Cs162
Operating Systems and
Systems Programming
Lecture 18

File Systems
April 6, 2015

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: I/0 Performance

Response
o 300 Time (ms)
3
User 3 I/0
Thread '?é 200
Queue 8
[OS Paths] 100
Response Time = Queue + I/O device service time

0 4o 100%
* Performance of I/O subsystem Throughput (Utilization)
- Metrics: Response Time, Throughput (% total BW)
- Effective BW per op = transfer size / response time
» EffBW(n) =n/ (S +n/B)=B/ (1 + SB/n)
- Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time
* Queuing behavior:
- Can lead to big increases of latency as utilization increases
- Solutions?
4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.2

Recall: A Little Queuing Theory: Some Results

+ Assumptions:
- System in equilibrium; No limit to the queue
- Time between successive arrivals is random and memoryless

»

Arrival Rafg

Service Rate

A H=1/T,,

+ Parameters that describe our system:

- A mean number of arriving customers/second

- T, mean time to service a customer ("m1")

- C: squared coefficient of variance = c2/m12

- W service rate = 1/T_,,

-u server utilization (O<u<1): u = A/p = A x T,
+ Parameters we wish to compute:

- Ty Time spent in queue

-L Length of queue = A x T, (by Little's law)
. Resuli‘rs:
- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T = T x u/(1 - u)
- General service distribution (no restrictions), 1 server:

. - Y -
4/6/15 » Called M/6/1 lgl?bei#r%v'vi;'z-chlg-fe@&f g:incg) 2’51%/(1 w) Lec 18.3

When is the disk performance highest?

* When there are big sequential reads, or

* When there is so much work to do that they can be
piggy backed (reordering queues—one moment)

+ OK, to be inefficient when things are mostly idle
* Bursts are both a threat and an opportunity
+ <your idea for optimization goes here>

- Waste space for speed?

* Other techniques:
- Reduce overhead through user level drivers

- Reduce the impact of I/0 delays by doing other
useful work in the meantime

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.4

Disk Scheduling

- Disk can do only one request at a time: What

order do you choose to do queued requests?
- Request denoted by (track, sector)

NJOINJWININ
User ‘“N‘N'N'Bp'w ‘Head
Requests

FIFO: First In First Out

* Schedule requests in the order
they arrive in the queue

+ Example:
- Request queue:
2,1,3,6,2,5
- Scheduling order:

pesaH Xsid

* Scheduling algorithms: o 5136 25
- First In First Out (FIFO) = . 16 tracks, 6 seeks
- Shortest Seek Time First =
- SCAN 8 * Pros: Fair among requesters
- C-SCAN * Cons: Order of arrival may be
to random spots on the disk =
» In our examples we ignore the sector Very long seeks
- Consider only track #
4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.5 4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.6
SSTF: Shortest Seek Time First - SCAN -
> >
' zlcl;h‘rhi r'eéiuesw:r Jhagoskclosesf z : ImkpleT\enTT an Elevator Algor;‘i'rhmi i
o the head on the dis @ take the closest request in the @
- Although called SSTF, include g direction of travel g
rotational delay in calculation,
as rotation can be as long as + Example:
seek - Request queue:
2,1,3,6,2,5
- Example: - Head is moving t9wards center
- Request queue:) SChgd”;'"gz °r'2de;' 6
2,1,3,6,2,5 - 8 tracks, 4 seeks
- Scheduling order: ’
5,6,3,2,2,1 + Pros:
- 6 tracks, 4 seeks - No starvation
- Low seek
* Pros: reduce seeks
. Conﬂ : favor'j middle tracks y
. . : - ay spend time on sparse tracks
c?nGsr'.e gc\j?:y lﬁﬁ‘g :gﬁsr::rvahon while gense r‘equesfspelsewher'e
Lec 18.7 4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.8

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015

C-SCAN

)
+ Like SCAN but only serves request in =
only one direction T
[
- Example: 8
- Request queue:
2,1,3,6,2,5

- Head only serves request on its
waz from center towards edge
- Sc edulin% order:

5,6,1,2,2,3
- 8 tracks, 5 seeks

* Pros:
- Fairer than SCAN
- Accumulate work in remote region then
go get it

+ Cons: longer seeks on the way back

+ Optimization: dither to pickup nearby
requests as you go

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.9

Review: Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
- Supports a standard, internal interface
- Same kernel I/0 system can interact easily with
different device drivers
- Special device-specific configuration supported with the
ioctl () system call
+ Device Drivers typically divided into two pieces:
- Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel's interface to the device driver
» Top half will start I/O to device, may put thread to sleep
until finished
- Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/0 now complete

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.10

Kernel vs User-level I/0

* Both are popular/practical for different reasons:
- Kernel-level drivers for critical devices that must keep
running, e.g. display drivers.
» Programming is a major effort, correct operation of the
rest of the kernel depends on correct driver operation.
- User-level drivers for devices that are non-threatening,
e.g USB devices in Linux (libusb).

» Provide higher-level primitives to the programmer, avoid
every driver doing low-level I/0O register tweaking.

» The multitude of USB devices can be supported by Less-
Than-Wizard programmers.

» New drivers don’ t have to be compiled for each version of
the OS, and loaded into the kernel.

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.11

Kernel vs User-level Programming Styles

+ Kernel-level drivers
- Have a much more limited set of resources available:
» Only a fraction of libc routines typically available.

» Memory allocation (e.g. Linux kmalloc) much more limited in
capacity and required to be physically contiguous.

» Should avoid blocking calls.
» Can use asynchrony with other kernel functions but tricky
with user code.
* User-level drivers

- Similar to other application programs but:

» Will be called often - should do its work fast, or postpone
it - or do it in the background.

» Can use threads, blocking operations (usually much simpler)
or non-blocking or asynchronous.

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.12

4/6/15

Performance: multiple outstanding requests

‘

Suppose each read takes 10 ms to service.

If a process works for 100 ms after each read,
what is the utilization of the disk?

-U=10ms/ 110ms = 9%
What it there are two such processes?
-U=(10ms +10ms)/ 110ms = 18%

What if each of those processes have two such
threads?

3 Queue|
7

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.13

Recall: How do we hide I/0 latency?

* Blocking Interface: “Wait”

- When request data (e.g., read() system call), put process
to sleep until data is ready

- When write data (e.g., write() system call), put process
to sleep until device is ready for data

* Non-blocking Interface: “Don't Wait”

- Returns quickly from read or write request with count of
bytes successfully transferred to kernel

- Read may return nothing, write may write nothing
- Asynchronous Interface: “Tell Me Later”

- When requesting data, take pointer to user's buffer,
return immediately; later kernel fills buffer and notifies
user

- When sending data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.14

4/6/15

I/0 & Storage Layers

Operations, Entities and Interface

Application / Service

streams
High Level I/0 red
0 handles
registers

file_open, file_read, .. on struct file * & void *

pto we are here ...

Commands and Data Transfers

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.15

Recall: C Low level I/0

* Operations on File Descriptors - as OS object
representing the state of a file

- User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename lint flags| [, hode t modej)
int creat (const char *fi ame, mode t mode)
int close (int filed

Bit vector of:

* Access modes (Rd, Wr, ..)

* Open Flags (Create, ..)

+ Operating modes (Appends, ..)

Bit vector of Permission Bits:
» User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.16

Recall: C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)

- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)

int fsync (int fildes) - wait for i/o to finish
void sync (void) - wait for ALL to finish

* When write returns, data is on its way to disk and
can be read, but it may not actually be permanent!

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.17

Building a File System

- File System: La\ﬁer' of OS that transforms block
interface of disks (or other block devices) into Files,
Directories, etc.

* File System Components

- Disk Management: collecting disk blocks into files

- Naming: Interface to find %iles by name, not by blocks

- Protection: Layers to keep data secure

- Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

+ User vs. System View of a File

- User's view:
» Durable Data Structures
- System's view (system call interface):
» Collection of Bytes (UNIX)
» Doesn't matter to system what kind of data structures you
want to store on disk!
- System's view (inside OS):
» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)
» Block size > sector size; in UNIX, block size is 4KB

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.18

Administrivia

- Midterm I grading finished!

- Mean: 56.5
- Sthev: 14.71
10.0 55.25 94.5 56.5 14.71

* Clearly this exam was harder than intended!
* Regrades:
- You have until Thursday (4/9) to request a regrade

- Be sure: If we receive a request, we may regrade whole
exam (could lose points)

* Midterm II: coming up
- April 22"; More details upcoming
4/6/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 18.19

Translating from User to System View

* What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block
* What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block
- Everything inside File System is in whole size blocks

- For example, getcg), putc() = buffers something like
4096 bytes, even if interface is one byte at a time

* From now on, file is a collection of blocks
4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.20

So you are going to design a file system ..

What factors are critical to the design choices?
+ Durable data store => it's all on disk
+ Disks Performance !l
- Maximize sequential access, minimize seeks
* Open before Read/Write

- Can perform protection checks and look up where the
actual file resource are, in advance

+ Size is determined as they are used !ll
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room
+ Organized into directories
- What data structure (on disk) for that?
* Need to allocate / free blocks
- Such that access remains efficient

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.21

Disk Management Policies

+ Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in
logical space
- Directory: user-visible index mapping names to files
(next lecture)
* Access disk as linear array of sectors. Two Options:
- Identify sectors as vectors [c¥\l|inder', surface, sector].
Sort in cylinder-major order. Not used much anymore.
- Logical Block Addressing (LBA). Every sector has integer
address from zero up fo max number of sectors.
- Controller translates from address = physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk
+ Need way to track free disk blocks
- Link free blocks together = too slow toda
- Use bitmap to represent free space on dis
* Need way to structure files: File Header
- Track which blocks belong at which offsets within the
logical file structure
- Optimize placement of files' disk blocks to match access
and usage patterns

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.22

Components of a File System

File path

File number
Data blocks

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.23

Components of a file system

file name —____, file number ————— &4, age block
offset directory offset index structure

+ Open performs name resolution
- Translates pathname into a “file number”
» Used as an “index” to locate the blocks
- Creates a file descriptor in PCB within kernel
- Returns a “handle” (another int) to user process
+ Read, Write, Seek, and Sync operate on handle
- Mapped to descriptor and to blocks

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.24

Directories

FAVORITES Hame

Directory

MK S * Basically a hierarchical structure
] - n s . * Each directory entry is a collection of
.y e - Files
) Downloads ¥ & fae . .
. T : - Directories
e i » A link to another entries
o " & g > * Each has a name and attributes
- it . - Files have data
et i O
- 3 * Links (hard links) make it a DAG, not just a tree
mlp e pintos-notes. txt
ae fetali - Softlinks (aliases) are another name for an entry
A0S... " roster-8-19.ds
p .
4/6/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 18.25 4/6/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 18.26
I/0 & Storage Layers File
* Named permanent storage Data blocks
+ Contains
Application / Service _
. streams Data .
High Level I/0 » Blocks on disk somewhere
handles #4 - handle - Metadata (Attributes) File handle
registers » Owner, size, last opened, D
descriptors » Access rights . .
‘R W X File descriptor
Commands and Data Transfers Data blocks - Owner, Group, Other (in Unix Fileobject (inode)
s s‘l’emls) ! Position
Disks, Flash, Controllers, DMA Y
* Access control list in Windows
system

4/6/15

Dlrector‘y Sfr'uc‘rure

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.27

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 18.28

FAT (File Allocation Table)

+ Assume (for now) we have a

FAT Properties

- File is collection of disk blocks

waybfo translate a path to a “file Fat Disk Blocks - FAT is linked list 1-1 with Disk Blocks
number file number 0: blocks file number
- i.e., a directory structure - e + File Number is index of root ™\ _ s
- Disk Storage is a collection of 31 | a1 Bk 1 of block list for the file 31 | a1 Bk 1
Blocks L : Fi - R- ‘
- File offset (0 = B:x)
- Just hold file data - Follow list to get block #
+ Example: file_read 31, <2, x> * Unused blocks < FAT free list
- Index into FAT with file number
- Follow linked list to block free
- Read the block from disk into mem :J File 31, Block 2 File 31, Block 2
N-1 N- N-1 N-
1 S
mem mem
4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.29 4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.30
FAT Properties FAT Properties
* File is collection of disk blocks * File is collection of disk blocks
* FAT is linked list 1-1 with Disk Blocks * FAT is linked list 1-1 with Disk Blocks
blocks file number O} blocks file number
* File Number is index of root \ a1 3 Bk o * File Number is index of root \ .- 3 Beako
. . ile 31, Bloc! . . ile 31, Bloc
of block list for the file Fle 31 Bleck 1 of bloc!(list for 1'he. file —*1 Fle 31 Bleck 1
* File offset (o = B:x) *+ 6row file b / al.loca'rmg f_ree " = [File 63, Block 1
. ; - Ex: Create file, write, write ||
Unused blocks <& FAT free list File 31, Block 3 || [Frest ooaks
« Ex: file_write(51, <3, y>) free freelgzz || |File 63, Block 0
- 6rab blocks from free list 7 5
i File 2 number o -
_ L'nklng 'I'hem in‘l'o flle File 31, Block 2 File 31, Block 2
N-1 N-
B
mem mem
4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.31 4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.32

FAT Assessment

Used in DOS, Windows, thumb
drives, .. FAT Disk Blocks

FAT Assessment
+ Time to find block (large files) ??

FAT * Free list usually just a bit vector FaAT Disk Blocks
* Where is FAT stored? il number 91 = O - Next fit algorithm file number 9 0:
- On Disk, restore on boot, co : 1
in memory PY \A ":l File 31, Block O * Block layout for file 22? \ 31 File 31, Block O
7,_ File 31, Block 1 . i ?2?2? N File 31, Block 1
* What happens when you format |« | File 63, Block 1 Sequential Access 27; Bl File 63, Block 1
a disk? — + Random Access ???
- Zero the blocks, link up the FAT Fragmentation ???
free-list " || |File31, Block 3 - Small files ??? File 31, Block 3
. Sj) File 63, Block O . e . File 63, Block O
Simple free! ¢3: - Big files ??? free! ¢3:
File 2 number 5“ File 31, Block 2 File 2 number File 31, Block 2
N-1 N- N-1: N-
1 R
mem mem
4/6/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 18.33 4/6/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 18.34
What about the Directory? Directory Structure (Con't)
- How many disk accesses to resolve “/my/book/count”?
ﬂ:f 5268830 g - Read in file header for root (fixed spot on disk)
“/home/tom” . .
Nawie | T i T Toont | = fle - Read in first data block for root
File Number 5263330 3302&153 35002320 352_00219 Space 66212871 Space » Table of file name/index pOiI"S Search Iinear'ly - ok
Next \\| v °

Essentially a file com‘aining
<file_name: file_number> mappings

* Free space for new entries

In FAT: attributes kept in directory (!II)
+ Each directory a linked list of entries

* Where do you find root directory (“/")?

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.35

since directories typically very small
- Read in file header for “my”
- Read in first data block for “my”: search for “book”
- Read in file header for “book”
- Read in first data block for “book”; search for “count”
- Read in file header for “count”
* Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.36

Big FAT security holes

+ FAT has no access rights
* FAT has no header in the file blocks
+ Just gives and index into the FAT

- (file number = block number)

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.37

Characteristics of Files

A Five-Year Study of File-Systerm Metadata

Most files are small .

Unharsity of Wisconsin, Madison

Most of the space is occupied i ssoomn socen mascosn o
by the rare big ones

A Five-Yoar Study of Filo-System Metadata 98
12000
o iz 200
[2001 1800 2001
10000 | ;g% 1 & %
= 2004 < W0 0
§ 8000 |- 1 E- 1200
2 000t | 4 oo
i s
] 4
i 4000 a 60D
00 -
2000 |- 1
200
ol = SRS [e i " e e
o 8 128 2K 2K 512K &M 128 Bz 4K 32K ZBEK M i6M i28M 116G G B4G
Flie size {bytes, log scale, power-of-2 bins) Containing file size (bytes, log scale, power.of-2 bins}
Fig. 2 Histograms of files by size. Fig. 4. Histograms of bytes by containing file size.
4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.38

So what about a "real” file system

+ Meet the inode

Inode Array Triple Double
] Indirect Indirect Indirect Data
] Inode Blocks Blocks Blocks Blocks
. — Fil

file_number — Metadata /'9
] Direct
- Pointers \D
E o \ [—
— Indirect\ Pointer D
| Dbl. Indirect Pt\n 1 {:‘
[Tripl. Indrect Ptr. 4’3\‘5\—':5\5
] D—‘D

4/6/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 18.39

Unix Fast File System (Optimization on Unix Filesystem)

* Original inode format appeared in BSD 4.1

- Berkeley Standard Distribution Unix
- Part of your heritage!

* File Number is index into inode arrays
+ Multi-level index structure

- 6reat for little to large files
- Asymmetric tree with fixed sized blocks

+ Metadata associated with the file

- Rather than in the directory that points to it

+ UNIX FFS: BSD 4.2: Locality Heuristics

4/6/15

- Block group placement
- Reserve space
Scalable directory structure

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.40

An “almost real” file system

+ Pintos: src/filesys/file.c, inode.c

*/

f+ An open Tile. =#/
struct file
{ .
struct inode »* /* File's inode. =/ irect Data
off_t /# Current position. */ cks Blocks
bool /# Has file_deny_write() been called? =/
I
rie_ran f* In-memory inode. */
struct inode
{
struct list_elem H /# Element in inode list. =/
block_sector_t H /# Sector number of disk location. =/
int H /* Number of openers. =*/
bool H f* True if deleted, false otherwise.
int H f* B: writes ok, =8: deny writes. =*/
struct inode_disk H /# Inode content. =/
I

/#* On-disk inode.

||3n§ Must be exactly BLOCK_SECTOR_SIZE bytes long. */
TriF:truct inode_disk

block_sector_t H /*

First data sector.

*/

FFS: File Attributes

+ Inode metadata

- UGO x RWX

Setuid bit

- execute at owner permissions
- rather than user

Getgid bit
- execute at group's permissions

Dat
Bloc

Inode Array Triple Double
Indirect Indirect Indirect
lnada - Blocks Blocks Blocks
File
Metadatal /~.9
—
User
Group
9 basic access control bits \‘D

a
ks

St ey 12 ple siee 1o ytes. o < i—a
uint3z_t [125]; /* Not used. */
};
4/6/15 4/6/15 Kubiatowicz 5162 ©UCB Spring 2015 Lec 18.42
FFS: Data Storage FFS: Data Storage
- Small files: 12 pointers direct to data blocks * Large files: 1,2,3 level indirect pointers
Direct pointers Triple Double Indir‘ef:'r poim‘er's Triple Double
S ek fficient Indirect Indirect Indirect Data - Po':: T:_: d':lk t:o“r:\l'(r Indirect Indirect Indirect Data
ocks = sufficie containing o ointers
Inode Blocks Blocks Blocks Blocks g only Inode Blocks Blocks Blocks Blocks

For files up to 48KB _ - 4 kB blocks => 1024 ptrs
— et => 4 MB @ level 2 i
— m /D => 4 GB @ level 3 /
— /D =>4 TB @ level 4 48 KB
] 4 MB
— Direc /D/D E Dire "
- Pointets 12000 - v T T - = ”)intets \D
- \ e 2001 A Five-Voas Gtudy of Filo Gysiom Mudatn + 09
o : - o 5 O 0 .aeB
] : o ¥ el = .
O Indirect Pointer 2 po a0 | : Pointe O]
SR : o e 88— 8
L ol 2 Rl B ey Oy +47TB

o L] 128 K =K §12K (L] 1280 $13 4K M K DM WM e 16 BG MO
Fila slew (tyios, l0g scale, powar-ol-2 bird) Conunng fim ww (oytes. log acale. powe-of 3)
4/6/15 Kubiatowicz €5162 € Fig 2. Histagram of s by sse. rer e 2 TSN ~ubiatowicz €5162 ®UCB Spring 2015 Lec 18.44

Freespace Management

- Bit vector with a bit per storage block
+ Stored at a fixed location within the file system

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.45

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored anywhere near the data blocks.

To read a small file, seek to get header, seek
back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were

created (They were each given a unique number,
called an “inumber”)

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.46

Where are inodes stored?

+ Later versions of UNIX moved the header
information to be closer to the data blocks

- Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an Is of that
directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header array
on each of many cylinders. For small directories, can fit
all data, file headers, etc. in same cylinder = no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk at
same time

» Reliability: whatever happens to the disk, you can find
many of the files (even if directories disconnected)

- Part of the Fast File System (FFS)
» General optimization to avoid seeks

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.47

Locality: Block Groups

+ File system volume is divided e
into a set of block groups P Block Group 0

- Close set of tracks

+ File data blocks, metadata, _
and free space are / Block Group 2 %,
interleaved within block group <

- Avoid huge seeks between B
user data and system
structure

 Put directory and its files in
common block group

. . B R, 04. ' &
* First-Free allocation of new N % Blocks for ™

Block Group 1

&
/dyq, &3

g
& $pag

yO08TI%0
. rigg

£ Bitman-
(.'." /d, and /blc

B

[
)
)
)

%,

P
g
-
&
o

file block - M ' 7/
- Few little holes at start, R o
bP sequential runs at end
of group
- Avoids fragmentation
- Sequential layout for big
* Reserve space in the BG
4/6/15

Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.48

FFS First Fit Block Allocation FFS
BESE S . ProEsff" t st for both Il and | fil
- Efficient storage for both small and large files
Start of Block BLS)Ck - Locality for both small and large files
Helddl 2 EH H ©HEHE = EEEEEEEEEEEEIL - Locality for metadata and data
Group - Cons
. . - Inefficient for tiny files (a 1 byte file requires
Startof Write Two Block File both an inode and a data block)
Block DEEEEEEN H EEEErEEEEEEEEEEEEERD - Inef_ficienf encpding when file is mostly contiguous
on disk (no equivalent to superpages)
Group)) - Need to reserve 10-20% of free space to prevent
Startof Write Largie File fragmentation
Block CITTTIITITITTITIT]I
Group
4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.49 4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.50
File System Summary
- File System:

- Transforms blocks into Files and Directories

- Optimize for access and usage patterns

- Maximize sequential access, allow efficient random access
File (and directory) defined by header, called “inode”
Multilevel Indexed Scheme

- Inode contains file info, direct pointers to blocks,

- indirect blocks, doubly indirect, etc..

4.2 BSD Multilevel index files

- Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc.
- Optimizations for sequential access: start new files in
open ranges of free blocks, rotational Optimization
* Naming: act of translating from user-visible names to
actual system resources
- Directories used for naming for local file systems

4/6/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 18.51

