CS162
Operating Systems and
Systems Programming
Lecture 22

Distributed Systems,
Networking, TCP/IP, RPC,VFS

April 15th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Network Protocols

* Profocol: Agreement befween Two parfies as To how
information is to be transmitted
- Example: system calls are the protocol between the
operating system and application
- Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how
are O and 1 represented)

» Link level: packet formats/error control (for instance, the
CSMA/CD protocol)

» Network level: network routing, addressing
» Transport Level: reliable message delivery

* Protocols on today's Internet:

-mail
NFS—_, www e-mall - g
e
RPC
.../.
Transport UDP /
....... Kiqeses e gl

Y v
Physical/Link Ethernet ATM Packet radio

4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.2

Recall: Window-based acknowledgements

+ Windowing protocol (not quite TCP): AN
- Send up to N packets without ack e
» Allows pipelining of packets N=5 Z
» Window size (l\?) < queue at destination

» Receiver acknowledges each packet
» Ack says “receivedall packets up
to sequence number X"/send more
* Acks serve dual purpose:
- Reliability: Confirming packet received
- Ordering: Packets can be reordered
at destination
* What if packet gets garbled/dropped?
- Sender will timeout waiting for ack packet
» Resend missing packets=> Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
- What if ack gets garbled/dropped?
- Timeout and resend just the un-acknowledged packets

- Each packet has sequence number Phigy E

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.3

Transmission Control Protocol (TCP)

Stream in: Stream out:

+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
* TCP Details
- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn't
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion
» A “good citizen”

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.4

TCP Windows and Sequence Numbers

—"Sequence Numbers —

Sent Sent Not yet | Send
acked not acked sent ender

Given to appl__Buffered received

Received Received Not yet |
Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack'ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.5

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380400

ol 0o o jhoalhhlnn]nhnn
—|R2| R2 |R2 82|82 |R2 |8l
28| % |23 |oNaAR| 28|23 Y
08| 68 |58|04|S3|58|680LX
A A Y 3 4 - 3
4/20/15 / Kubiatowicz €5162 ©UCB Spring 2015

Selective Acknowledgement Option (SACK)

— = W
>g’)
o8 o
Xlc o~ = e [3
Zn N o uk’.’ S|
3 o © 2| o
cla o X g 5| 0
3| Z ® 9 5 ol £
o 3 92 X Ol
elZ s a o s|>
| n ® a o Q
3 — 3 H < 3lx
g N E
31 R (] A

H_I H_/

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
+ Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.7

Congestion Avoidance

+ Congestion
- How long should timeout be for re-sending messages?
» Too long—»wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
utting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
- Timeout = congestion, so cut window size in half
- “Additive Increase, Multiplicative Decrease’
4/20/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 22.8

Open Connection: 3-Way Handshaking

* Goal: agree on a set of parameters, i.e., the
start sequence number for each side

- Starting sequence number: sequence of first byte
in stream

- Starting sequence numbers are random

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.9

Open Connection: 3-Way Handshaking

+ Server waits for new connection calling listen()

+ Sender call connect() passing socket which contains
server's IP address and port number

- OS sends a special packet (SYN) containing a proposal for
first sequence number, x

Client (initiator) Server
Active 00 listen()
Open CONNec SYN isten
P » SeqNum = x Passive
Open

)
S
=

4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.10

Open Connection: 3-Way Handshaking

+ If it has enough resources, server calls accept() to accept
connection, and sends back a SYN ACK packet containing

- Client's sequence number incremented by one, (x + 1)
» Why is this needed?

- A sequence number proposal, y, for first byte server will send

Client (initiator) Server
Active listen()
Open connect SYN
P 0 » SeqNum = Passive
Open
_ Ack=x* accept()
um =y and
SYN and ACK, Seal
(O]
AC -
£ K Ack=y+4
allocate
buffer space
4/20/15 Kubiatowicz €S162 ©®UCB Spring 2015 Lec 22.11

3-Way Handshaking (cont'd)

* Three-way handshake adds 1 RTT delay

* Why do it this way?
- Congestion control: SYN (40 byte) acts as cheap probe

- Protects against delayed packets from other connection
(would confuse receiver)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.12

Close Connection

* Goal: both sides agree to close the connection
* 4-way connection tear down

Host 1 Host 2

close FIN

FIN ACK
< daa_—

" close
FIN ACK

S

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

=T | josed - Epoch #: uniquely identifies which set of sequence
Can retransmit FINACK 9 numbers are currently being used
if it is lost E » Epoch # stored on disk, Put in every message
- » Epoch # incremented on crash and/or when run out of
closed sequence #
- Pseudo-random increment to previous sequence number
» Used by several protocol implementations
4/20/15 Kubiatowicz C5162 ©UCB Spring 2015 Lec 22.13 4/20/15 Kubiatowicz C5162 ©UCB Spring 2015 Lec 22.14
Administrivia Use of TCP: Sockets
.) - Socket: an abstraction of a network I/0 queue
* Midterm II: Wednesday (4/22) - Embodies one side of a communication channel
- Time: 6:30PM - 9:30PM » Same interface regardless of location of other end
- P . . » Could be local machine (called "UNIX socket”) or remote
Locahc‘)n- Dwmell.e. 1%5/ 155 machine (called “network socket”)
» Logins aa-ee, in Dwinelle 145 - First introduced in 4.2 BSD UNIX: big innovation at time
» Logins ef-nk, in Dwinelle 155 » Now most operating systems provide some notion of socket
- All topics from Midterm I, up to next Monday + Using Sockets for Client-Server (C/C++ interface):
including: ’ ’ - On server: set up “server-socket”
9 . . » Create socket, Bind to protocol (TCP), local address, port
» Address Translation/TLBs/Paging » Call listen(): tells server socket to accept incoming requests
» I/0 subsystems, Storage Layers, Disks/SSD » Perform multiple accept() calls on socket to accept incoming
» Perf n nd Q ina Th connection request
errormance a ueueing Iheory » Each successful accept() returns a new socket for a new
» File systems connection; can pass this off to handler thread
» Distributed systems, TCP/IP, RPC - On client:)
» NFS/AFS. Key-Value St » Create socket, Bind to protocol (TCP), remote address, port
. Key-Value Store » Perform connect() on socket to make connection
+ Closed book, one page of notes - both sides » If connect() successful, have socket connected to server
* Bring Calculator!
4/20/15 Kubiatowicz C5162 ©UCB Spring 2015 Lec 22.15

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.16

Socket Setup over TCP/IP

connection

Client Server

+ Server Socket: Listens for new connections
- Produces new sockets for each unique connection
*+ Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port “randomly” assigned
» Done by OS during client socket setup
- Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0--1023,, . Spring 2015 Lec 22.17

Recall: Sockets in concept

Client Server
Create Server Socket

. Bind it to an Address
Create Client Socket (host:port)

Connect it to server (host:port) Listen for Connection

Connection Socket Accept connection

Connection Socket

write request read request

read response write response

Close Client Socket Close Connection Socket

Close Server Socket

4/20/15 4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.18
Recall: Client Protocol Recall: Server Protocol (v1)
?har *hostname; ggfﬁgir /* Create Socket to receive requests*/
int sockfd, portno; SOCK_RAW lstnsockfd = socket (AF_INET, SOCK_STREAM, 0);
struct sockaddr in serv_addr; SOCK_SEQPACKET
struct hostent *server; SOCK_Rom /* Bind socket to port */

server = buildServerAddr (&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket (AF_INET, SOCK_STREAM, 0)

/* Connect tg- server on port */
connect (sogkfd, (struct sockaddr *) &serv_addr, sizeof (serv_addr)
printf ("Connected to %s:%d\n",server->h name, portno);

PF_LOCAL Host-internal protocols, formerly called PF_UNIX,
/* PF_UNIX Host-internal protocols, deprecated, use PF_LOCAL,
cli PF_INET Internet version 4 protocols,

PF_ROUTE Internal Routing protocol,

PF_KEY Internal key-management function,
/* PF_INET6 Internet version 6 protocols,

PF_SYSTEM System domain,
clo PF_NDRV Raw access to network device

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.19

bind(lstnsockfd, (struct sockaddr *)s&serv addr,sizeof (serv_addr));
while (1) {
/* Listen for incoming connections */

listen(lstnsockfd, MAXQUEUE) ;

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen) ;
server (consockfd) ;
close (consockfd) ;
}
close(lstnsockfd) ;
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.20

Linux Network Architecture

User Application and Configuration Code

ﬁ w send() socket recv() socket

[~
wn
2
g
o Socket Library
m
) Linux TCP/IP Protocol Stack
3 netif_rx()
@, insert
w0 ether_setup()| netif_wake_gueue() sh_buff
o
2 I [T
L Format He.ad’er Ourbaund Paclet Inbuund’ Packet
A r
| open() W hard_header() | hard_start_xmit()
Network Driver Write .l acket Re ld.f ack et
Network Interface Hardware
4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.21

Network Details: sk_buff structure

struct sk_buff_head

next
[prev
glen=4
lock
' T T v
next > next > next > pext
prey = prev j prev |= prev

— st list list list —
sk sk sk sk

struct sk_buff struct sk_buff struct sk_buff struct sk_buff
- Socket Buffers: sk_buff structure
- The I/0 buffers of sockets are lists of sk_buff
» Pointers to such structures usually called “skb”
- Complex structures with lots of manipulation routines
- Packet is linked list of sk_buff structures

4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.22

Headers, Fragments, and All That

data >
head
tail Ethernet
end P
: TCP
mac_header
network_header page
transport_header
P buffer
. 0
next —
= frags]
sk_buff skb_shared_info page

* The “linear region”:
- Space from skb->data to skb->end
- Actual data from skb->head to skb->tail
- Header pointers point to parts of packet
+ The fragments (in skb_shared_info):

- Right I‘I’er skb- >end each fragment has pointer to pages,
start of data, and length
4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.23

Copies, manipulation, etc

struct sk_buff stroat sk_buff
skl —m- 5) - T
besd headroom
data
tail
end DATA
tailroom
skb_shinfolskb o «— skb_shinfo{new)
nr_frags=1
pr
T
page_offset=0 Data
struct size=51
skb_shared_info

Lots of sk_buTT manipulation functions for:

- removing and adding headers, merging data, pulling it up
into linear region

- Copying/cloning sk_buff structures

4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.24

Network Processing Contexts

Timer hardware

interrupt (e.g. HPET) [.
g | ,ﬁpplrcahon User process context

v Softirg context

= Interrupt context
Timer driver "

| Raise timer softirg
r’3\

R
Timer softirg | v TCP A
(4) [
Retransmit timer
Delayed ACK timer l IP/Ethernet
Keepalive timer, ... :
Transmit Queue | Dev f‘:;;ﬁi
A
Raise tx) (6) Raise rx
lsoftirg |(7) : softirg
v
L 2 J ¥ NIC Driver
(3)
A
NIC interrupt
4/20/15 Kubiatowicz €5162 ©UCB Spring 2015 tec 22.25

Avoiding Interrupts: NAPI

-

xecution

sumes [*

New API (NAPI): Use polling to receive packets
- Only some drivers actually implement this

Exit hard interrupt context as quickly as possible
- Do housekeeping and free up sent packets
- Schedule soft interrupt for further actions

+ Soft Interrupts: Handles receiption and delivery
4/20/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 22.26

Distributed Applications

* How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use testéset

0

& (7)) o
=))8
! a

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send(message, mbox)
» Send message to remote mailbox identified by mbox
—Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.27

Using Messages: Send/Receive behavior

* When should send(message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that receiver actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2
- T1>buffer—T2

- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.28

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:
Producer:
int msgl[1000];
prepare message; Message
send(msgl,mbox) ;

Consumer:
int buffer[1000];

while(1) { -
receive(buffer,mbox); ‘
3 process message; Message

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- One of the roles of the window in TCP: window is size of
buffer on far end

- Restricts sender to forward only what will fit in buffer

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.29

General's Paradox

* Geneéral's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack

» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

”

- Remarkably, “no”, even if all messages get through

11 am ok?

Yeah, but what if you
Don't get this ack?

- No way to be sure last message gets through!
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.30

Two Phase (2PC) Commit

- Since we can't solve the General's Paradox (i.e.
simultaneous action), let's solve a related problem

- Distributed transaction: Two or more machines agree to
do something, or not do it, atomically

* Two Phase Commit: High-level problem statement

- If no node fails and all nodes are ready to commit,
then all nodes COMMIT

- Otherwise ABORT at all nodes

- Developed by Turing award winner Jim Gray (first
Berkeley CS PhD, 1969)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.31

2PC Algorithm

* One coordinator
* N workers (replicas)
+ High level algorithm description
- Coordinator asks all workers if they can commit

- If all workers reply "VOTE-COMMIT", then coordinator
broadcasts "GLOBAL-COMMIT",

Otherwise coordinator broadcasts "GLOBAL-ABORT"
- Workers obey the GLOBAL messages

* Use a persistent, stable log on each machine to keep
track of what you are doing

- If a machine crashes, when it wakes up it first checks
its log to recover state of world at time of crash

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.32

Detailed Algorithm
Worker Algorithm

Coordinator Algorithm

Coordinator sends VOTE-REQ to all

Failure Free Example Execution

coordinator

workers VOTE GLOBAL
— Wait for VOTE-REQ from coordinator) -
REQ COMMIT
— If ready, send VOTE-COMMIT to worker 1
coordinator
| - If not ready, send VOTE-ABORT to
— If receive VOTE-COMMIT from all N coordinator worker 2
workers, send GLOBAL-COMMIT to — And immediately abort
all workers VOTE-
— If doesn’t receive VOTE-COMMIT ker 3 COMMIT
from all N workers, send GLOBAL- worker
ABORT to all workers time
— If receive GLOBAL-COMMIT then
commit
— If receive GLOBAL-ABORT then abort
4/20/15 Kubiatowicz €S162 ©®UCB Spring 2015 Lec 22.33 4/20/15 Kubiatowicz €S162 ©®UCB Spring 2015 Lec 22.34
State Machine of Coordinator State Machine of Workers
+ Coordinator implements simple state machine:
INIT :ec‘(’; ‘\’/gTTi"ZEB% Recv: VOTE-REQ
enda: - .
Recv: START Send: VOTE-COMMIT
Send: VOTE-REQ
WAIT
Recv: VOTE-ABORT Recv: all VOTE-COMMIT ecv: GLOBAL-ABORT Recy: GLOBAL-COMMIT
Send: GLOBAL-ABORT Send: GLOBAL-COMMIT ABORT] [COMMIT }
[ABORT] [COMMIT]
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.35 4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.36

Dealing with Worker Failures

+ How to deal with worker failures?

- Failure only affects states in which the node is
waiting for messages

- Coordinator only waits for votes in "WAIT" state
- In WAIT, if doesn't receive
- N votes, it times out and sends

- GLOBAL-ABORT
INIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-AB

Recv: VOTE-COMMIT
d: GLOBAL-COMMIT

Croom) [comnar)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.37

Example of Worker Failure

timeout

GLOBAL-
ABORT

coordinator

VOTE-REQ
worker 1 \ /

VOTE-
worker 2 COMMIT
worker 3 f time
4/20/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 22.38

Dealing with Coordinator Failure

- How to deal with coordinator failures?
- worker waits for VOTE-REQ in INIT
» Worker can time out and abort (coordinator handles it)

- worker waits for GLOBAL-* message in READY
» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

Recv: VOTE-REQ

Recv: VOTE-REQ
Send: VOTE-ABO

Send: VOTE-COMMIT

Recv: GLOBAL-ABORT Recyv: GLOBAL-COMMIT

ABORT] [COMMIT J
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.39

Example of Coordinator Failure #1

ABORT | | comm |

coordinator
; éxVOTE-

RE i
worker 1 Q timeout
/ / VoTE.
worker 3 timeout
4/20/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 22.40

Example of Coordinator Failure #2

ABORT | (comm |
coordinator restarted

\/OTE-REQ /
worker 1

VOTE- GLOBAL-
worker 2 coMmMmiT BORT

block waiting for
worker 3 coordinator

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.41

Durability

+ All nodes use stable storage* to store which state
they are in

+ Upon recovery, it can restore state and resume:
- Coordinator aborts in INIT, WAIT, or ABORT
- Coordinator commits in COMMIT
- Worker aborts in INIT, ABORT
- Worker commits in COMMIT
- Worker asks Coordinator in READY

+ * - stable storage is non-volatile storage (e.g.
backed by disk) that guarantees atomic writes.

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.42

Blocking for Coordinator to Recover

* A worker waiting for global decision can ask
fellow workers about their state
- If another worker is in ABORT or
COMMIT state then coordinator INIT
must have sent GLOBAL-* Recv: VOTE-REQ

» Thus, worker can safely Send: VOTE-A
abort or commit, respectively

Recv: VOTE-REQ
Send: VOTE-COMMIT

. . . R : GLOBAL-ABORT Rt + GLOBAL-COMMIT
- If another worker is still in & e

INIT state then both workers
can decide to abort

ABORT] [COMMIT]

- If all workers are in ready,
need to BLOCK (don't know if coordinator
wanted to abort or commit)

4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.43

Distributed Decision Making Discussion

. Wth is distributed decision making desirable?
- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in rr!ul'riEIe places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and cras%\es
» Site A crashes
» Site B wakes up, check its log, and realizes that it has
voted "yes"” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
?(cges pinned in memory, etc) until learns fate of update
+ PAXOS: An alternative used by GOOGLE and others
that does not have this blockin% problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to compromise the decision making
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.44

Byzantine General’'s Problem

. Lieutenant

W
\ 4”‘70/(,/ Y

Retreat!

Lieutenant

’ ! —
g |

General m)

Malicious! il | Lieutenant

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
+ The commanding general must send an order to his n-1
lieutenants suc at:
- IC1: All loyal lieutenants obey the same order

Byzantine General's Problem (con't)

* Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

000

- IC2: If the commanding general is loyal, then all loyal Request—> OO |__Distributed
lieutenants obey the order he sends . Decision
4/20/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 22.45 4/20/15 Ku N & bring 2015 Lec 22.46
Summary

* TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

- Uses window-based acknowledgement protocol

- Congestion-avoidance dynamically adapts sender window to
account for congestion in networ

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if
asked (prepare)

- Next, ask everyone to commit

+ Byzantine General's Problem: distributed decision making with
malicious failures

- One general, n-1 lieutenants: some number of them may be
malicious (often “f" of them) Y

- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

+ Remote Procedure Call (RPC): Call procedure on remote
machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without user
programming (in Stub)
4/20/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 22.47

