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Recall: Network Protocols
• Protocol: Agreement between two parties as to how 

information is to be transmitted
– Example: system calls are the protocol between the 
operating system and application

– Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how 

are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the 

CSMA/CD protocol) 
» Network level: network routing, addressing
» Transport Level: reliable message delivery 

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport
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BA

Recall: Window-based acknowledgements

N=5 Q
ueue

• Windowing protocol (not quite TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “received all packets up

to sequence number X”/send more
• Acks serve dual purpose: 

– Reliability: Confirming packet received
– Ordering: Packets can be reordered
at destination

• What if packet gets garbled/dropped?  
– Sender will timeout waiting for ack packet

» Resend missing packets Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?  

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces? 

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?  

– Timeout and resend just the un-acknowledged packets
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Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different 
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize 
state at sender and receiver)
» “Window” reflects storage at receiver – sender shouldn’t 

overrun receiver’s buffer space
» Also, window should reflect speed/capacity of network –

sender shouldn’t overload network
– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen” 

Router Router
Stream in: Stream out:
..zyxwvuts gfedcba
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TCP Windows and Sequence Numbers

• Sender has three regions: 
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions: 

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver
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Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60 

Seq:340 A:380/20 

Seq:380 A:400/0  

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!
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Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for 
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one 
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)
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Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion  ack is delayed 
unnecessary timeout  more traffic  more congestion
» Closely related to window size at sender: too big means 

putting too much data into network
• How does the sender’s window size get chosen?

– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate 
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until 

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput) 
by 1 for each ack received 

– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”
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Open Connection: 3-Way Handshaking

• Goal: agree on a set of parameters, i.e., the 
start sequence number for each side
– Starting sequence number: sequence of first byte 
in stream 

– Starting sequence numbers are random
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Open Connection: 3-Way Handshaking

• Server waits for new connection calling listen()
• Sender call connect() passing socket which contains 

server’s IP address and port number 
– OS sends a special packet (SYN) containing a proposal for 
first sequence number, x

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

tim
e
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Open Connection: 3-Way Handshaking

• If it has enough resources, server calls accept() to accept 
connection, and sends back a SYN ACK packet containing
– Client’s sequence number incremented by one, (x + 1)

» Why is this needed? 
– A sequence number proposal, y, for first byte server will send

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

accept()

allocate
buffer space

tim
e
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3-Way Handshaking (cont’d) 

• Three-way handshake adds 1 RTT delay 

• Why do it this way?
– Congestion control: SYN (40 byte) acts as cheap probe
– Protects against delayed packets from other connection 
(would confuse receiver)
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Close Connection

• Goal: both sides agree to close the connection
• 4-way connection tear down

FIN
FIN ACK

FIN
FIN ACK

Host 1 Host 2

Can retransmit FIN ACK
if it is lost

tim
eo

ut

closed

close

close

closed

data
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Sequence-Number Initialization
• How do you choose an initial sequence number?

– When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate 

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might 
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets 

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence 
numbers are currently being used
» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of 

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
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Administrivia

• Midterm II: Wednesday (4/22)
– Time: 6:30PM – 9:30PM
– Location: Dwinelle: 145/155  

» Logins aa-ee, in Dwinelle 145
» Logins ef-nk, in Dwinelle 155

– All topics from Midterm I, up to next Monday, 
including:
» Address Translation/TLBs/Paging
» I/O subsystems, Storage Layers, Disks/SSD
» Performance and Queueing Theory
» File systems
» Distributed systems, TCP/IP, RPC
» NFS/AFS, Key-Value Store

• Closed book, one page of notes – both sides
• Bring Calculator!
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Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote 

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming 

connection request
» Each successful accept() returns a new socket for a new  

connection; can pass this off to handler thread
– On client: 

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server
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Server
Socket

socket socketconnection

new
socket

ServerClient

Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values:

[ Client Addr, Client Port, Server Addr, Server Port, Protocol ]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023 
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Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address 
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept connection

read request

Connection Socket

Connection Socket
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Recall: Client Protocol

char *hostname;
int sockfd, portno;
struct sockaddr_in serv_addr;
struct hostent *server;

server = buildServerAddr(&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket(AF_INET, SOCK_STREAM, 0)

/* Connect to server on port */
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)
printf("Connected to %s:%d\n",server->h_name, portno);

/* Carry out Client-Server protocol */
client(sockfd);

/* Clean up on termination */
close(sockfd);
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Recall: Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));
while (1) {
/* Listen for incoming connections */

listen(lstnsockfd, MAXQUEUE); 

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr, 

&clilen);

server(consockfd);

close(consockfd);
}

close(lstnsockfd);
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Linux Network Architecture

Lec 22.224/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Details: sk_buff structure

• Socket Buffers: sk_buff structure
– The I/O buffers of sockets are lists of sk_buff

» Pointers to such structures usually called “skb”
– Complex structures with lots of manipulation routines
– Packet is linked list of sk_buff structures
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Headers, Fragments, and All That

• The “linear region”: 
– Space from skb->data to skb->end
– Actual data from skb->head to skb->tail
– Header pointers point to parts of packet

• The fragments (in skb_shared_info):
– Right after skb->end, each fragment has pointer to pages, 

start of data, and length
Lec 22.244/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Copies, manipulation, etc

• Lots of sk_buff manipulation functions for:
– removing and adding headers, merging data, pulling it up 
into linear region

– Copying/cloning sk_buff structures
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Network Processing Contexts
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Avoiding Interrupts: NAPI

• New API (NAPI): Use polling to receive packets
– Only some drivers actually implement this

• Exit hard interrupt context as quickly as possible
– Do housekeeping and free up sent packets
– Schedule soft interrupt for further actions

• Soft Interrupts: Handles receiption and delivery
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Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on 
different machines 
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and 

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive
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Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually 
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1T2

– T1bufferT2
– Very similar to producer/consumer 

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];while(1) {prepare message; send(msg1,mbox);}

Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}
• No need for producer/consumer to keep track of space 

in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of 
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message
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• General’s paradox: 
– Constraints of problem: 

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because 
he arrived a couple of days too early

• Can messages over an unreliable network be used to 
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

General’s Paradox
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Two Phase (2PC) Commit

• Since we can’t solve the General’s Paradox (i.e. 
simultaneous action), let’s solve a related problem
– Distributed transaction: Two or more machines agree to 
do something, or not do it, atomically 

• Two Phase Commit: High-level problem statement
– If no node fails and all nodes are ready to commit, 
then all nodes COMMIT

– Otherwise ABORT at all nodes
• Developed by Turing award winner Jim Gray (first 

Berkeley CS PhD, 1969)
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2PC Algorithm

• One coordinator 
• N workers (replicas) 
• High level algorithm description

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator 
broadcasts “GLOBAL-COMMIT”, 
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep 

track of what you are doing
– If a machine crashes, when it wakes up it first checks 
its log to recover state of world at time of crash
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Detailed Algorithm

Coordinator sends VOTE‐REQ to all 
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to 

coordinator
– If not ready, send VOTE‐ABORT to 

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all N 
workers, send GLOBAL‐COMMIT to 
all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then 
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm
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Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3
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State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Dealing with Worker Failures

• How to deal with worker failures?
– Failure only affects states in which the node is 
waiting for messages

– Coordinator only waits for votes in “WAIT” state
– In WAIT, if doesn’t receive 
– N votes, it times out and sends
– GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3
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Dealing with Coordinator Failure

• How to deal with coordinator failures?
– worker waits for VOTE-REQ in INIT

» Worker can time out and abort (coordinator handles it)
– worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3
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Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for 
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3
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Durability

• All nodes use stable storage* to store which state 
they are in

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

• * - stable storage is non-volatile storage (e.g. 
backed by disk) that guarantees atomic writes. 
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Blocking for Coordinator to Recover

• A worker waiting for global decision can ask 
fellow workers about their state
– If another worker is in ABORT or 
COMMIT state then coordinator 
must have sent GLOBAL-*
» Thus, worker can safely 

abort or commit, respectively

– If another worker is still in 
INIT state then both workers 
can decide to abort 

– If all workers are in ready, 
need to BLOCK (don’t know if coordinator 
wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or 
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log, 

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has 

voted “yes” on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, 
pages pinned in memory, etc) until learns fate of update

• PAXOS: An alternative used by GOOGLE and others 
that does not have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
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Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal 
lieutenants obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

LieutenantMalicious!
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Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision 
even if some subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision
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Summary
• TCP: Reliable byte stream between two processes on 

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to 

account for congestion in network
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if 
asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making with 

malicious failures
– One general, n-1 lieutenants: some number of them may be 

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• Remote Procedure Call (RPC): Call procedure on remote 
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user 

programming (in stub)


