
CS162
Operating Systems and
Systems Programming

Lecture 2

Introduction to the Process

January 26th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 2.21/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: What is an operating system?

• Special layer of software that provides application
software access to hardware resources

– Convenient abstraction of complex hardware devices
– Protected access to shared resources
– Security and authentication
– Communication amongst logical entities

Hardware

appln
appln

appln

OS

Lec 2.31/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: What is an Operating System?

• Referee
– Manage sharing of resources, Protection,
Isolation

» Resource allocation, isolation, communication
• Illusionist

– Provide clean, easy to use abstractions of
physical resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 2.41/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Increasing Software Complexity

From MIT’s 6.033 course

Lec 2.51/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 2.61/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Very Brief History of OS

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking

"I think there is a world market for
maybe five computers." -- Thomas
Watson, chairman of IBM, 1943

Lec 2.71/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Very Brief History of OS

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking

Thomas Watson was often called “the
worlds greatest salesman” by the time
of his death in 1956

Lec 2.81/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Very Brief History of OS

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking

Lec 2.91/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Very Brief History of OS

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking

• Rapid Change in Hardware Leads to changing OS
– Batch  Multiprogramming  Timesharing  Graphical
UI  Ubiquitous Devices

– Gradual Migration of Features into Smaller Machines

• Situation today is much like the late 60s
– Small OS: 100K lines/Large: 10M lines (5M browser!)
– 100-1000 people-years

Lec 2.101/26/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Archaeology

• Because of the cost of developing an OS from
scratch, most modern OSes have a long lineage:

• Multics  AT&T Unix  BSD Unix  Ultrix, SunOS,
NetBSD,…

• Mach (micro-kernel) + BSD  NextStep  XNU 
Apple OSX, iphone iOS

• Linux  Android OS

• CP/M  QDOS  MS-DOS  Windows 3.1  NT 
95  98  2000  XP  Vista  7  8  phone 
…

• Linux  RedHat, Ubuntu, Fedora, Debian, Suse,…

Lec 2.111/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Migration of OS Concepts and Features

Lec 2.121/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Today: Four fundamental OS concepts

• Thread
– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ Translation
– Programs execute in an address space that is distinct from

the memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by
controlling the translation from program virtual addresses to
machine physical addresses

Lec 2.131/26/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Bottom Line: Run Programs

• Load instruction and data segments
of executable file into memory

• Create stack and heap
• “Transfer control to it”
• Provide services to it
• While protecting OS and it

int main()
{ … ;
}

ed
it
or

co
m
pi
le
r

Program Source
Executable

foo.c a.out

Lo
ad

 &

Ex
ec

ut
e

0x000…

0xFFF…

instructions

data

instructions

data

heap

stack

Memory

Processor

registers

PC:

OS

Lec 2.141/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Today we need one key 61B concept

The instruction cycle

PC:

Registers

ALU

Instruction fetch

Decode

Execute

Memory

instruction

next

decode

data

Processor

Lec 2.151/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during program execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

Lec 2.161/26/15 Kubiatowicz CS162 ©UCB Spring 2015

First OS Concept: Thread of Control

• Thread: Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• A thread is executing on a processor when it is
resident in the processor registers.

• PC register holds the address of executing
instruction in the thread.

• Certain registers hold the context of thread
– Stack pointer holds the address of the top of stack

» Other conventions: Frame Pointer, Heap Pointer, Data
– May be defined by the instruction set architecture
or by compiler conventions

• Registers hold the root state of the thread.
– The rest is “in memory”

Lec 2.171/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Second OS Concept: Program’s Address Space

• Address space  the set of
accessible addresses + state
associated with them:

– For a 32-bit processor there are
232 = 4 billion addresses

• What happens when you read or
write to an address?

– Perhaps Nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

0x000…

0xFFF…

code

Static Data

heap

stack

Lec 2.181/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Address Space: In a Picture

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instructionSP:

• What’s in the code segment? Data?
• What’s in the stack segment?

– How is it allocated? How big is it?
• What’s in the heap segment?

– How is it allocated? How big?

Lec 2.191/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprogramming - Multiple Threads of Control

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

Lec 2.201/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia: Getting started
• Start homework 0 immediately  Due on Friday!

– Gets cs162-xx@cory.eecs.berkeley.edu (and other inst
m/c)

– Github account
– Registration survey
– Vagrant virtualbox – VM environment for the course

» Consistent, managed environment on your machine
– icluster24.eecs.berkeley.edu is same
– Get familiar with all the cs162 tools
– Submit to autograder via git

• Should be going to section already!
• Group sign up form out next week (after drop deadine)

– Get finding groups ASAP
– 4 people in a group!

Lec 2.211/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia (Con’t)
• Upcoming Workshops on Git: From Hackers@Berkeley

– Introductory and advanced
– Details on Piazza (link to facebook announcement)

• Kubiatowicz Office Hours:
– 2pm-3pm, Monday/Wednesday
– May change as need arises (still have a bit of fluidity here as

well)
• Online Textbooks:

– Click on “Projects” link, under “Resources”, there is a pointer
to “Online Textbooks”

– Can read these for free as long as on campus
– First ones: Book on Git, two books on C

• Webcast:
– We are webcasting this class
– Will put link up off main page, but for now, go to:

» webcast.Berkeley.edu, click on “computer science” department
– Webcast is *NOT* a replacement for coming to class!

Lec 2.221/26/15 Kubiatowicz CS162 ©UCB Spring 2015

CS 162 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Helping debug someone else’s code (in another group)
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from from
prior years

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against offenders

Lec 2.231/26/15 Kubiatowicz CS162 ©UCB Spring 2015

How can we give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 2.241/26/15 Kubiatowicz CS162 ©UCB Spring 2015

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: processes think they have
exclusive access to shared resources

• OS has to coordinate all activity
– Multiple processes, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Simple machine abstraction for processes
– Multiplex these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 2.251/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other
thread (good for sharing, bad for protection)

– Threads can share instructions
(good for sharing, bad for protection)

– Can threads overwrite OS functions?
• This (unprotected) model is common in:

– Embedded applications
– Windows 3.1/Early Macintosh (switch only with yield)
– Windows 95—ME (switch with both yield and timer)

Lec 2.261/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Third OS Concept: Process

• Process: execution environment with Restricted Rights
– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process
resources

• Why processes?
– Protected from each other!
– OS Protected from them
– Navigate fundamental tradeoff between protection and
efficiency

– Processes provides memory protection
– Threads more efficient than processes (later)

• Application instance consists of one or more processes

Lec 2.271/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Protection
• Operating System must protect itself from user

programs
– Reliability: compromising the operating system generally
causes it to crash

– Security: limit the scope of what processes can do
– Privacy: limit each process to the data it is permitted to
access

– Fairness: each should be limited to its appropriate share
• It must protect User programs from one another
• Primary Mechanism: limit the translation from program

address space to physical memory space
– Can only touch what is mapped in

• Additional Mechanisms:
– Privileged instructions, in/out instructions, special
registers

– syscall processing, subsystem implementation
» (e.g., file access rights, etc)

Lec 2.281/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Fourth OS Concept: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• What is needed in the hardware to support “dual mode”
operation?

– a bit of state (user/system mode bit)
– Certain operations / actions only permitted in
system/kernel mode

» In user mode they fail or trap
– User->Kernel transition sets system mode AND saves the
user PC

» Operating system code carefully puts aside user state then
performs the necessary operations

– Kernel->User transition clears system mode AND
restores appropriate user PC

» return-from-interrupt

Lec 2.291/26/15 Kubiatowicz CS162 ©UCB Spring 2015

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.301/26/15 Kubiatowicz CS162 ©UCB Spring 2015

User/Kernal(Priviledged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 2.311/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple Protection: Base and Bound (B&B)

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base

Bound <

1000…

1100…
1100…

>=

• Requires relocating loader
• Still protects OS and isolates pgm
• No addition on address path

Lec 2.321/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Another idea: Address Space Translation

• Program operates in an address space that is distinct
from the physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

Lec 2.331/26/15 Kubiatowicz CS162 ©UCB Spring 2015

A simple address translation with Base and Bound

• Can the program touch OS?
• Can it touch other programs?

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

Lec 2.341/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Tying it together: Simple B&B: OS loads process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Lec 2.351/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: OS gets ready to switch

• Priv Inst: set
special
registers

• RTU

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Lec 2.361/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: “Return” to User

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to return to

system?

0001…

Lec 2.371/26/15 Kubiatowicz CS162 ©UCB Spring 2015

3 types of Mode Transfer

• Syscall
– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero,

…
• All 3 are an UNPROGRAMMED CONTROL TRANSFER

– Where does it go?

Lec 2.381/26/15 Kubiatowicz CS162 ©UCB Spring 2015

How do we get the system target address of the
“unprogrammed control transfer?”

Lec 2.391/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Interrupt Vector

• Where else do you see this dispatch pattern?

interrupt number
(i)

intrpHandler_i () {
….
}

Address and
properties of each
interrupt handler

Lec 2.401/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to return to

system?

0000 1234

Lec 2.411/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound
0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and set
up system stack?

IntrpVector[i]

Lec 2.421/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound
0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

0001 0124

1000 …

1100 …
0000 1234

regs
00FF…

RTU

Lec 2.431/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound
xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

000 0248

1000 …

1100 …
0000 1234

regs
00FF…

RTU

Lec 2.441/26/15 Kubiatowicz CS162 ©UCB Spring 2015

What’s wrong with this simplistic address
translation mechanism?

Lec 2.451/26/15 Kubiatowicz CS162 ©UCB Spring 2015

x86 – segments and stacks

CS EIP

SS ESP

DS
ECXES
EDX
ESI
EDI

EAX
EBX

code

Static Data
heap

stack

code

Static Data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length
and access rights
associated with each
segment

Lec 2.461/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Virtual Address Translation

• Simpler, more useful schemes too!
• Give every process the illusion of its own BIG

FLAT ADDRESS SPACE
– Break it into pages
– More on this later

Lec 2.471/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 2.481/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Running Many Programs ???

• We have the basic mechanism to
– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes
from each other

• Questions ???
• How do we decide which user process to run?
• How do we represent user processes in the OS?
• How do we pack up the process and set it aside?
• How do we get a stack and heap for the kernel?
• Aren’t we wasting are lot of memory?
• …

Lec 2.491/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Process Control Block

• Kernel represents each process as a process
control block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

• Scheduling algorithm selects the next one to run

Lec 2.501/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Scheduler

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Lec 2.511/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting it together: web server

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

Lec 2.521/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Digging Deeper: Discussion & Questions

Lec 2.531/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Simultaneous MultiThreading/Hyperthreading

• Hardware technique
– Superscalar processors can
execute multiple instructions
that are independent.

– Hyperthreading duplicates
register state to make a
second “thread,” allowing
more instructions to run.

• Can schedule each thread
as if were separate CPU

– But, sub-linear speedup!
• Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

Lec 2.541/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementing Safe Mode Transfers

• Carefully constructed kernel code packs up the
user process state an sets it aside.

– Details depend on the machine architecture
• Should be impossible for buggy or malicious user

program to cause the kernel to corrupt itself.
• Interrupt processing not be visible to the user

process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt
processing?

Lec 2.551/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel Stack Challenge

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel
memory) plus User stack (located in user memory)

– Syscall handler copies user args to kernel space
before invoking specific function (e.g., open)

– Interrupts (???)

Lec 2.561/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Hardware support: Interrupt Control

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack it up in a queue and pass off to an OS thread to

do the hard work
» wake up an existing OS thread

• OS kernel may enable/disable interrupts
– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupt
– Mask off (disable) certain interrupts, eg., lower priority
– Certain non-maskable-interrupts (nmi)

» e.g., kernel segmentation fault

Lec 2.571/26/15 Kubiatowicz CS162 ©UCB Spring 2015

How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Kernel interrupt stack
– Handler works regardless of state of user code

• Interrupt masking
– Handler is non-blocking

• Atomic transfer of control
– “Single instruction”-like to change:

» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Lec 2.581/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Before

Lec 2.591/26/15 Kubiatowicz CS162 ©UCB Spring 2015

During

Lec 2.601/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel System Call Handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

Lec 2.611/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Multiprocessors - Multicores – Multiple Threads

• What do we need to support Multiple Threads
– Multiple kernel threads?
– Multiple user threads in a process?

• What if we have multiple Processors / Cores

Lec 2.621/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Idle Loop & Power

• Measly do-nothing unappreciated trivial piece of
code that is central to low-power

Lec 2.631/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Performance

• Performance = Operations / Time

• How can the OS ruin application performance?
• What can the OS do to increase application

performance?

Lec 2.641/26/15 Kubiatowicz CS162 ©UCB Spring 2015

Conclusion: Four fundamental OS concepts

• Thread
– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ Translation
– Programs execute in an address space that is distinct from

the memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of
an address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs

and user programs are isolated from one another by
controlling the translation from program virtual addresses to
machine physical addresses

