theorem

- Consistency:
- Changes appear to everyone in the same serial order
* Availability:
- Can get a result at any time
* Partition-Tolerance

- System continues to work even when network becomes
partitioned
- Consistency, Availability, Partition-Tolerance (CAP) Theorem:
Cannot have all three at same time

- Otherwise known as "Brewer's Theorem”
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.10

~ Distributed File Systems

=

Client
- Distributed File System:
- Transparent access to files stored on a remote disk
* Naming choices (always an issue):

Server

- Hostname:localname: Name files explicitly mount
» No location or migration transparency kubi:/jane
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point 0 jane

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server

- A single, %/oba/ name space: every file
in the world has unique name
» Location Transparency: servers mount

can change and files can move
without involving user

4/27/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 23.11

coeus:/sue

Simple Distributed File System

2

Client
- Remote Disk: Reads and writes forwarded to server
- Use Remote Procedure Calls (RPC) to translate file
system calls into remote requests
- No local caching/can be caching at server-side
+ Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performancel!
- Going over network is slower than going to local memory
- Lots of network traffic/not well pipelined

/2715 Server can be Qub%?;'v'vte!ze?&%lz(@uca Spring 2015 Lec 23.12




Use of caching to reduce network load

o
read(f1)-V1 Tac 3 ’
read(f1)-V1 1
read(f1)->V1 Return (Data) <:>
read(f1)-V1 e

cach
write(f1)->0K :
read(f1)—V2 Client
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination

* Advantage: if open/read/write/close can be done
locally, gon"r need to do any network traffic..fast!
* Problems:
- Failure:

» Client caches have data not committed at server
- Cache consistency!
» Client caches not consistent with server/each other
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.13

Failures

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX "rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with
two-phase commit protocol, but NF5 takes a more ad hoc
approach)

- Stateless protocol: A protocol in which all information
required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.14

Administrivia

* Midterm 2 grading
- In progress. Hopefully done by end of week.
- Solutions have been posted
* Final Exam
- Friday, May 15%, 2015.
- 3-6P, Wheeler Auditorium
- All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

- Two sheets of notes, both sides
- Will need dumb calculator

+ Should be working on Project 3!
- Checkpoint 1 this Wednesday

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.15

Administrivia (con't)

* Final Lecture topics submitted to me:
- Real Time Operating systems
- Peer to peer systems and/or Distributed Systems
- OS trends in the mobile phone industry (Android, etc)
» Differences from traditional OSes?
- 6PU and ManyCore programming (and/or OSes?)
- Virtual Machines and/or Trusted Hardware for security
- Systems programming for non-standard computer systems
» i.e. Quantum Computers, Biological Computers, ..
- Net Neutrality and/or making the Internet Faster
- Mesh networks
- Device drivers
- A couple of votes for Dragons...
+ This is a lot of topics...

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.16




Network File System (NFS)

+ Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.17

NFS Continued

- NFS servers are stateless,; each request provides all
ar'gr:gmen‘rs require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own
+ Idempotent: Performing requests multiple times has
same effect as performing it exactly once
- Example: Server crashes between disk I/0 and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
- Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know
they are talking over network)
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.18

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes
» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).
» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

cach
Client

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.19

Sequential Ordering Constraints

* What sort of cache coherence might we expect?
- i.e. what if one CPU changes file, and before it's done,
another CPU reads file?

+ Example: Start with file contents = "A”
|Read: parts of B or 4

Client 1: [Readigets A |[Write B ]

Client 2: [Read: gets A or B[Write C |
Client 3: |Read: parts of B or ¢

Time

* What would we actually want?
- Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy
- For NFS:

» If read starts more than 30 seconds after write, get new
copy: otherwise, could get partial update

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.20




Andrew File System

+ Andrew File System (AFS, late 80's) —» DCE DFS
(commercial product)

* Callbacks: Server records who has copy of file
- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

* Write through on close
- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

- In AFS, everyone who has file open sees old version
- Don't get newer versions until reopen file

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.21

Andrew File System (con't)

* Data cached on local disk of client as well as memory
- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
- On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

« What if server crashes? Lose all callback statel!

- Reconstruct callback information from client: go ask
everyone “who has which files cached?”

+ AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

* For both AFS and NFS: central server is bottleneck!
- Performance: all writes—server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine’s high cost relative to workstation

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.22

Implementation of NFS

client server

system-calls interface

VFS interface

—h‘ VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system
A ‘ RBPC/XDR RPC/XDR |
diﬂ A diﬂ
g ‘ network -

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.23

Enabling Factor: Virtual Filesystem (VFS)
>

inf = open("/floppy/TEST", O_RDONLY, 0);
outf = open("/tmp/test",
0_WRONLY |0_CREAT|0_TRUNC, 0800);

do {

i = read(inf, buf, 4006);

write(outf, buf, i);
} while (i);
close(outf);

i close(inf);
Exi2 MS-DOi

Stmp/test Sfloppy/TEST

VES

* VFS: Virtual abstraction similar to local file system
- Provides virtual superblocks, inodes, files, etc
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the API) to
be used for different types of file systems
- The API is to the VFS interface, rather than any specific
type of file system

* In linux, "VFS" stands for "Virtual Filesystem Switch”

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.24




VFS Common File Model in Linux

- -+
It Y
""‘"{I‘ [Sﬂ?* _[ e ] —> fd
— + f_dentry

- dentrycache et 1 e » d inode
Process | File object 2 —
r '—

_ I —» i_sb

¢ File objec - dentry dentry
| Process 2 i—b( File object } : sl e
| Process 3 i—p( Filk abject )_ - - _;—- g

* Four primary object types for VFS:
- superblock object: represents a specific mounted filesystem
- inode object: represents a specific file
- dentry object: represents a directory entry
- file object: represents open file associated with process

* There is no specific directory object (VFS treats
directories as files)

* May need to fit the model by faking it
- Example: make it look like directories are files

- Example: make it look like have inodes, superblocks, etc.
4/27/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 23.25

Linux VFS
. . filesystem's
write() sys_write() write method
_ . physical
user-space VFS filesystem media

* An operations object is contained within each primary
object type to set operations of specific filesystems

- "super_operations”: methods that kernel can invoke on a
specific filesystem, i.e. write_inode() and sync_fs().

- “inode_operations”: methods that kernel can invoke on a
specific file, such as create() and 1ink(Q)

- “dentry_operations”: methods that kernel can invoke on a
(sjpecific directory entry, such as d_compare() or
delete()

- “file_operations”: methods that process can invoke on an
open file, such as read() and write()

*+ There are a lot of operations
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.26

Key Value Storage

* Handle huge volumes of data, e.g., PBs
- Store (key, value) tuples

- Simple interface
- put(key, value); // insert/write “value” associated

with "key”
- value = get(key): // get/read data associated with
\\keyll

+ Used sometimes as a simpler but more scalable
“database”

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.27

Key Values: Examples

+ Amazon: amazon

- Key: customerID

- Value: customer profile (e.g., buying history, credit
card, ..)

- Facebook, Twitter: ‘.j\

- Key: UserID
- Value: user profile (e.g., posting history, photos,

friends, ..)
* iCloud/iTunes: C) @
- Key: Movie/song name
- Value: Movie, Song

4/27/15 Kubiatowicz €5162 ©®UCB Spring 2015 Lec 23.28




Examples

+ Amazon

- D\{‘namoDB: internal key value store used to power Amazon.com
(shopping cart)
- Simple Storage System (S3)

- BigTable/HBase/Hypertable: distributed, scalable data storage

+ Cassandra: “distributed data management system” (developed
by Facebook)

* Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

- eDonkey/eMule: peer-to-peer sharing system

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.29

Key Value Store

- Also called Distributed Hash Tables (DHT)

* Main idea: partition set of key-values across many
machines

key, value

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.30

Challenges

L

* Fault Tolerance: handle machine failures without
losing data and without degradation in
performance

+ Scalability:

- Need to scale to thousands of machines
- Need to allow easy addition of new machines

+ Consistency: maintain data consistency in face of
node failures and message losses

* Heterogeneity (if deployed as peer-to-peer
systems):

- Latency: 1ms to 1000ms
- Bandwidth: 32Kb/s to 100Mb/s

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.31

Key Questions

- put(key, value): where do you store a new
(key, value) tuple?

- get(key): where is the value associated with a given
“key” stored?

* And, do the above while providing
- Fault Tolerance
- Scalability
- Consistency

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.32




Directory-Based Architecture

* Have a node maintain the mapping between keys
and the machines (nodes) that store the values

Directory-Based Architecture

* Have a node maintain the mapping between keys and
the machines (nodes) that store the values associated

with the keys

Master/Directory

associated with the keys
Master/Directory
put(K14, V14) -------mooooo > K5 | N2 get(K14) ~-----mmoome > K5 | N2
141 N3 V1A e 141 N3
R
& 77 [KiosINBD o, « [KI0BINSO
’ ~ ’
i NN
S SN,
§ §
Q¥ FE
K5 V5 K14|1Vi4 K105[V105 K5 [V5 K14 |Vi4 K105[V105
Nl N2 N3 NSO Nl N2 N3 NSO
4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.33 4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.34
Directory-Based Architecture

Directory-Based Architecture

* Having the master relay the requests - recursive query

+ Another method: iterative query (this slide)
- Return node to requester and let requester contact node

Master/Directory

PUL(KL4, V14) ~==-mmmmmemo . =1
41N3

~~ K105[{N50
- Lugye
\\\74 L
7y
o 'S
K5 [V5 K14 V14 K105[VI05
N2 N3 N50

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.35

4/27/15

* Having the master relay the requests - recursive query

*+ Another method: iterative query
- Return node to requester and let requester contact node

Master/Directory

get(K14) ~--------oe >
_____________ K5 N2
N3 oo E Z1N3

Via K105[N50
. f?@lﬂr
Ny
K5 V5 K14 [ V14 KI05[VI05
Nl N2 N3 N50

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.36

4/27/15




Discussion: Iterative vs. Recursive Query Fault Tolerance
Master/Directory Master/Directory
___________ - get(K14)~~==------» .
v B=— M B * Replicate value on several nodes
&/ ® . 96, . . .
Recursve &5 o » Usudlly, place replicas on different racks in a
ik lterative . datacenter to guard against rack failures
KIATVI4 KTV .
— — ' — - Master/Directory
| | B PUL(K14, V14) ~=--nnmmeemeeo .
N1 N2 N3 N50 N1, N3 ¢----ommme E K?él “Z% N3
N K105[N50
\“?{(674
put(K14, v14) <.V 74 Y
T TR
K5 V5 K14 Vi4 K105[V105

N50

E E N3
* Recursive Query:
- Advantages:
» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

K14 V14
N2 N3 NSO
Lec 23.38

serialize puts()/gets
- Disadvantages: scalability bottleneck, as all "Values” go
through master/directory
* Iterative Query
- Advantages: more scalable
- Disadvantages: slower, harder to enforce data N
consistency !
4/27/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 23.37 4/27/15 Kubiatowicz C5162 ®UCB Spring 2015
Fault Tolerance Fault Tolerance
* Again, we can have - Or we can use recursive query and iterative
- Recursive replication (previous slide) replication...
- Iterative replication (this slide)
Master/Directory Master/Directory
PUL(K14, V14) ~--=-mmmmmeemooo B = TG PUL(K14, V14) =-==-mmmmemoeo . . =115
NI, N3 *-mmoomoeeme E 4 NIN3 E 4 NIN3
-
N b KI05[N50 . [K105[NB0
@ kg, (KA VAR b‘\y\b«)/
& <79 pU - \)xk‘(‘l\,
Q¥ e “- -
K14 | V14 K5 [ V5 K14 | V14 K105|V105 K14 | V14 K5 [ V5 K14 | V14 KI05|V105
Nl N2 N3 N50 Nl N2 N3 N50
4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.39 4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.40




Scalability

- Storage: use more nodes

* Number of requests:

- Can serve requests from all nodes on which a value
is stored in parallel

- Master can replicate a popular value on more nodes

* Master/directory scalability:
- Replicate it
- Partition it, so different keys are served by
different masters/directories
» How do you partition?

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.41

Scalability: Load Balancing

+ Directory keeps track of the storage availability at each
node

- Preferentially insert new values on nodes with more
storage available

* What happens when a new node is added?
- Cannot insert only new values on new node. Why?

- Move values from the heavy loaded nodes to the new node
* What happens when a node fails?

- Need to replicate values from fail node to other nodes

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.42

Consistency

* Need to make sure that a value is replicated correctly

* How do you know a value has been replicated on every
node?

- Wait for acknowledgements from every node
* What happens if a node fails during replication?
- Pick another node and try again
* What happens if a node is slow?
- Slow down the entire put()? Pick another node?
* In general, with multiple replicas
- Slow puts and fast gets

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.43

Consistency (cont'd)

* If concurrent updates (i.e., puts to same key)

may need to make sure that updates happen in
the same order

e put(K14, V14’) and put(K14, V14™)
Master/Directory

(K14, V14) reach N1 and N3 in reverse order
u S
P ’ —— + What does get(K14) return?
put(K14, V14”) :E K14 [ N1,N3 e Undefined!
KI05IN50
B Pl Ve
RO RV R
Ot VRV P
AR VL &
9/ Vo =
. Ve B
V'S & o
K14 |VIZ K5 | V5 K14 V1™ K105|VI05
Ny

N, N N5
4/27/15 Kubiatowicz €5162 %UCB Spring 2015 Lec 23.44




Consistency (cont'd)

* Large variety of consistency models:

- Atomic consistency (linearizability): reads/writes
(gets/puts) to replicas appear as if there was a single
underlying replica (single system image)

» Think “one updated at a time"
» Transactions

- Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency: used by many
systems in practice

- And many others: causal consistency, sequential
consistency, strong consistency, ..

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.45

4/27/15

Quorum Consensus

Improve put() and get() operation performance

* Define a replica set of size N

- put() waits for acknowledgements from at least W
replicas

- get() waits for responses from at least R replicas
-W+R > N

Why does it work?

- There is at least one node that contains the
update

Why might you use W+R > N+1?

Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.46

Quorum Consensus Example
« N=3, W=2, R=2
* Replica set for K14: {N1, N2, N4}
+ Assume put() on N3 fails

Pl S X N\
i VR
W > \ V&
b 3 B NF
g < a2
ST L, St \ N
" - a; "z
e v \
e X P
K141Vi4 K14 V14

4/27/15

N,

N3

Kubiatowicz €5162 ®UCB Spring 2015

4/27/15

Quorum Consensus Example

* Now, issuing get() to any two nodes out of three
will return the answer

R . 4
o e
O 2 1o
(g}f, QN \5 =
B
»’/ L
K14 V14 K14 V14
N, N, N, N,

Kubiatowicz €5162 ®UCB Spring 2015

Lec 23.48




Scaling Up Directory

* Challenge:

- Directory contains a number of entries equal to
number of (key, value) tuples in the system

- Can be tens or hundreds of billions of entries in
the system!

+ Solution: consistent hashing

+ Associate to each node a unique /d in an un/-
dimensional space 0..2m-1

- Partition this space across m machines
- Assume keys are in same uni-dimensional space

- Each (Key, Value) is stored at the node with the
smallest ID larger than Key

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.49

4/27/15

Key to Node Mapping Example

m = 6 > ID space: 0..63
Node 8 maps keys [5,8]
Node 15 maps keys [9,15]

Node 20 maps keys [16, 20]

Node 4 maps keys [59, 4]

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.50

Lookup in Chord-like system (with Leaf Set)

ASSign IDS to nOdeS Source
- Map hash values to
node with closest ID

* Leaf set is
successors and
predecessors

- All that's needed for '

correctness

Routing table
matches successively
longer prefixes

- Allows efficient

10...

lookups
Data Replication: Lookup I
- On leaf set
4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.51

DynamoDB Example: Service Level Agreements (SLA)

* Application can deliver its

functionality in a bounded
time:
- Every dependency in the

platform needs to deliver its
functionality with even tighter
bounds.

+ Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load

of

500 requests per second

+ Contrast to services which
focus on mean response time

4/27/15

Client Requesis

::'.w,\ a Apgregator
T N

- | Senvices
~ g
[ Request Rouling ]
- iy Services|
P e ~
-~ ’/ o .

b, ¥ b i
o T4 £ T o
J""-'E SEp Lo 13 ¥
g N .y

Dynama instences Other datasiores|

[ 0

Service-oriented architecture of
Amazon's platform

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.52




What is Computer Security Today?

+ Computing in the presence of an adversary!

- Adversary is the security field's defining
characteristic

Reliability, robustness, and fault tolerance
- Dealing with Mother Nature (random failures)
- Security

- Dedling with actions of a knowledgeable attacker
dedicated to causing harm

- Surviving malice, and not just mischance

* Wherever there is an adversary, there is a
computer security problem!

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.53

Protection vs. Security

- Protection: mechanisms for controlling access of
programs, processes, or users to resources

- Page table mechanism
- Round-robin schedule
- Data encryption

* Security: use of protection mech. to prevent misuse
of resources
- Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

- Need to consider external environment the system
operates in
» Most well-constructed system cannot protect information

if user accidentally reveals password - social engineering
challenge

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.54

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015

Security Requirements

Authentication
- Ensures that a user is who is claiming to be

Data integrity

- Ensure that data is not changed from source to
destination or after being written on a storage device

Confidentiality
- Ensures that data is read only by authorized users

Non-repudiation

- Sender/client can't later claim didn't send/write data
- Receiver/server can't claim didn't receive/write data

Lec 23.55

Authentication: Identifying Users

+ How to identify users to the system?
- Passwords
» Shared secret between two parties

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be Jlugged in directly: several
credit cards now in this category

- Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 23.56

4/27/15 Kubiatowicz €5162 ©®UCB Spring 2015




Passwords: Secrecy

© Sys Keep copy of secre
check against passwords
- What if malicious user gains access to list
of passwords?
» Need to obscure information somehow
- Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)
+ Example: UNIX /etc/passwd file
- passwd—one way transform(hash)—encrypted passwd
- System stores only encrypted version, so OK even if
someone reads the filel
- When ¥ou type in your password, system compares
encrypted version
* Problem: Can you trust encryption algorithm?
- Example: one algorithm thought safe had back door
» Governments want back door so they can snoop
- Also, security through obscurity doesn't work

» GSM encryption algorithm was secret; accidentally released:
Berkeley grad students cracked in a few hours

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.57

“eggplant”

Passwords: How easy to guess?

. Wc'gys of Compromising Passwords
- Password Guessing:
» Often people use obvious information like birthday,
favorite color, girlfriend’'s name, etc...
- Dictionary Attack:
» Work way through dictionary and compare encrypted
version of dictionary words with entries in /eTc/Basswd
- Dumpster Divin%
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)
* Paradox:
- Short passwords are easy to crack
- Long ones, people write down!
* Technology means we have to use Ion?er' passwords
- UNIX initially reqciljred lowercase, 5-letter passwords:
total of 26°=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .Olps to check a password—0.1 seconds to crack
» Even faster today (use mulfiple processors)
- Takes less time to check for all words in the dictionary!

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.58

~28 BITS OF ENTROPY | | \WJAS IT TROMBONE? NG,

UNCOMMON TROUBADOR, AND ONE OF
(NON-GIBREREH) | TR THE Os WS A ZERD?
BreE LoRp | UNKNOWN * y
L - AND THERE  WAS
- = 3 Davs AT SOME SHBOL... >
Tr@Qubddor &3 1000 G e
T ocins h e
CAPS? 5@% oS NUMERAL | | Bt T e oy
PUNCTURTION DIFFICOLTY T0 GUESS : DIFFICOLTY TO REMEMBER:
(oums s 2w EASY HARD

15 ONLY GIE D€ B T COMPoN FORMATS)

~ Yt BITS OF ENTROPY

correct horse battery stople

2™ =550 YEARS AT
1600 GUESSES/SEC

FOUR RANDOM

COMMON WORDS DIFFiCOTY To GUESS: DIFFICOLTY To REMEMBER:

YOUVE ALREADY
HARD MEMORIZED |T
THROUGH 20 YEARS CF EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TD USE' PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FER COMPUTERS TD GUESS. https://xkcd.com/936/

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.59

Securing Communication: Cryptography

* Cryptography: communication in the presence of
adversaries

- Studied for thousands of years

- See the Simon Singh's The Code Book for an excellent,
highly readable history

- Central goal: confidentiality

- How to encode information so that an adversary can't
extract it, but a friend can

* General premise: there is a kelz, ﬁossession of which
allows decoding, but without which decoding is
infeasible

- Thus, key must be kept secret and not guessable

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.60




Using Symmetric Keys

- Same key for encryption and decryption

* Achieves confidentiality

* Vulnerable to tampering and replay attacks

Plaintext (m)

Decrypt with
secret key

. Internet
Encrypt with
secret key
Ciphertext
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 23.61

Symmetric Keys

* Can just XOR plaintext with the key
- Easy to implement, but easy to
break using frequency analysis .
- Unbreakable alternative: XOR with L
one-time pad i
» Use a different key for each
message

Lec 23.62

4/27/15 Kubiatowicz CS162 ©UCB Spring 2015

Symmetric Keys

* More sophisticated (e.g., block cipher) algorithms

- Works with a block size (e.g., 64 bits)

» To encrypt a stream, can encrypt blocks separately, or

link them 1
Plaintext Ciphertext
EEEENE NN D:%CD
Block Cipher Block Cipher
Key =| Encryption Key —= ' Decryption
EEEEREEN EEEEEEEE
Ciphertext Plaintext

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 23.63

Symmetric Key Ciphers - DES & AES

* Data Encryption Standard (DES)
- Developed by IBM in 1970s, standardized by NBS/NIST
- 56-bit key (decreased from 64 bits at NSA's request)
- Still fairly strong other than brute-forcing the key
space
» But custom hardware can crack a key in < 24 hours
- Today many financial institutions use Triple DES
» DES applied 3 times, with 3 keys totaling 168 bits
+ Advanced Encryption Standard (AES)
- Replacement for DES standardized in 2002
- Key size: 128, 192 or 256 bits
* How fundamentally strong are they?
- No one knows (no proofs exist)

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.64




Authentication via Secret Key

* Main idea: entity proves identity by decrypting a
secret encrypted with its own key
- K - secret key shared only by A and B

* A can asks B to authenticate itself by decrypting a
nonce, i.e., random value, x

- Avoid replay attacks (attacker impersonating client or
server)

+ Vulnerable to man-in-the middle attack

0 B

E(x, K)
" Notation: E(m,k) —
encrypt message m
with key k
4/27/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 23.65

Integrity: Cryptographic Hashes

+ Basic building block for integrity: cryptographic hashing
- Associate hash with byte-stream, receiver verifies match

» Assures data hasn't been modified, either accidentally - or
maliciously

* Approach:
- Sender computes a secure digest of message m using H(x)
» H(x) is a publicly known hash function
» Digestd = HMAC (K, m) = H(K | HK | m))

» HMAC(K, m) is a hash-based message authentication
function

- Send digest d and message m to receiver

- Upon receiving m and d, receiver uses shared secret key,
K, to recompute HMAC(K, m) and see whether result
agrees with d

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.66

Using Hashing for Integrity

plaintext (m) corrupted msg  m

Internet

HMAC(K,m)

Encrypted Digest
Unencrypted Message

Can encrypt m for confidentiality

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.67

Standard Cryptographic Hash Functions

* MD5 (Message Digest version 5)
- Developed in 1991 (Rivest), produces 128 bit hashes
- Widely used (RFC 1321)
- Broken (1996-2008): attacks that find collisions

+ SHA-1 (Secure Hash Algorithm)

- Developed in 1995 (NSA) as MD5 successor with 160 bit
hashes

- Widely used (SSL/TLS, SSH, PGP, IPSEC)
- Broken in 2005, government use discontinued in 2010

+ SHA-2 (2001)
- Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

* HMAC's are secure even with older “insecure” hash
functions

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.68




Asymmetric Encryption (Public Key)

* Idea: use two different keys, one to encrypt (e)
and one to decrypt (d)

- A key pair
* Crucial property: knowing e does not give away d
* Therefore e can be public: everyone knows it!

« If Alice wants to send to Bob, she fetches Bob's
public key (say from Bob's home page) and encrypts
with it

- Alice can't decrypt what she's sending to Bob ..
- .. but then, neither can anyone else (except Bob)

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.69

Public Key / Asymmetric Encryption

- Sender uses receiver's public key
- Advertised to everyone

- Receiver uses complementary private key
- Must be kept secret

Plaintext Plaintext

. Internet .
Encrypt with Decrypt with
public key private key
Ciphertext
4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.70

Public Key Cryptography

* Invented in the 1970s
- Revolutionized cryptography
- (Was actually invented earlier by British intelligence)

* How can we construct an encryption/decryption
algorithm using a key pair with the public/private
properties?

- Answer: Number Theory

* Most fully developed approach: RSA
- Rivest / Shamir / Adleman, 1977; RFC 3447
- Based on modular multiplication of very large integers
- Very widely used (e.g., ssh, SSL/TLS for https)

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.71

Properties of RSA

* Requires generating large, random prime numbers
- Algorithms exist for quickly finding these (probabilistic!)

* Requires exponentiating very large numbers
- Again, fairly fast algorithms exist

* Overall, much slower than symmetric key crypto

- One general strategy: use public key crypto to exchange a
(short) symmetric session key

» Use that key then with AES or such

+ How difficult is recovering d, the private key?
- Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard
(= brute force only)

» (Though quantum computers can do so in polynomial time!)
4/27/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 23.72




Simple Public Key Authentication

+ Each side need only to know the
other side’s public key

- No secret key need be shared

* A encrypts a nonce (random num.) x

- Avoid replay attacks, e.g.,
attacker impersonating client or
server

+ B proves it can recover x

+ A can authenticate itself to B in the
same way Notation: E(m,k) —
encrypt message m

* Many more details to make this work With key k
securely in practice!

4/27/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 23.73

Summary (1/2)

+ Distributed File System:
- Transparent access to files stored on a remote disk
- Caching for performance

* Cache Consistency: Keeping client caches consistent with
one another

- If multiple clients, some reading and some writing, how do
stale cached copies get updated?

- NFS: check periodically for changes

- AFS: clients register callbacks to be notified by server of
changes

+ Remote Procedure Call (RPC): Call procedure on remote
machine

- Provides same interface as procedure
- Automatic packing and unpacking of arguments (in stub)
* VFS: Virtual File System layer

- Provides mechanism which gives same system call interface
for different types of file systems
4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.74

Summary

+ Key-Value Store:
- Two operations
» put(key, value)
» value = get(key)
- Challenges
» Fault Tolerance > replication
» Scalability > serve get()'s in parallel. replicate/cache hot tuples
» Consistency - quorum consensus to improve put() performance
- Distributed identity: Use cryptography
- Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
* Public-Key Encryption
- Two keys: a public key and a private key
- Slower than private key, but simplifies key-distribution
+ Secure Hash Function
- Used to summarize data

- Hard to find another block of data with same hash

4/27/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 23.75




