
CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability, Transactions
Distributed Systems

April 13th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 20.24/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: File System Caching
• Buffer Cache: Memory used to cache kernel resources, including disk

blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Read Ahead Prefetching: fetch sequential blocks early
– Exploit fact that most common file access is sequential
– Elevator algorithm can efficiently interleave prefetches from

different apps
– How much to prefetch? It’s a balance!

• Delayed Writes: Writes not immediately sent to disk
– write() copies data from user space buffer to kernel buffer

» Other applications read data from cache instead of disk
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a file
» Some files need never get written to disk! (e..g temporary scratch files

written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has been

written out? (lose pointer to inode!)

Lec 20.34/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 20.44/13/15 Kubiatowicz CS162 ©UCB Spring 2015

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0D1D2D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0D1D2P0

• Raid 6: More powerful code  can lose 2 disks of stripe

Recall: RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 20.54/13/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Reliability

• What can happen if disk loses power or machine
software crashes?

– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all
such failures

– Bit-for-bit protection of bad state?
– What if one disk of RAID group not written?

• File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe after
some recovery step), regardless of failure

Lec 20.64/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Storage Reliability Problem

• Single logical file operation can involve updates to
multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block
can require multiple (even lower level) updates

• At a physical level, operations complete one at a
time

– Want concurrent operations for performance
• How do we guarantee consistency regardless of

when crash occurs?

Lec 20.74/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Threats to Reliability

• Interrupted Operation
– Crash or power failure in the middle of a series of
related updates may leave stored data in an
inconsistent state.

– e.g.: transfer funds from BofA to Schwab. What
if transfer is interrupted after withdrawal and
before deposit

• Loss of stored data
– Failure of non-volatile storage media may cause
previously stored data to disappear or be corrupted

Lec 20.84/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Fast AND Right ???

• The concepts related to transactions
appear in many aspects of systems

– File Systems
– Data Base systems
– Concurrent Programming

• Example of a powerful, elegant concept
simplifying implementation AND achieving
better performance.

• The key is to recognize that the system
behavior is viewed from a particular
perspective.

– Properties are met from that perspective

Reliability
Performa
e

Lec 20.94/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order
– Careful design to allow sequence to be interrupted
safely

• Post-crash recovery
– Read data structures to see if there were any
operations in progress

– Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many
app-level recovery schemes (e.g., Word)

Lec 20.104/13/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of
free blocks

• Update directory
with file name ->
file number

• Update modify time
for directory

Recovery:
• Scan inode table
• If any unlinked files
(not in any
directory), delete

• Compare free block
bitmap against inode
trees

• Scan directories for
missing update/access
times

Time proportional to
size of disk

Lec 20.114/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Application Level

Normal operation:
• Write name of
each open file to
app folder

• Write changes to
backup file

• Rename backup file
to be file (atomic
operation provided
by file system)

• Delete list in app
folder on clean
shutdown

Recovery:
• On startup, see if
any files were left
open

• If so, look for
backup file

• If so, ask user to
compare versions

Lec 20.124/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Reliability Approach #2:
Copy on Write File Layout

• To update file system, write a new version of
the file system containing the update

– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
(WAFL, ZFS)

Lec 20.134/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Emulating COW @ user level

• Transform file foo to a new version
• Open/Create a new file foo.v

– where v is the version #
• Do all the updates based on the old foo

– Reading from foo and writing to foo.v
– Including copying over any unchanged parts

• Update the link
– ln –f foo foo.v

• Does it work?
• What if multiple updaters at same time?
• How to keep track of every version of file?

– Would we want to do that?

Lec 20.144/13/15 Kubiatowicz CS162 ©UCB Spring 2015

COW integrated with file system

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 20.154/13/15 Kubiatowicz CS162 ©UCB Spring 2015

COW with smaller-radix blocks

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 20.164/13/15 Kubiatowicz CS162 ©UCB Spring 2015

ZFS

• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new
pointers

• Buffers a collection of writes before creating a
new version with them

• Free space represented as tree of extents in
each block group

– Delay updates to freespace (in log) and do them all
when block group is activated

Lec 20.174/13/15 Kubiatowicz CS162 ©UCB Spring 2015

More General Solutions

• Transactions for Atomic Updates
– Ensure that multiple related updates are performed
atomically

– i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates

– Most modern file systems use transactions internally to
update the many pieces

– Many applications implement their own transactions
• Redundancy for media failures

– Redundant representation (error correcting codes)
– Replication
– E.g., RAID disks

Lec 20.184/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Transactions

• Closely related to critical sections in manipulating
shared data structures

• Extend concept of atomic update from memory to
stable storage

– Atomically update multiple persistent data structures
• Like flags for threads, many ad hoc approaches

– FFS carefully ordered the sequence of updates so
that if a crash occurred while manipulating directory
or inodes the disk scan on reboot would detect and
recover the error, -- fsck

– Applications use temporary files and rename

Lec 20.194/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Key concept: Transaction

• An atomic sequence of actions (reads/writes) on
a storage system (or database)

• That takes it from one consistent state to
another

consistent state 1 consistent state 2
transaction

Lec 20.204/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Typical Structure

• Begin a transaction – get transaction id
• Do a bunch of updates

– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 20.214/13/15 Kubiatowicz CS162 ©UCB Spring 2015

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 20.224/13/15 Kubiatowicz CS162 ©UCB Spring 2015

The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or
none happen

• Consistency: transactions maintain data integrity,
e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated
from that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects
persist despite crashes

Lec 20.234/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Transactional File Systems

• Better reliability through use of log
– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately,
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions
(using logs, etc.)

– Updates to non-directory files (i.e., user stuff) can be
done in place (without logs), full logging optional

– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4
• Full Logging File System

– All updates to disk are done in transactions
Lec 20.244/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Logging File Systems

• Instead of modifying data structures on disk directly, write
changes to a journal/log

– Intention list: set of changes we intend to make
– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to
data structures on disk

– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first
• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption:

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption

Lec 20.254/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Redo Logging

• Prepare
– Write all changes
(in transaction) to
log

• Commit
– Single disk write to
make transaction
durable

• Redo
– Copy changes to
disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations
for committed
transactions

– Garbage collect log

Lec 20.264/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Creating a file

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (i.e., mark used)
• Write inode entry to point to

block(s)
• Write dirent to point to inode

Data blocks

Free
Space
map…

Inode table

Directory
entries

Lec 20.274/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Ex: Creating a file (as a transaction)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (used)
• Write inode entry to point to

block(s)
• Write dirent to point to inode

Data blocks

Free
Space
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it

Lec 20.284/13/15 Kubiatowicz CS162 ©UCB Spring 2015

ReDo log

• After Commit
• All access to file system first

looks in log
• Eventually copy changes to disk

Data blocks

Free
Space
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m
m
it

tail tail tail tail

Lec 20.294/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Crash during logging - Recover

• Upon recovery scan the long
• Detect transaction start

with no commit
• Discard log entries
• Disk remains unchanged Data blocks

Free
Space
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

Lec 20.304/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Recovery After Commit

• Scan log, find start
• Find matching commit
• Redo it as usual

– Or just let it happen later
Data blocks

Free
Space
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it

Lec 20.314/13/15 Kubiatowicz CS162 ©UCB Spring 2015

What if had already started writing back the transaction ?

• Idempotent – the result does not change if the
operation is repeat several times.

• Just write them again during recovery

Lec 20.324/13/15 Kubiatowicz CS162 ©UCB Spring 2015

What if the uncommitted transaction was
discarded on recovery?

• Do it again from scratch
• Nothing on disk was changed

Lec 20.334/13/15 Kubiatowicz CS162 ©UCB Spring 2015

What if we crash again during recovery?

• Idempotent
• Just redo whatever part of the log hasn’t been

garbage collected

Lec 20.344/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Redo Logging

• Prepare
– Write all changes
(in transaction) to
log

• Commit
– Single disk write to
make transaction
durable

• Redo
– Copy changes to
disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations
for committed
transactions

– Ignore uncommitted
ones

– Garbage collect log

Lec 20.354/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Can we interleave transactions in the log?

• This is a very subtle question
• The answer is “if they are serializable”

– i.e., would be possible to reorder them in series
without violating any dependences

• Deep theory around consistency, serializability, and
memory models in the OS, Database, and
Architecture fields, respectively

– A bit more later --- and in the graduate course…

headtail

pending st
ar

t

co
m
m
it

st
ar

t

co
m
m
it

Lec 20.364/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Back of the Envelope …

• Assume 5 ms average seek+rotation
• And 100 MB/s transfer

– 4 KB block => .04 ms
• 100 random small create & write

– 4 blocks each (free, inode, dirent + data)
• NO DISK HEAD OPTIMIZATION! = FIFO

– Must do them in order
• 100 x 4 x 5 ms = 2 sec
• Log writes: 5 ms + 400 x 0.04 ms = 6.6 ms
• Get to respond to the user almost immediately
• Get to optimize write-backs in the background

– Group them for sequential, seek optimization
• What if the data blocks were huge?

Reliabili
ty Perform

ance

Lec 20.374/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Performance

• Log written sequentially
– Often kept in flash storage

• Asynchronous write back
– Any order as long as all changes are logged before
commit, and all write backs occur after commit

• Can process multiple transactions
– Transaction ID in each log entry
– Transaction completed  its commit record is in log

Lec 20.384/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Redo Log Implementation

Volatile Memory

Complete

Mixed:
WB Complete

Committed
Uncommitted

Free Free... ...

older newerAvailable for
New Records

Eligible for GC In UseGarbage Collected

Log−head pointer

Log:

Persistent Storage

Log−head pointer Log−tail pointer
Pending write−backs

Writeback

Lec 20.394/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Isolation

• Assuming 162 appears only in foo,
• what are the possible outcomes of B without

transactions?
• What if x, y and a,b are disjoint?
• What if x == a and y == b?
• Must prevent interleaving so as to provide clean

semantics….

Process A:
move foo from dir x to

dir y
mv x/foo y/

Process B:
grep across a and b
grep 162 a/* b/* > log

Lec 20.404/13/15 Kubiatowicz CS162 ©UCB Spring 2015

What do we use to prevent interleaving?

• Locks!
• But here we need to acquire multiple locks
• We didn’t cover it specifically, but wherever we

are acquiring multiple locks there is the
possibility of deadlock!

– More on how to avoid that later

Lec 20.414/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Locks – in a new form

• “Locks” to control access to data

• Two types of locks:
– shared (S) lock – multiple concurrent transactions
allowed to operate on data

– exclusive (X) lock – only one transaction can
operate on data at a time

S X

S  –

X – –

Lock
Compatibility
Matrix

Lec 20.424/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Two-Phase Locking (2PL)

1) Each transaction must obtain:
– S (shared) or X (exclusive) lock on data before reading,
– X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed
by a “shrinking phase”

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19

Lo

ck
s

H
el

d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Avoid deadlock
by acquiring locks
in some
lexicographic order

Lec 20.434/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Two-Phase Locking (2PL)

• 2PL guarantees that the dependency graph of a schedule
is acyclic.

• For every pair of transactions with a conflicting lock,
one acquires it first  ordering of those two  total
ordering.

• Therefore 2PL-compatible schedules are conflict
serializable

– Note: 2PL can still lead to deadlocks since locks are
acquired incrementally.

• An important variant of 2PL is strict 2PL, where all
locks are released at the end of the transaction

– Prevents a process from seeing results of another
transaction that might not commit

– Easier to recover from aborts

Lec 20.444/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Transaction Isolation

• grep appears either before or after move
• Need log/recover AND 2PL to get ACID

Process A:
LOCK x, y
move foo from dir x to

dir y
mv x/foo y/

Commit and Release x, y

Process B:
LOCK x, y and log
grep across x and y
grep 162 x/* y/* > log

Commit and Release x, y, log

Lec 20.454/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Serializability

• With two phase locking and redo logging, transactions
appear to occur in a sequential order (serializability)

– Either: grep then move or move then grep
– If the operations from different transactions get
interleaved in the log, it is because it is OK

» 2PL prevents it if serializability would be violated
» Typically, because they were independent

• Other implementations can also provide serializability
– Optimistic concurrency control: abort any transaction
that would conflict with serializability

Lec 20.464/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Caveat

• Most file systems implement a transactional model
internally

– Copy on write
– Redo logging

• Most file systems provide a transactional model for
individual system calls

– File rename, move, …
• Most file systems do NOT provide a transactional

model for user data
– Historical artifact ? - quite likely
– Unfamiliar model (other than within OS’s and DB’s)?

» perhaps

Lec 20.474/13/15 Kubiatowicz CS162 ©UCB Spring 201510/27/14 cs162 fa14 L25 47 Lec 20.484/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Atomicity

• A transaction
– might commit after completing all its operations, or
– it could abort (or be aborted) after executing some
operations

• Atomic Transactions: a user can think of a
transaction as always either executing all its
operations, or not executing any operations at all

– Database/storage system logs all actions so that it
can undo the actions of aborted transactions

Lec 20.494/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Consistency

• Data follows integrity constraints (ICs)
• If database/storage system is consistent before

transaction, it will be after
• System checks ICs and if they fail, the transaction

rolls back (i.e., is aborted)
– A database enforces some ICs, depending on the ICs
declared when the data has been created

– Beyond this, database does not understand the semantics
of the data (e.g., it does not understand how the
interest on a bank account is computed)

Lec 20.504/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Isolation

• Each transaction executes as if it was running by
itself

– It cannot see the partial results of another transaction

• Techniques:
– Pessimistic – don’t let problems arise in the first place
– Optimistic – assume conflicts are rare, deal with them
after they happen

Lec 20.514/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Durability

• Data should survive in the presence of
– System crash
– Disk crash  need backups

• All committed updates and only those updates are
reflected in the file system or database

– Some care must be taken to handle the case of a
crash occurring during the recovery process!

Lec 20.524/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Centralized vs Distributed Systems

• Centralized System: System in which major functions
are performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers
working together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.534/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult

Lec 20.544/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 20.554/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Networking Definitions

• Network: physical connection that allows two computers
to communicate

• Packet: unit of transfer, sequence of bits carried over
the network

– Network carries packets from one CPU to another
– Destination gets interrupt when packet arrives

• Protocol: agreement between two parties as to how
information is to be transmitted

Lec 20.564/13/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaled file systems such as ext3, NTFS

• Transactions: ACID semantics
– Atomicity
– Consistency
– Isolation
– Durability

• 2-phase Locking
– First Phase: acquire all locks
– Second Phase: release locks in opposite order

