CS162
Operating Systems and
Systems Programming
Lecture 21

Distributed Systems,
Networking, TCP/IP, RPC

April 15t 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: The ACID properties of Transactions

+ Atomicity: all actions in the transaction happen, or
none happen

* Consistency: transactions maintain data integrity,
eg.,
- Balance cannot be negative
- Cannot reschedule meeting on February 30

- Isolation: execution of one transaction is isolated
from that of all others; no problems from concurrency

+ Durability: if a transaction commits, its effects
persist despite crashes

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.2

4/15/15

Course Structure: Spiral

& ¢lle S}ys#@%

&
o 9.
g,, oof\Cep): \%
o P g
Py o O intro \ c
3 &
% G LS
b 9) Aouzas {}'

ey o
S %(#gﬂyg“ (8)

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.3

+ The world is a large
distributed system
- Microprocessors in

everything

- Vast infrastructure behing A
'I'hem Snga, vIET
Internet Scalable, Reliable,

Connectivity | Secure Services

Databases
Information Collectiol
Remote Storage
Online Games
Commerce

Sensor Nets
4/15/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 21.4

Centralized vs Distributed Systems__

Client/Server Model

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed System: physicaIIK separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”
- Later models: peer-to-peer/wide-spread collaboration

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.5

Distributed Systems: Motivation/Issues

. Wl}?l do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
* The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
* Reality has been disappointing
- Worse availability: efend on every machine being Lclr
» Lamport: "a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
+ Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.6

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

@O
-
—~
=

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.7

What Is A Protocol?

* A protocol is an agreement on how to communicate

* Includes
- Syntax: how a communication is specified & structured
» Format, order messages are sent and received
- Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer
expires
+ Described formally by a state machine
- Often represented as a message transaction diagram

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.8

Examples of Protocols in Human Interactions

 Telephone
(Pick up / open up the phone)
Listen for a dial tone / see that you have service
Dial
Should hear ringing ..

\ Callee: “Hello?”

Caller: “Hi, it’'s John....”
Or: “Hi, it's me” (« what’s that about?)

Caller: “Hey, do you think ... blah blah blah ...” pause

Callee: “Yeah, blah blah blah ...” pause
Calm\

/ Callee: Bye
Hang up

o gk whN R

~

P wnde

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.9

Protocols in Human Interactions

+ Asking a question
- Raise your hand
- Wait to be called on

- Or: wait for speaker to pause and vocalize

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.10

End System: Computer on the ‘Net

Also known as a “host”..

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.11

Recall: Namespaces for communication over IP

* Hostname
- www.eecs.berkeley.edu
* IP address
- 128.32.244.172 (ipv6?)
* Port Number
- 0-1023 are "well known" or “system” ports
» Superuser privileges to bind to one
- 1024 - 49151 are "registered” ports (registry)
» Assigned by TANA for specific services

- 49152-65535 (215+214 to 216-1) are “dynamic” or
“private”

» Automatically allocated as “ephemeral Ports”

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.12

Recall: Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
char *hostname, int portno) {
struct hostent *server;

/* Get host entry associated with a hostname or IP address */
server = gethostbyname(hostname);
if (server == NULL) {
fprintf(stderr,"”ERROR, no such host\n');
exit(l);
}

/* Construct an address for remote server */
memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr->sin_family = AF_INET;
bcopy((char *)server->h_addr,

(char *)&(serv_addr->sin_addr.s_addr), server->h_length);
serv_addr->sin_port = htons(portno);

return server;

Clients and Servers

* Client program
— Running on end host
— Requests service
— E.g., Web browser

GET /Zindex.html

gim

\ ‘1(@,!75
=

¥
4/15/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 21.13 4/15/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 21.14
Clients and Servers Client-Server Communication
* Client program e Server program N . ” o« »
— Running on end host Running on end host » Client "sometimes on » Server is "always on
_ ; . . — Initiates a request to the — Services requests from
Eequ\fvs'[; Zer\“ce — Provides service server when interested many client hosts

- £.g., Web browser — E.g., Web server - E.g., Web browser on - E.g., Web server for the

} your laptop or cell phone www.cnn.com Web site

GET /index.html — Doesn’t communicate — Doesn't initiate contact

directly with other clients with the clients
— Needs to know the — Needs a fixed, well-
server’s address known address
(ﬁ
./{) -
W~
@ML
(=
“Site under construction” T
4/15/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 21.15 4/15/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 21.16

Peer-to-Peer Communication

* No always-on server at the center of it all
- Hosts can come and go, and change addresses
- Hosts may have a different address each time

+ Example: peer-to-peer file sharing (e.g., BitTorrent)

- Any host can request files, send files, query to find
where a file is located, respond to queries, and forward
queries

- Scalability by harnessing millions of peers
- Each peer acting as both a client and server

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.17

The Problem

* Many different applications
- email, web, P2P, etc.

* Many different network styles and technologies
- Wireless vs. wired vs. optical, etc.

* How do we organize this mess?

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.18

The Problem (cont'd)

Application Skype | | SSH NFS HTTP

Transmission Coaxial Fiber Packet
Media cable optic Radio

* Re-implement every application for every technology?
* No! But how does the Internet design avoid this?

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.19

Solution: Intermediate Layers

* Introduce intermediate layers that provide set of
abstractions for various network functionality & technologies

- A new app/media implemented only once
- Variation on “add another level of indirection”

Application Skype| [SSH NFS HTTP

Intermediate

layers
Transmission Coaxial Fiber Packet
Media cable optic radio
4/15/15 Kubiatowicz CS5162 ®UCB Spring 2015 Lec 21.20

Networking Definitions

 Network: physical connection that allows two computers
to communicate
* Packet: unit of transfer, sequence of bits carried over

the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives
* Protocol: agreement between two parties as to how
information is to be transmitted

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.21

Administrivia

* Midterm II: Next Wednesday (4/22)
- Time: 6:30PM - 9:30PM
- Location: Dwinelle: 145/155
- Division of people between rooms will be posted
- All topics from Midterm I, up to next Monday,
including:
» Address Translation/TLBs/Paging
» I/0O subsystems, Storage Layers, Disks/SSD
» Performance and Queueing Theory
» File systems
» Distributed systems, TCP/IP, RPC
» NFS/AFS, Key-Value Store
* Closed book, one page of notes - both sides

+ Review session:
- 306 Soda Hall
- Sunday 4/19. 4:00pm—6:00pm

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.22

4/15/15

Broadcast Networks %%y
4

+ Broadcast Network: Shared Communication Medium \\:

4] 3 v
y

I/0 I/0 I/0

Device | | Device| | Device Memory

- A 4

v

Processor

- Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devices

- Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

- More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

Kubiatowicz €S162 ©UCB Spring 2015

Jaudajur

4/15/15 Lec 21.23

Broadcast Netw

Body
(Data)

Message

ID:3

(ignore)
(receive)
* Delivery: When you broadcast a packet, how does a
receiver know who it is for? (packet goes to everyonel!)
- Put header on front of packet: [Destination | Packet]
- Everyone gets packet, discards if not the target
- In Ethernet, this check is done in hardware
» No OS interrupt if not for particular destination
- This is layering: we're going to build complex network
protocols by layering on top of the packet

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.24

4/15/15

Broadcast Network Arbitration

* Arbitration: Act of negotiating use of shared medium
- What if two senders try to broadcast at same time?
- Concurrent activity but can't use shared memory to
coordinatel!
* Aloha network (70's): packet radio within Hawaii
- Blind broadcast, with checksum at end of / /%
packet. If received correctly (not garbled),
send back an acknowledgement. Ifg not
received correctly, discard.

e/
» Need checksum anyway - in case airplane >
flies overhead

- Sender waits for a while, and if doesn't
get an acknowledgement, re-transmits.

- If two senders try to send at same time, both get
garbled, both simply re-send later.
- Problem: Stability: what if load increases?

» More collisions = less gets through —more resent = more
load... = More collisions...

» Unfortunately: some sender may have started in clear, get
scrambled without finishing

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.25

Carrier Sense, Multiple Access/Collision Detection

+ Ethernet (early 80's): first practical local area network

- It is the most common LAN for UNIX, PC, and Mac

- Use wire instead of radio, but still broadcast medium

+ Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection
- Carrier Sense: dont send unless idle
» Don't mess up communications already in process
- Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.
- Backoff Scheme: Choose wait time before trying a;;ain
* How long to wait after 'I'r'\{'ing to send and failing:

- What if everyone waits the same length of time? Then,
they all collide again at some timel!

- Must find way to break up shared behavior with nothing
more than shared communication channel

* Adaptive randomized waiﬂng strategy:

- Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

- Randomness is important to decouple colliding senders

- Scheme figures out how many people are trying to send!

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.26

us at all? Why not simplify and
only have point-to-point links + routers/switches?
- Originally wasn't cost-effective
- Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.
* Point-to-point network: a network in which every
physical wire is connected to only two computers
+ Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.
* Router: a device that acts as a junction between two
networks to transfer data packets among them.

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.27

The Internet Protocol: “IP”

+ The Internet is a large network of computers spread
across the globe
- According to the Internet Systems Consortium, there
were over 681 million computers as of July 2009
- In principle, every host can speak with every other one
under the right circumstances
* IP Packet: a network packet on the internet
+ IP Address: a 32-bit integer used as the destination
of an IP packet
- Often written as four dot-separated integers, with each
integer from 0—255 (thus representing 8x4=32 bits)
- Example CS file server is: 169.229.60.83 = 0xA9E53C53
* Internet Host: a computer connected to the Internet
- Host has one or more IP addresses used for routing
» Some of these may be private and unavailable for routing
- Not every computer has a unique IP address
» Groups of machines may share a single IP address

» In this case, machines have private addresses behind a
"Network Address Translation” (NAT) gateway

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.28

Address Subnets

* Subnet: A network connecting a set of hosts with
related destination addresses

* With IP, all the addresses in subnet are related by a
prefix of bits
- Mask: The number of matching prefix bits

» Expressed as a single value (e.bg., 24) or a set of ones in a
32-bit value (e.g., 255.255.255.0)

* A subnet is identified by 32-bit value, with the bits
whicl:'t differ set to zero, followed by a slash and a
mas

- Example: 128.32.131.0/24 designates a subnet in which
all the addresses look like 128.32.131.XX

- Same subnet: 128.32.131.0/255.255.255.0
- Difference between subnet and complete network range
- Subnet is always a subset of address range

- Once, subnet meant single physical broadcast wire: now,
less clear exactly what it means (virtualized by switches)

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.29

Address Ranges in IP

+ IP address space divided into prefix-delimited ranges:
- Class A: NN.0.0.0/8
» NN is 1-126 (126 of these networks)
» 16,777,214 IP addresses per network
» 10.xx.yy.zz is private
» 127.xx.yy.zz is loopback
- Class B: NN.MM.0.0/16
» NN is 128-191, MM is 0-255 (16,384 of these networks)
» 65,534 IP addresses per network
» 172.[16-31].xx.yy are private
- Class C: NN.MM.LL.0/24

» NN is 192-223, MM and LL 0-255
(2.097,151 of these networks)

» 254 IP addresses per networks
» 192.168.xx.yy are private
* Address ranges are often owned by organizations
- Can be further divided into subnets

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.30

Hierarchical Networking: The Internet

* How can we build a nefwork wi illions of hosfTs:
- Hierarchy! Not every host connected to every other one
- Use a network of Routers to connect subnets together

» Routing is often by prefix: e.g. first router matches first
8 bits of address, next router matches more, etc.

Other
subnets

4/15/15 < Kubiatowicz €S162 ®UCB Spring 2015 Lec 21.31

Simple Network Terminology

* Local-Area Network (LAN) - designed to cover small
geographical area

- Multi-access bus, ring, or star network
- Speed ~ 10 - 1000 Megabits/second (even 40-1006B/s)
- Broadcast is fast and cheap

- In small organization, a LAN could consist of a single
subnet. In large organizations (like UC Berkeley), a LAN
contains many subnets

+ Wide-Area Network (WAN) - links geographically
separated sites

- Point-to-point connections over long-haul lines (often
leased from a phone company)

- Speed ~ 1.544 - 150 Megabits/second
- Broadcast usually requires multiple messages

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.32

Routing

* Routing: the process of forwarding packets hop-by-hop
through routers to reach their destination
- Need more than just a destination address!

» Need a path
- Post Office Analogy:
» Destination address on each letter is not
sufficient to get it to the destination
et a letter from here to Florida, must route to local

» To
ost office, sorted and sent on plane to somewhere in
lorida, be routed to post office, sorted and sent with
carrier who knows where street and house is...
+ Internet routing mechanism: routing tables
- Each router does table lookup to decide which link to use

to get packet closer to destination
- Don't need 4 billion entries in table: routing is by subnet

- Could packets be sent in a loop? VYes, if tables incorrect

* Routing table contains:
- Destination address range — output link closer to

destination
- Default entry (for subnets without explicit entries)

Kubiatowicz €5162 ®UCB Spring 2015

Lec 21.33

4/15/15

Setting up Routing Tables

* How do you set up routing tables?

- Internet has no centralized statel

» No single machine knows entire topology

» Topology constantly changing (faults, reconfiguration, etc)
- Need dynamic algorithm that acquires routing tables

» Ideally, have one entry per subnet or portion of address

» Could have “default” routes that send packets for unknown
subnets to a different router that has more information

+ Possible algorithm for acquiring routing table

- Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.

» Entries for unknown subnets have infinite cost
- Neighbors periodically exchange routing tables

» If neighbor knows cheaper route to a subnet, replace your
entry with neighbors entry (+1 for hop to neighbor)

* In reality:
- Internet has networks of many different scales
- Different algorithms run at different scales

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.34

4/15/15

Naming in the Internet

- L
* How to map human-readable names to IP addresses?

- E.g. www.berkeley.edu = 128.32.139.48
- E.g. www.google.com = different addresses depending on

location, and load

* Why is this necessary?
- IP addresses are hard to remember

- IP addresses change:
» Say, Server 1 crashes gets replaced by Server 2

» Or - google.com handled by different servers

* Mechanism: Domain Naming System (DNS)

Name —> | Address

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015

Lec 21.35

Lemacgtiratttannte,

Domain Name System i Top-level.. %

ol

\
\

¥

128.32.61.103

128.32.139.48

DNS is a hierarchical mechanism for naming
- Name divided in domains, right to left: www.eecs.berkeley.edu

+ Each domain owned by a particular organization
- Top level handled by ICANN (Internet Corporation for
Assigned Numbers and Names
- Subsequent levels owned by organizations
Resolution: series of queries to successive servers
Caching: queries take time, so results cached for period of time

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.36

How Important is Correct Resolution?

+ If affacker manages To give incorrect mapping:
- Can get someone to route to server, thinking that they are
routing to a different server
» Get them to log into "bank” - give up username and password

« Is DNS Secure?

- Definitely a weak link

» What if “response” returned from different server than
original query?

» Get person to use incorrect IP address!

- Attempt to avoid substitution attacks:
» Query includes random number which must be returned

+ In July 2008, hole in DNS security located!
- Dan Kaminsky (security researcher) discovered an attack
that broke DNS globally

» One person in an ISP convinced to load particular web page,
then a// users of that ISP end up pointing at wrong address

- High profile, highly advertised need for patching DNS
» Big press release, lots of mystery
» Security researchers told no speculation until patches applied
4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.37

Network Protocols

+ Profocol: Agr‘eement between two par‘ﬂes as Yo how
information is to be transmitted
- Example: system calls are the protocol between the
operating system and application
- Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the
CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

* Protocols on today's Internet:

www e-mail

NFS
Sppc S
.../.
Transport UDP /
....... Kiqeses e gl

Y v
Physical/Link Ethernet ATM Packet radio

4/15/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 21.38

Network Layering

* Layering: building complex services from simpler ones

- Each layer provides services needed by higher layers by
utilizing services provided by lower layers

* The physical/link layer is pretty limited
- Packets are of limited size (called the "Maximum Transfer
Unit or MTU: often 200-1500 bytes in size)
- Routing is limited to within a physical link (wire) or perhaps
through a switch

* Our goal in the following is to show how to construct a
secure, ordered, message service routed to anywhere:

Physical Reality: Packets

Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered
Unreliable Reliable

4/15/15

Machine-to-machine

Process-to-process

Only on local area net

Routed anywhere

Asynchronous

Synchronous

Insecure

Secure

Lec 21.39

Building a messaging service

* Handling Arbitrary Sized Messages:
- Must deal with limited physical packet size
- Split big message into smaller ones (called fragments)
» Must be reassembled at destination
- Checksum computed on each fragment or whole message
+ Internet Protocol (IP): Must find way to send packets
to arbitrary destination in network

- Deliver messages unreliably ("best effort”) from one
machine in Internet to another
- Since intermediate links may have limited size, must be
able to fragment/reassemble packets on demand
- Includes 256 different “sub-protocols” build on top of IP
» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.40

IP Packet Format

- IP Packet Format:

IP Header Size of datagram Flags &
Length (header+data) Fragmentation
15 16 J 31 Yo :&I}lfelsarge
IP Ver4 —EZ TIHL |To5 Total length(16-bits) J

" 16-bit identification | flagqd 13-bit frag off
SV": (;‘; s)\pTTL Lprotocol 16-bit header checksun g()) }g’ey%ceigr
P 32-bit _e6urce IP address

Type of 32~bit destination IP address

transport~”q options (if any) S
protocol B Pg
Data
4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.41

Building a messaging service
* Process To process communication
- Basic routing gets packets from machine—machine
- What we really want is routing from process—process
» Add “ports”, which are 16-bit identifiers

» A communication channel (connection) defined by 5 items:
[source addr, source port, dest addr, dest port, protocol]

« UDP: The Unreliable Datagram Protocol
- Layered on top of basic IP (IP Protocol 17)

» Datagram: an unreliable, unordered, packet sent from
source user —> dest user (Call it UDP/IP)

IP Header
(20 bytes)

16-bit source port 16-bit destination port
T6-bif UDP lengTh T6-bif UDP checksum
< <

UDP Data

- ImportanT aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” - none of the
“well-behaved” aspects of (say) TCP/IP

4/15/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 21.42

Ordered Messages

* Ordered Messages
- Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! P,,P; might arrive as P,,P,
+ Solution requires queuing at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
* Ordered messages on top of unordered ones:

- Assign seguence numbers to packets
»0,1,2,3,4...

12 s&,7, T

» If packets arrive out of order, reorder before delivering to
user application

» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different
range of sequence numbers than previously...

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.43

Reliable Message Delivery: the Problem

+ All physical nefworks can garble and/or drop packets
- Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput -
even if some packets get lost

» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit

- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination

» Rate mismatch: what if sender send faster than receiver
can process?

+ Reliable Message Delivery on top of Unreliable Packets

- Need some way to make sure that packets actually make
it to receiver

» Every packet received at least once
» Every packet received at most once

- Can combine with ordering: every packet received by
process at destination exactly once and in order

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.44

Using Acknowledgements
Al Ip

~.Pacy et
Timeout { e
oC
o>

* How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad

- Receiver acknowledges (by sending “"ack”) when packet
received properly at destination

- Timeout at sender: if no ack, retransmit
* Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?

» No

- What if ack gets dropped? Or if message gets delayed?
» Sender doesn't ﬁet ack, retransmits. Receiver gets message

twice, acks each.

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.45

How to deal with message duplication?
+ Solufion: put sequence number in message fo identity
re-transmitted packets
- Receiver checks for duplicate #'s; Discard if detected
* Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?
+ Alternating-bit protocol:
- Send one message at a time; don't send
next message until ack received
- Sender keeps last message:; receiver
tracks sequence # of last message received
* Pros: simple, small overhead
+ Con: Poor performance
- Wire can hold multiple messages; want to
fill up at (wire latency x throughput)
+ Con: doesn't work if network can delay
or duplicate messages arbitrarily

WY

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.46

Better messaging: Window-based acknowledgements

+ Windowing protocol (not quite TCP): AN
- Send up to N packets without ack e
» Allows pipelining of packets N=5 &
» Window size (l\?) < queue at destination

» Receiver acknowledges each packet
» Ack says “receivedall packets up
to sequence number X"/send more
* Acks serve dual purpose:
- Reliability: Confirming packet received
- Ordering: Packets can be reordered
at destination
* What if packet gets garbled/dropped?
- Sender will timeout waiting for ack packet
» Resend missing packets=> Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
- What if ack gets garbled/dropped?
- Timeout and resend just the un-acknowledged packets

- Each packet has sequence number Phigy E

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.47

Transmission Control Protocol (TCP)

Stream in: Stream out:

+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Reliable byte stream between two processes on different
machines over Internet (read, write, flush)
+ TCP Details

- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn't
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion
» A “good citizen”

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.48

TCP Windows and Sequence Numbers

—"Sequence Numbers —

Sent Sent Not yet | Send
acked not acked sent ender

Given to appl__Buffered received

Received Received Not yet |
Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack'ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.49

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380400

ol 0o o jhoalhhlnn]nhnn
—|R2| R2 |R2 82|82 |R2 |8l
28| % |23 |oNaAR| 28|23 Y
o8| o8 |oc8|ocg[ocB|o8|oc8 L&
- - Y p A p
4/15/15 / Kubiatowicz €S162 ©UCB Spring 2015

Selective Acknowledgement Option (SACK)

— = W
>g’)
o8 o
Xlc o~ = e [3
Zn N o uk’.’ S|
3 o © 2| o
cla o X g 5| 0
3| Z ® 9 5 ol £
o 3 92 X Ol
elZ s a o s|>
| n ® a o Q
3 — 3 H < 3lx
g N E
31 R (] A

H_I H_/

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
+ Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.51

Congestion Avoidance

+ Congestion
- How long should timeout be for re-sending messages?
» Too long—»wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
utting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
- Timeout = congestion, so cut window size in half
- “Additive Increase, Multiplicative Decrease’
4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.52

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used

» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number
» Used by several protocol implementations

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.53

Use of TCP: Sockets

- Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called “network socket”)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread

- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.54

Socket Setup over TCP/IP

Client Server

+ Server Socket: Listens for new connections
- Produces new sockets for each unique connection
*+ Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port “randomly” assigned
» Done by OS during client socket setup
- Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from

4/15/15 KubiaTOW|czOC_S}9223UCB Spring 2015 Lec 21.55

Recall: Sockets in concept

Client Server
Create Server Socket

. Bind it to an Address
Create Client Socket (host:port)

Connect it to server (host:port) Listen for Connection

Connection Socket Accept connection

Connection Socket
write request read request
read response write response

Close Client Socket Close Connection Socket

Close Server Socket

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.56

Recall: Client Protocol

char *hostname;

int sockfd, portno;

struct sockaddr_in serv_addr;
struct hostent *server;

server = buildServerAddr (&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket (AF_INET, SOCK_STREAM, 0)

/* Connect to server on port */
connect (sockfd, (struct sockaddr *) &serv_addr, sizeof (serv_addr)

printf ("Connected to %s:%d\n",server->h name, portno);

/* Carry out Client-Server protocol */
client (sockfd) ;

/* Clean up on termination */
close (sockfd) ;

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.57

Recall: Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket (AF_INET, SOCK STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)s&serv addr,sizeof (serv_addr));
while (1) {
/* Listen for incoming connections */
listen(lstnsockfd, MAXQUEUE) ;

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli addr,
&clilen) ;
server (consockfd) ;
close (consockfd) ;

}

close (lstnsockfd) ;

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.58

Distributed Applications

* How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use testéset

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send(message, mbox)
» Send message to remote mailbox identified by mbox
—Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.59

Using Messages: Send/Receive behavior

* When should send(message,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
* Actually two questions here:

- When can the sender be sure that receiver actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2
- T1>buffer—T2

- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.60

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:
Producer:
int msgl[1000];
prepare message; Message
send(msgl,mbox) ;

Consumer:
int buffer[1000];

while(1) { -
receive(buffer,mbox); ‘
3 process message; Message

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- One of the roles of the window in TCP: window is size of
buffer on far end

- Restricts sender to forward only what will fit in buffer

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.61

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client
+ Example: File service
Client: (requesting the file) Request
char response[1000]; File

send(*“read rutabaga”, server_mbox);
receive(response, client_mbox) ;~=={Get

Server: (responding with the file) Response

char command[1000], answer[1000];

receive(command, server mbox) ;< Receive
decode command; Request

read file into answer;

send(answer, client_mbox) ;~~—— Send
4/15/15 Kubiatowicz CS162 ©UCB Spring 2015 URESPONSe). 21 62

General's Paradox
* Geneéral's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack

» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

"

- Remarkably, “no”, even if all messages get through

11 am o>

Yeah, but what if you
Don't ge'\‘ this ack?
- No way to be sure last message gets through!
4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.63

Two-Phase Commit

- Since we can't solve the General’'s Paradox (i.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Fr‘omlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its
log and tells everyone to abort; each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit. they respond with ack
» After receive acks, coordinator writes “Got Commit” to lo
- Log can be used to complete this process such that all
machines either commit or don't commit

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.64

Two phase commit example

- Simple Example: A=WellsFargo Bank, B=Bank of America
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: transaction aborted; A writes “Abort” to log
» Enoayh funds:
B: Write new account balance & promise to commit to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred: wait for ack
» Write “Got Commit” to log
* What if B crashes at begmmnﬂ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B o
* What if B crashes at beginning of phase 2?
- B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.65

Distributed Decision Making Discussion

. Wth is distributed decision making desirable?
- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in mulfiEIe places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and cr‘as%\es
» Site A crashes
» Site B wakes up, check its log, and realizes that it has
voted “yes" on the update. I’? sends a_message to site A
asking what happened. At this point, B cannot decide to
aborf, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
?(cges pinned in memory, etc) until learns fate of update
« PAXOS: An alternative used by GOOGLE and others
that does not have this blocking problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to compromise the decision making
4/15/15 Kubiatowicz 5162 ©UCB Spring 2015 Lec 21.66

Byzantine General’'s Problem

. Lieutenant

J 47-1-0%1 -y

Retreat!

| Lieutenant

Malicious! “l Lieutenant

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious

* The commanding general must send an order to his n-1

lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends
4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.67

Byzantine General's Problem (con't)

+ Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

OO0
Request— OO |_Distributed
. Decision
4/15/15 Ku| N\ > pring 2015 Lec 21.68

Remote Procedure Call

+ Raw messaging is a bit too low-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—Read(“rutabaga’);
- Translated automatically into call on server:
fileSys—»Read(“rutabaga™);
* Implementation:
- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “"marshalling” arguments and
“unmarshalling” the return values
» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.
* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.
Kubiatowicz 5162 ©®UCB Spring 2015

4/15/15

Lec 21.69

RPC Information Flow

bundle
args
o S . .
i Lﬂj Client call » Client send »| Packet
|
=2 | (caller)+ Stub |« - Handleg
> (4 return receive
unbundle mbo, <
Machine A ret vals L g
-- ; E
. +|
Machine B bundle - S
ret vals mbox1
P
§ H Server|—return VM Packet
W | (callee Stub |« Handle
< (call receive
unbundle
args
5/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 21.70

4/1

RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them of?
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015

Lec 21.71

4/15/15

RPC Details (continued)

How does client know which mbox to send to?
- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “"naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—>mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
What if multiple clients?
- Pass pointer to client-specific return mbox in request
Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.72

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

4/15/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 21.73

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

+ RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
- Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.74

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App || App | | AP app| |File windowsI
sys
file system windowing RPc address
4 Networking h s;:jaces
Threads threads
Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

4/15/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 21.75

Summary (1/2)

* Network: physical connection that allows two
computers to communicate
- Packet: sequence of bits carried over the network
* Broadcast Network: Shared Communication Medium
- Transmitted packets sent to all receivers
- Arbitration: act of negotiating use of shared medium
» Ethernet: Carrier Sense, Multiple Access, Collision Detect
* Point-to-point network: a network in which every
physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.
* Protocol: Agreement between two parties as to how
information is to be transmitted
+ Internet Protocol (IP)
- Used to route messages through routes across globe
- 32-bit addresses, 16-bit ports
* DNS: System for mapping from names=IP addresses
- Hierarchical mapping from authoritative domains
- Recent flaws discovered

4/15/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 21.76

Summary (2/2)

* TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

- Uses window-based acknowledgement protocol

- Congestion-avoidance dynamically adapts sender window to
account for congestion in network

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if
asked (prepare)

- Next, ask everyone to commit

+ Byzantine General's Problem: distributed decision making with
malicious failures

- One general, n-1 lieutenants: some number of them may be
malicious (often “f" of them)

- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

 Remote Procedure Call (RPC): Call procedure on remote
machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without user
programming (in Stub)
4/15/15 Kubiatowicz C5162 ®UCB Spring 2015 Lec 21.77

