
CS162
Operating Systems and
Systems Programming

Lecture 21

Distributed Systems,
Networking, TCP/IP, RPC

April 15th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 21.24/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or
none happen

• Consistency: transactions maintain data integrity,
e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated
from that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects
persist despite crashes

Lec 21.34/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Course Structure: Spiral

intro

Lec 21.44/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large
distributed system

– Microprocessors in
everything

– Vast infrastructure behind
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Lec 21.54/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Centralized vs Distributed Systems

• Centralized System: System in which major functions
are performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers
working together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 21.64/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult

Lec 21.74/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 21.84/15/15 Kubiatowicz CS162 ©UCB Spring 2015

What Is A Protocol?

• A protocol is an agreement on how to communicate
• Includes

– Syntax: how a communication is specified & structured
» Format, order messages are sent and received

– Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer

expires

• Described formally by a state machine
– Often represented as a message transaction diagram

Lec 21.94/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” ( what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

Lec 21.104/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Protocols in Human Interactions

• Asking a question
– Raise your hand
– Wait to be called on

– Or: wait for speaker to pause and vocalize

Lec 21.114/15/15 Kubiatowicz CS162 ©UCB Spring 2015

End System: Computer on the ‘Net

Internet

Also known as a “host”…

Lec 21.124/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Namespaces for communication over IP

• Hostname
– www.eecs.berkeley.edu

• IP address
– 128.32.244.172 (ipv6?)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or
“private”

» Automatically allocated as “ephemeral Ports”

Lec 21.134/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
char *hostname, int portno) {

struct hostent *server;
/* Get host entry associated with a hostname or IP address */
server = gethostbyname(hostname);
if (server == NULL) {

fprintf(stderr,"ERROR, no such host\n");
exit(1);

}
/* Construct an address for remote server */
memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
serv_addr->sin_family = AF_INET;
bcopy((char *)server->h_addr,

(char *)&(serv_addr->sin_addr.s_addr), server->h_length);
serv_addr->sin_port = htons(portno);

return server;
}

Lec 21.144/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

GET /index.html

Lec 21.154/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

• Server program
– Running on end host
– Provides service
– E.g., Web server

GET /index.html

“Site under construction”
Lec 21.164/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Client-Server Communication

• Client “sometimes on”
– Initiates a request to the

server when interested
– E.g., Web browser on

your laptop or cell phone
– Doesn’t communicate

directly with other clients
– Needs to know the

server’s address

• Server is “always on”
– Services requests from

many client hosts
– E.g., Web server for the

www.cnn.com Web site
– Doesn’t initiate contact

with the clients
– Needs a fixed, well-

known address

Lec 21.174/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Peer-to-Peer Communication

• No always-on server at the center of it all
– Hosts can come and go, and change addresses
– Hosts may have a different address each time

• Example: peer-to-peer file sharing (e.g., BitTorrent)
– Any host can request files, send files, query to find

where a file is located, respond to queries, and forward
queries

– Scalability by harnessing millions of peers
– Each peer acting as both a client and server

Lec 21.184/15/15 Kubiatowicz CS162 ©UCB Spring 2015

The Problem

• Many different applications
– email, web, P2P, etc.

• Many different network styles and technologies
– Wireless vs. wired vs. optical, etc.

• How do we organize this mess?

Lec 21.194/15/15 Kubiatowicz CS162 ©UCB Spring 2015

The Problem (cont’d)

• Re-implement every application for every technology?
• No! But how does the Internet design avoid this?

Skype SSH NFS

Packet
Radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Lec 21.204/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Solution: Intermediate Layers

• Introduce intermediate layers that provide set of
abstractions for various network functionality & technologies

– A new app/media implemented only once
– Variation on “add another level of indirection”

Skype SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layers

Lec 21.214/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Networking Definitions

• Network: physical connection that allows two computers
to communicate

• Packet: unit of transfer, sequence of bits carried over
the network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 21.224/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm II: Next Wednesday (4/22)
– Time: 6:30PM – 9:30PM
– Location: Dwinelle: 145/155
– Division of people between rooms will be posted
– All topics from Midterm I, up to next Monday,
including:

» Address Translation/TLBs/Paging
» I/O subsystems, Storage Layers, Disks/SSD
» Performance and Queueing Theory
» File systems
» Distributed systems, TCP/IP, RPC
» NFS/AFS, Key-Value Store

• Closed book, one page of notes – both sides
• Review session:

– 306 Soda Hall
– Sunday 4/19. 4:00pm—6:00pm

Lec 21.234/15/15 Kubiatowicz CS162 ©UCB Spring 2015

• Broadcast Network: Shared Communication Medium

– Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devices

– Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

– More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

Broadcast Networks

MemoryProcessor
I/O
Device

I/O
Device

I/O
Device

Internet

Lec 21.244/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Broadcast Networks Details

• Delivery: When you broadcast a packet, how does a
receiver know who it is for? (packet goes to everyone!)

– Put header on front of packet: [Destination | Packet]
– Everyone gets packet, discards if not the target
– In Ethernet, this check is done in hardware

» No OS interrupt if not for particular destination
– This is layering: we’re going to build complex network
protocols by layering on top of the packet

Header
(Dest:2)

Body
(Data)

Message
ID:1
(ignore)

ID:2
(receive)

ID:4
(ignore)

ID:3
(sender)

Lec 21.254/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Broadcast Network Arbitration
• Arbitration: Act of negotiating use of shared medium

– What if two senders try to broadcast at same time?
– Concurrent activity but can’t use shared memory to
coordinate!

• Aloha network (70’s): packet radio within Hawaii
– Blind broadcast, with checksum at end of
packet. If received correctly (not garbled),
send back an acknowledgement. If not
received correctly, discard.

» Need checksum anyway – in case airplane
flies overhead

– Sender waits for a while, and if doesn’t
get an acknowledgement, re-transmits.

– If two senders try to send at same time, both get
garbled, both simply re-send later.

– Problem: Stability: what if load increases?
» More collisions  less gets through more resent  more

load…  More collisions…
» Unfortunately: some sender may have started in clear, get

scrambled without finishing
Lec 21.264/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Carrier Sense, Multiple Access/Collision Detection
• Ethernet (early 80’s): first practical local area network

– It is the most common LAN for UNIX, PC, and Mac
– Use wire instead of radio, but still broadcast medium

• Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection

– Carrier Sense: don’t send unless idle
» Don’t mess up communications already in process

– Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.

– Backoff Scheme: Choose wait time before trying again
• How long to wait after trying to send and failing?

– What if everyone waits the same length of time? Then,
they all collide again at some time!

– Must find way to break up shared behavior with nothing
more than shared communication channel

• Adaptive randomized waiting strategy:
– Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

– Randomness is important to decouple colliding senders
– Scheme figures out how many people are trying to send!

Lec 21.274/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Point-to-point networks

• Why have a shared bus at all? Why not simplify and
only have point-to-point links + routers/switches?

– Originally wasn’t cost-effective
– Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.

• Point-to-point network: a network in which every
physical wire is connected to only two computers

• Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

• Router: a device that acts as a junction between two
networks to transfer data packets among them.

Router

Internet

Switch

Lec 21.284/15/15 Kubiatowicz CS162 ©UCB Spring 2015

The Internet Protocol: “IP”
• The Internet is a large network of computers spread

across the globe
– According to the Internet Systems Consortium, there
were over 681 million computers as of July 2009

– In principle, every host can speak with every other one
under the right circumstances

• IP Packet: a network packet on the internet
• IP Address: a 32-bit integer used as the destination

of an IP packet
– Often written as four dot-separated integers, with each
integer from 0—255 (thus representing 8x4=32 bits)

– Example CS file server is: 169.229.60.83  0xA9E53C53
• Internet Host: a computer connected to the Internet

– Host has one or more IP addresses used for routing
» Some of these may be private and unavailable for routing

– Not every computer has a unique IP address
» Groups of machines may share a single IP address
» In this case, machines have private addresses behind a

“Network Address Translation” (NAT) gateway

Lec 21.294/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Address Subnets
• Subnet: A network connecting a set of hosts with

related destination addresses
• With IP, all the addresses in subnet are related by a

prefix of bits
– Mask: The number of matching prefix bits

» Expressed as a single value (e.g., 24) or a set of ones in a
32-bit value (e.g., 255.255.255.0)

• A subnet is identified by 32-bit value, with the bits
which differ set to zero, followed by a slash and a
mask

– Example: 128.32.131.0/24 designates a subnet in which
all the addresses look like 128.32.131.XX

– Same subnet: 128.32.131.0/255.255.255.0
• Difference between subnet and complete network range

– Subnet is always a subset of address range
– Once, subnet meant single physical broadcast wire; now,
less clear exactly what it means (virtualized by switches)

Lec 21.304/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Address Ranges in IP
• IP address space divided into prefix-delimited ranges:

– Class A: NN.0.0.0/8
» NN is 1–126 (126 of these networks)
» 16,777,214 IP addresses per network
» 10.xx.yy.zz is private
» 127.xx.yy.zz is loopback

– Class B: NN.MM.0.0/16
» NN is 128–191, MM is 0-255 (16,384 of these networks)
» 65,534 IP addresses per network
» 172.[16-31].xx.yy are private

– Class C: NN.MM.LL.0/24
» NN is 192–223, MM and LL 0-255

(2,097,151 of these networks)
» 254 IP addresses per networks
» 192.168.xx.yy are private

• Address ranges are often owned by organizations
– Can be further divided into subnets

Lec 21.314/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Hierarchical Networking: The Internet
• How can we build a network with millions of hosts?

– Hierarchy! Not every host connected to every other one
– Use a network of Routers to connect subnets together

» Routing is often by prefix: e.g. first router matches first
8 bits of address, next router matches more, etc.

subnet1

subnet2

Router

Other
subnets

Router

Router

Transcontinental
Link

subnet3Other
subnets

Lec 21.324/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Network Terminology
• Local-Area Network (LAN) – designed to cover small

geographical area
– Multi-access bus, ring, or star network
– Speed  10 – 1000 Megabits/second (even 40-100GB/s)
– Broadcast is fast and cheap
– In small organization, a LAN could consist of a single
subnet. In large organizations (like UC Berkeley), a LAN
contains many subnets

• Wide-Area Network (WAN) – links geographically
separated sites

– Point-to-point connections over long-haul lines (often
leased from a phone company)

– Speed  1.544 – 150 Megabits/second
– Broadcast usually requires multiple messages

Lec 21.334/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Routing
• Routing: the process of forwarding packets hop-by-hop

through routers to reach their destination
– Need more than just a destination address!

» Need a path
– Post Office Analogy:

» Destination address on each letter is not
sufficient to get it to the destination

» To get a letter from here to Florida, must route to local
post office, sorted and sent on plane to somewhere in
Florida, be routed to post office, sorted and sent with
carrier who knows where street and house is…

• Internet routing mechanism: routing tables
– Each router does table lookup to decide which link to use
to get packet closer to destination

– Don’t need 4 billion entries in table: routing is by subnet
– Could packets be sent in a loop? Yes, if tables incorrect

• Routing table contains:
– Destination address range  output link closer to
destination

– Default entry (for subnets without explicit entries)
Lec 21.344/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Setting up Routing Tables
• How do you set up routing tables?

– Internet has no centralized state!
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc)

– Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have “default” routes that send packets for unknown

subnets to a different router that has more information
• Possible algorithm for acquiring routing table

– Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.
» Entries for unknown subnets have infinite cost

– Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your

entry with neighbors entry (+1 for hop to neighbor)
• In reality:

– Internet has networks of many different scales
– Different algorithms run at different scales

Lec 21.354/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Naming in the Internet

• How to map human-readable names to IP addresses?
– E.g. www.berkeley.edu  128.32.139.48
– E.g. www.google.com  different addresses depending on
location, and load

• Why is this necessary?
– IP addresses are hard to remember
– IP addresses change:

» Say, Server 1 crashes gets replaced by Server 2
» Or – google.com handled by different servers

• Mechanism: Domain Naming System (DNS)

Name Address

Lec 21.364/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Domain Name System

• DNS is a hierarchical mechanism for naming
– Name divided in domains, right to left: www.eecs.berkeley.edu

• Each domain owned by a particular organization
– Top level handled by ICANN (Internet Corporation for

Assigned Numbers and Names)
– Subsequent levels owned by organizations

• Resolution: series of queries to successive servers
• Caching: queries take time, so results cached for period of time

Top-level

comedu

Mit.edu

169.229.131.81

128.32.61.103

128.32.139.48

berkeley.edu
www
calmail
eecs

berkeley
MIT

eecs.berkeley.edu
www

Lec 21.374/15/15 Kubiatowicz CS162 ©UCB Spring 2015

How Important is Correct Resolution?
• If attacker manages to give incorrect mapping:

– Can get someone to route to server, thinking that they are
routing to a different server

» Get them to log into “bank” – give up username and password
• Is DNS Secure?

– Definitely a weak link
» What if “response” returned from different server than

original query?
» Get person to use incorrect IP address!

– Attempt to avoid substitution attacks:
» Query includes random number which must be returned

• In July 2008, hole in DNS security located!
– Dan Kaminsky (security researcher) discovered an attack
that broke DNS globally

» One person in an ISP convinced to load particular web page,
then all users of that ISP end up pointing at wrong address

– High profile, highly advertised need for patching DNS
» Big press release, lots of mystery
» Security researchers told no speculation until patches applied

Lec 21.384/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Protocols
• Protocol: Agreement between two parties as to how

information is to be transmitted
– Example: system calls are the protocol between the
operating system and application

– Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how

are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the

CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet ATM Packet radio

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 21.394/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by
utilizing services provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer
Unit or MTU: often 200-1500 bytes in size)

– Routing is limited to within a physical link (wire) or perhaps
through a switch

• Our goal in the following is to show how to construct a
secure, ordered, message service routed to anywhere:

Physical Reality: Packets Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered

Unreliable Reliable
Machine-to-machine Process-to-process
Only on local area net Routed anywhere

Asynchronous Synchronous
Insecure Secure Lec 21.404/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Building a messaging service
• Handling Arbitrary Sized Messages:

– Must deal with limited physical packet size
– Split big message into smaller ones (called fragments)

» Must be reassembled at destination
– Checksum computed on each fragment or whole message

• Internet Protocol (IP): Must find way to send packets
to arbitrary destination in network

– Deliver messages unreliably (“best effort”) from one
machine in Internet to another

– Since intermediate links may have limited size, must be
able to fragment/reassemble packets on demand

– Includes 256 different “sub-protocols” build on top of IP
» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

Lec 21.414/15/15 Kubiatowicz CS162 ©UCB Spring 2015

IP Packet Format
• IP Packet Format:

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address
32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large
messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 21.424/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Building a messaging service
• Process to process communication

– Basic routing gets packets from machinemachine
– What we really want is routing from processprocess

» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:

[source addr, source port, dest addr, dest port, protocol]
• UDP: The Unreliable Datagram Protocol

– Layered on top of basic IP (IP Protocol 17)
» Datagram: an unreliable, unordered, packet sent from

source user  dest user (Call it UDP/IP)

– Important aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” – none of the

“well-behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 21.434/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Ordered Messages
• Ordered Messages

– Several network services are best constructed by
ordered messaging

» Ask remote machine to first do x, then do y, etc.
– Unfortunately, underlying network is packet based:

» Packets are routed one at a time through the network
» Can take different paths or be delayed individually

– IP can reorder packets! P0,P1 might arrive as P1,P0
• Solution requires queuing at destination

– Need to hold onto packets to undo misordering
– Total degree of reordering impacts queue size

• Ordered messages on top of unordered ones:
– Assign sequence numbers to packets

» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection
» Reordering among connections normally doesn’t matter

– If restart connection, need to make sure use different
range of sequence numbers than previously…

Lec 21.444/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver

can process?
• Reliable Message Delivery on top of Unreliable Packets

– Need some way to make sure that packets actually make
it to receiver

» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by
process at destination exactly once and in order

Lec 21.454/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ack”) when packet
received properly at destination

– Timeout at sender: if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message?

» No
– What if ack gets dropped? Or if message gets delayed?

» Sender doesn’t get ack, retransmits. Receiver gets message
twice, acks each.

BA BA

Timeout

Lec 21.464/15/15 Kubiatowicz CS162 ©UCB Spring 2015

BA

How to deal with message duplication?
• Solution: put sequence number in message to identify

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency  throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

Lec 21.474/15/15 Kubiatowicz CS162 ©UCB Spring 2015

BA

Better messaging: Window-based acknowledgements

N=5 Q
ueue

• Windowing protocol (not quite TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “received all packets up

to sequence number X”/send more
• Acks serve dual purpose:

– Reliability: Confirming packet received
– Ordering: Packets can be reordered
at destination

• What if packet gets garbled/dropped?
– Sender will timeout waiting for ack packet

» Resend missing packets Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces?

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?

– Timeout and resend just the un-acknowledged packets

Lec 21.484/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)

» “Window” reflects storage at receiver – sender shouldn’t
overrun receiver’s buffer space

» Also, window should reflect speed/capacity of network –
sender shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:
..zyxwvuts gfedcba

Lec 21.494/15/15 Kubiatowicz CS162 ©UCB Spring 2015

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 21.504/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 21.514/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

IP H
eader

(20 bytes)

Sequence N
um

ber
A
ck N

um
ber

TCP Header

IP
 H

ea
de

r
(2

0
by

te
s)

Se
qu

en
ce

 N
um

be
r

A
ck

 N
um

be
r

TCP Header

Lec 21.524/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion  ack is delayed 
unnecessary timeout  more traffic  more congestion

» Closely related to window size at sender: too big means
putting too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput)
by 1 for each ack received

– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 21.534/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Sequence-Number Initialization
• How do you choose an initial sequence number?

– When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used

» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
Lec 21.544/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 21.554/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Server
Socket

socket socketconnection

new
socket

ServerClient

Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values:

[Client Addr, Client Port, Server Addr, Server Port, Protocol]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

Lec 21.564/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept connection

read request

Connection Socket

Connection Socket

Lec 21.574/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Client Protocol

char *hostname;
int sockfd, portno;
struct sockaddr_in serv_addr;
struct hostent *server;

server = buildServerAddr(&serv_addr, hostname, portno);

/* Create a TCP socket */
sockfd = socket(AF_INET, SOCK_STREAM, 0)

/* Connect to server on port */
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)
printf("Connected to %s:%d\n",server->h_name, portno);

/* Carry out Client-Server protocol */
client(sockfd);

/* Clean up on termination */
close(sockfd);

Lec 21.584/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Server Protocol (v1)

/* Create Socket to receive requests*/
lstnsockfd = socket(AF_INET, SOCK_STREAM, 0);

/* Bind socket to port */
bind(lstnsockfd, (struct sockaddr *)&serv_addr,sizeof(serv_addr));
while (1) {
/* Listen for incoming connections */

listen(lstnsockfd, MAXQUEUE);

/* Accept incoming connection, obtaining a new socket for it */
consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

&clilen);

server(consockfd);

close(consockfd);
}

close(lstnsockfd);

Lec 21.594/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 21.604/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1T2

– T1bufferT2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 21.614/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];while(1) {prepare message; send(msg1,mbox);}

Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}
• No need for producer/consumer to keep track of space

in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 21.624/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client  requester, Server  responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)char response[1000];

send(“read rutabaga”, server_mbox);receive(response, client_mbox);
Server: (responding with the file)char command[1000], answer[1000];

receive(command, server_mbox);decode command;read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 21.634/15/15 Kubiatowicz CS162 ©UCB Spring 2015

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

General’s Paradox

Lec 21.644/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened

» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash

– Prepare Phase:
» The global coordinator requests that all participants will

promise to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 21.654/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Two phase commit example
• Simple Example: AWellsFargo Bank, BBank of America

– Phase 1: Prepare Phase
» A writes “Begin transaction” to log

AB: OK to transfer funds to me?
» Not enough funds:

BA: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
BA: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress;
sends “Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

Lec 21.664/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or
more of them fail during the process

» Simple failure mode called “failstop” (different modes later)
– After decision made, result recorded in multiple places

• Undesirable feature of Two-Phase Commit: Blocking
– One machine can be stalled until another site recovers:

» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

• PAXOS: An alternative used by GOOGLE and others
that does not have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 21.674/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 21.684/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 21.694/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:fileSysRead(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

Lec 21.704/15/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 21.714/15/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Details
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for
result, unpack result and return to caller

» Code for server to unpack message, call procedure, pack
results, send them off

• Cross-platform issues:
– What if client/server machines are different
architectures or in different languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).

Lec 21.724/15/15 Kubiatowicz CS162 ©UCB Spring 2015

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of servicembox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 21.734/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 21.744/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 21.754/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 21.764/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (1/2)
• Network: physical connection that allows two

computers to communicate
– Packet: sequence of bits carried over the network

• Broadcast Network: Shared Communication Medium
– Transmitted packets sent to all receivers
– Arbitration: act of negotiating use of shared medium

» Ethernet: Carrier Sense, Multiple Access, Collision Detect
• Point-to-point network: a network in which every

physical wire is connected to only two computers
– Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

• Protocol: Agreement between two parties as to how
information is to be transmitted

• Internet Protocol (IP)
– Used to route messages through routes across globe
– 32-bit addresses, 16-bit ports

• DNS: System for mapping from namesIP addresses
– Hierarchical mapping from authoritative domains
– Recent flaws discovered

Lec 21.774/15/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (2/2)
• TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to

account for congestion in network
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if
asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making with

malicious failures
– One general, n-1 lieutenants: some number of them may be

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• Remote Procedure Call (RPC): Call procedure on remote
machine

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user

programming (in stub)

