
CS162
Operating Systems and
Systems Programming

Lecture 22

Distributed Systems,
Networking, TCP/IP, RPC,VFS

April 15th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 22.24/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Network Protocols
• Protocol: Agreement between two parties as to how

information is to be transmitted
– Example: system calls are the protocol between the
operating system and application

– Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how

are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the

CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 22.34/20/15 Kubiatowicz CS162 ©UCB Spring 2015

BA

Recall: Window-based acknowledgements

N=5 Q
ueue

• Windowing protocol (not quite TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “received all packets up

to sequence number X”/send more
• Acks serve dual purpose:

– Reliability: Confirming packet received
– Ordering: Packets can be reordered
at destination

• What if packet gets garbled/dropped?
– Sender will timeout waiting for ack packet

» Resend missing packets Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces?

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?

– Timeout and resend just the un-acknowledged packets

Lec 22.44/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» “Window” reflects storage at receiver – sender shouldn’t

overrun receiver’s buffer space
» Also, window should reflect speed/capacity of network –

sender shouldn’t overload network
– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:
..zyxwvuts gfedcba

Lec 22.54/20/15 Kubiatowicz CS162 ©UCB Spring 2015

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 22.64/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 22.74/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

IP H
eader

(20 bytes)

Sequence N
um

ber
A
ck N

um
ber

TCP Header

IP
 H

ea
de

r
(2

0
by

te
s)

Se
qu

en
ce

 N
um

be
r

A
ck

 N
um

be
r

TCP Header

Lec 22.84/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion  ack is delayed 
unnecessary timeout  more traffic  more congestion
» Closely related to window size at sender: too big means

putting too much data into network
• How does the sender’s window size get chosen?

– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput)
by 1 for each ack received

– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 22.94/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Open Connection: 3-Way Handshaking

• Goal: agree on a set of parameters, i.e., the
start sequence number for each side
– Starting sequence number: sequence of first byte
in stream

– Starting sequence numbers are random

Lec 22.104/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Open Connection: 3-Way Handshaking

• Server waits for new connection calling listen()
• Sender call connect() passing socket which contains

server’s IP address and port number
– OS sends a special packet (SYN) containing a proposal for
first sequence number, x

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

tim
e

Lec 22.114/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Open Connection: 3-Way Handshaking

• If it has enough resources, server calls accept() to accept
connection, and sends back a SYN ACK packet containing
– Client’s sequence number incremented by one, (x + 1)

» Why is this needed?
– A sequence number proposal, y, for first byte server will send

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

accept()

allocate
buffer space

tim
e

Lec 22.124/20/15 Kubiatowicz CS162 ©UCB Spring 2015

3-Way Handshaking (cont’d)

• Three-way handshake adds 1 RTT delay

• Why do it this way?
– Congestion control: SYN (40 byte) acts as cheap probe
– Protects against delayed packets from other connection
(would confuse receiver)

Lec 22.134/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Close Connection

• Goal: both sides agree to close the connection
• 4-way connection tear down

FIN
FIN ACK

FIN
FIN ACK

Host 1 Host 2

Can retransmit FIN ACK
if it is lost

tim
eo

ut

closed

close

close

closed

data

Lec 22.144/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Sequence-Number Initialization
• How do you choose an initial sequence number?

– When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations

Lec 22.154/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm II: Wednesday (4/22)
– Time: 6:30PM – 9:30PM
– Location: Dwinelle: 145/155

» Logins aa-ee, in Dwinelle 145
» Logins ef-nk, in Dwinelle 155

– All topics from Midterm I, up to next Monday,
including:
» Address Translation/TLBs/Paging
» I/O subsystems, Storage Layers, Disks/SSD
» Performance and Queueing Theory
» File systems
» Distributed systems, TCP/IP, RPC
» NFS/AFS, Key-Value Store

• Closed book, one page of notes – both sides
• Bring Calculator!

Lec 22.164/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 22.174/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Server
Socket

socket socketconnection

new
socket

ServerClient

Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values:

[Client Addr, Client Port, Server Addr, Server Port, Protocol]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

Lec 22.184/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept connection

read request

Connection Socket

Connection Socket

Lec 22.194/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Client Protocol

char *hostname;
int sockfd, portno;
struct sockaddr_in serv_addr;
struct hostent *server;

server = buildServerAddr(&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket(AF_INET, SOCK_STREAM, 0)

/* Connect to server on port */
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)
printf("Connected to %s:%d\n",server->h_name, portno);

/* Carry out Client-Server protocol */
client(sockfd);

/* Clean up on termination */
close(sockfd);

Lec 22.204/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));
while (1) {
/* Listen for incoming connections */

listen(lstnsockfd, MAXQUEUE);

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen);

server(consockfd);

close(consockfd);
}

close(lstnsockfd);

Lec 22.214/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Linux Network Architecture

Lec 22.224/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Details: sk_buff structure

• Socket Buffers: sk_buff structure
– The I/O buffers of sockets are lists of sk_buff

» Pointers to such structures usually called “skb”
– Complex structures with lots of manipulation routines
– Packet is linked list of sk_buff structures

Lec 22.234/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Headers, Fragments, and All That

• The “linear region”:
– Space from skb->data to skb->end
– Actual data from skb->head to skb->tail
– Header pointers point to parts of packet

• The fragments (in skb_shared_info):
– Right after skb->end, each fragment has pointer to pages,

start of data, and length
Lec 22.244/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Copies, manipulation, etc

• Lots of sk_buff manipulation functions for:
– removing and adding headers, merging data, pulling it up
into linear region

– Copying/cloning sk_buff structures

Lec 22.254/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Processing Contexts

Lec 22.264/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Avoiding Interrupts: NAPI

• New API (NAPI): Use polling to receive packets
– Only some drivers actually implement this

• Exit hard interrupt context as quickly as possible
– Do housekeeping and free up sent packets
– Schedule soft interrupt for further actions

• Soft Interrupts: Handles receiption and delivery

Lec 22.274/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 22.284/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1T2

– T1bufferT2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 22.294/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];while(1) {prepare message; send(msg1,mbox);}

Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}
• No need for producer/consumer to keep track of space

in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 22.304/20/15 Kubiatowicz CS162 ©UCB Spring 2015

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

General’s Paradox

Lec 22.314/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Two Phase (2PC) Commit

• Since we can’t solve the General’s Paradox (i.e.
simultaneous action), let’s solve a related problem
– Distributed transaction: Two or more machines agree to
do something, or not do it, atomically

• Two Phase Commit: High-level problem statement
– If no node fails and all nodes are ready to commit,
then all nodes COMMIT

– Otherwise ABORT at all nodes
• Developed by Turing award winner Jim Gray (first

Berkeley CS PhD, 1969)

Lec 22.324/20/15 Kubiatowicz CS162 ©UCB Spring 2015

2PC Algorithm

• One coordinator
• N workers (replicas)
• High level algorithm description

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator
broadcasts “GLOBAL-COMMIT”,
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep

track of what you are doing
– If a machine crashes, when it wakes up it first checks
its log to recover state of world at time of crash

Lec 22.334/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Detailed Algorithm

Coordinator sends VOTE‐REQ to all
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to

coordinator
– If not ready, send VOTE‐ABORT to

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all N
workers, send GLOBAL‐COMMIT to
all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm

Lec 22.344/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3

Lec 22.354/20/15 Kubiatowicz CS162 ©UCB Spring 2015

State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 22.364/20/15 Kubiatowicz CS162 ©UCB Spring 2015

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 22.374/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Dealing with Worker Failures

• How to deal with worker failures?
– Failure only affects states in which the node is
waiting for messages

– Coordinator only waits for votes in “WAIT” state
– In WAIT, if doesn’t receive
– N votes, it times out and sends
– GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 22.384/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

Lec 22.394/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Dealing with Coordinator Failure

• How to deal with coordinator failures?
– worker waits for VOTE-REQ in INIT

» Worker can time out and abort (coordinator handles it)
– worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 22.404/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

Lec 22.414/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3

Lec 22.424/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Durability

• All nodes use stable storage* to store which state
they are in

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

• * - stable storage is non-volatile storage (e.g.
backed by disk) that guarantees atomic writes.

Lec 22.434/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Blocking for Coordinator to Recover

• A worker waiting for global decision can ask
fellow workers about their state
– If another worker is in ABORT or
COMMIT state then coordinator
must have sent GLOBAL-*
» Thus, worker can safely

abort or commit, respectively

– If another worker is still in
INIT state then both workers
can decide to abort

– If all workers are in ready,
need to BLOCK (don’t know if coordinator
wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 22.444/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

• PAXOS: An alternative used by GOOGLE and others
that does not have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 22.454/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 22.464/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 22.474/20/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to

account for congestion in network
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if
asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making with

malicious failures
– One general, n-1 lieutenants: some number of them may be

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• Remote Procedure Call (RPC): Call procedure on remote
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user

programming (in stub)

