
CS162
Operating Systems and
Systems Programming

Lecture 18

File Systems

April 6th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 18.24/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

Controller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n)
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 18.34/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ = Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate

Queue Server
Service Rate
μ=1/Tser

Lec 18.44/6/15 Kubiatowicz CS162 ©UCB Spring 2015

When is the disk performance highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be

piggy backed (reordering queues—one moment)

• OK, to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other
useful work in the meantime

Lec 18.54/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Disk Scheduling

• Disk can do only one request at a time; What
order do you choose to do queued requests?
– Request denoted by (track, sector)

• Scheduling algorithms:
– First In First Out (FIFO)
– Shortest Seek Time First
– SCAN
– C-SCAN

• In our examples we ignore the sector
– Consider only track #

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

Lec 18.64/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FIFO: First In First Out

• Schedule requests in the order
they arrive in the queue

• Example:
– Request queue:

2, 1, 3, 6, 2, 5
– Scheduling order:

2, 1, 3, 6, 2, 5
• 16 tracks, 6 seeks

• Pros: Fair among requesters
• Cons: Order of arrival may be
to random spots on the disk
Very long seeks

D
isk H

ead

6

1
2
3
4
5

Lec 18.74/6/15 Kubiatowicz CS162 ©UCB Spring 2015

SSTF: Shortest Seek Time First

• Pick the request that’s closest
to the head on the disk
– Although called SSTF, include
rotational delay in calculation,
as rotation can be as long as
seek

• Example:
– Request queue:

2, 1, 3, 6, 2, 5
– Scheduling order:

5, 6, 3, 2, 2, 1
– 6 tracks, 4 seeks

• Pros: reduce seeks

• Cons: may lead to starvation
– Greedy. Not optimal

D
isk H

ead

6

1
2
3
4
5

Lec 18.84/6/15 Kubiatowicz CS162 ©UCB Spring 2015

SCAN

• Implements an Elevator Algorithm:
take the closest request in the
direction of travel

• Example:
– Request queue:

2, 1, 3, 6, 2, 5
– Head is moving towards center
– Scheduling order:

5, 3, 2, 2, 1, 6
– 8 tracks, 4 seeks

• Pros:
– No starvation
– Low seek

• Cons: favors middle tracks
– May spend time on sparse tracks

while dense requests elsewhere

D
isk H

ead

6

1
2
3
4
5

Lec 18.94/6/15 Kubiatowicz CS162 ©UCB Spring 2015

C-SCAN
• Like SCAN but only serves request in

only one direction

• Example:
– Request queue:

2, 1, 3, 6, 2, 5
– Head only serves request on its

way from center towards edge
– Scheduling order:

5, 6, 1, 2, 2, 3
– 8 tracks, 5 seeks

• Pros:
– Fairer than SCAN
– Accumulate work in remote region then

go get it

• Cons: longer seeks on the way back

• Optimization: dither to pickup nearby
requests as you go

D
isk H

ead

6

1
2
3
4
5

Lec 18.104/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 18.114/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel vs User-level I/O

• Both are popular/practical for different reasons:
– Kernel-level drivers for critical devices that must keep
running, e.g. display drivers.
» Programming is a major effort, correct operation of the

rest of the kernel depends on correct driver operation.
– User-level drivers for devices that are non-threatening,
e.g USB devices in Linux (libusb).
» Provide higher-level primitives to the programmer, avoid

every driver doing low-level I/O register tweaking.
» The multitude of USB devices can be supported by Less-

Than-Wizard programmers.
» New drivers don’t have to be compiled for each version of

the OS, and loaded into the kernel.

Lec 18.124/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel vs User-level Programming Styles
• Kernel-level drivers

– Have a much more limited set of resources available:
» Only a fraction of libc routines typically available.
» Memory allocation (e.g. Linux kmalloc) much more limited in

capacity and required to be physically contiguous.
» Should avoid blocking calls.
» Can use asynchrony with other kernel functions but tricky

with user code.

• User-level drivers
– Similar to other application programs but:

» Will be called often – should do its work fast, or postpone
it – or do it in the background.

» Can use threads, blocking operations (usually much simpler)
or non-blocking or asynchronous.

Lec 18.134/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Performance: multiple outstanding requests

• Suppose each read takes 10 ms to service.
• If a process works for 100 ms after each read,

what is the utilization of the disk?
– U = 10 ms / 110ms = 9%

• What it there are two such processes?
– U = (10 ms + 10 ms) / 110ms = 18%

• What if each of those processes have two such
threads?

Queue Server

Lec 18.144/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: How do we hide I/O latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process
to sleep until data is ready

– When write data (e.g., write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred to kernel

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When requesting data, take pointer to user’s buffer,
return immediately; later kernel fills buffer and notifies
user

– When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 18.154/6/15 Kubiatowicz CS162 ©UCB Spring 2015

I/O & Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …

Lec 18.164/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: C Low level I/O

• Operations on File Descriptors – as OS object
representing the state of a file
– User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

Lec 18.174/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: C Low Level Operations

• When write returns, data is on its way to disk and
can be read, but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
- returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
- returns bytes written

off_t lseek (int filedes, off_t offset, int whence)

int fsync (int fildes) – wait for i/o to finish
void sync (void) – wait for ALL to finish

Lec 18.184/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size sector size; in UNIX, block size is 4KB

Lec 18.194/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm I grading finished!
– Mean: 56.5
– StDev: 14.71

• Clearly this exam was harder than intended!
• Regrades:

– You have until Thursday (4/9) to request a regrade
– Be sure: If we receive a request, we may regrade whole
exam (could lose points)

• Midterm II: coming up
– April 22nd; More details upcoming

Lec 18.204/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc() buffers something like
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

File
System

Lec 18.214/6/15 Kubiatowicz CS162 ©UCB Spring 2015

So you are going to design a file system …

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the
actual file resource are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to allocate / free blocks
– Such that access remains efficient

Lec 18.224/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

– Controller translates from address physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files’ disk blocks to match access
and usage patterns

Lec 18.234/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Components of a File System

Directory
Structure

File path

File Index
Structure

File number

…

Data blocks

Lec 18.244/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Components of a file system

• Open performs name resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another int) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to descriptor and to blocks

file name
offset directory

file number
offset index structureStorage block

Lec 18.254/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Directories

Lec 18.264/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory

• Basically a hierarchical structure
• Each directory entry is a collection of

– Files
– Directories

» A link to another entries
• Each has a name and attributes

– Files have data
• Links (hard links) make it a DAG, not just a tree

– Softlinks (aliases) are another name for an entry

Lec 18.274/6/15 Kubiatowicz CS162 ©UCB Spring 2015

I/O & Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

…

Data blocks

#4 - handle

Directory Structure

Lec 18.284/6/15 Kubiatowicz CS162 ©UCB Spring 2015

File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

• R, W, X
• Owner, Group, Other (in Unix
systems)

• Access control list in Windows
system

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle

Lec 18.294/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FAT (File Allocation Table)

• Assume (for now) we have a
way to translate a path to a “file
number”
– i.e., a directory structure

• Disk Storage is a collection of
Blocks
– Just hold file data

• Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk into mem

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

mem
Lec 18.304/6/15 Kubiatowicz CS162 ©UCB Spring 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• File offset (o = B:x)
• Follow list to get block #
• Unused blocks FAT free list

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

Lec 18.314/6/15 Kubiatowicz CS162 ©UCB Spring 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• File offset (o = B:x)
• Follow list to get block #
• Unused blocks FAT free list
• Ex: file_write(51, <3, y>)

– Grab blocks from free list
– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

File 31, Block 3

Lec 18.324/6/15 Kubiatowicz CS162 ©UCB Spring 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• Grow file by allocating free

blocks and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

File 63, Block 1

File 63, Block 0

File 2 number

63:

Lec 18.334/6/15 Kubiatowicz CS162 ©UCB Spring 2015

File 31, Block 3

• Used in DOS, Windows, thumb
drives, …

• Where is FAT stored?
– On Disk, restore on boot, copy
in memory

• What happens when you format
a disk?
– Zero the blocks, link up the FAT
free-list

• Simple

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Assessment

File 63, Block 1

File 63, Block 063:

File 2 number

Lec 18.344/6/15 Kubiatowicz CS162 ©UCB Spring 2015

File 31, Block 3

• Time to find block (large files) ??
• Free list usually just a bit vector
• Next fit algorithm
• Block layout for file ???
• Sequential Access ???
• Random Access ???
• Fragmentation ???
• Small files ???
• Big files ???

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Assessment

File 63, Block 1

File 63, Block 063:

File 2 number

Lec 18.354/6/15 Kubiatowicz CS162 ©UCB Spring 2015

What about the Directory?

• Essentially a file containing
<file_name: file_number> mappings

• Free space for new entries
• In FAT: attributes kept in directory (!!!)
• Each directory a linked list of entries
• Where do you find root directory (“/”)?

Lec 18.364/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Directory Structure (Con’t)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs. Search linearly – ok
since directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names
– Allows user to specify relative filename instead of

absolute path (say CWD=“/my/book” can resolve “count”)

Lec 18.374/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Big FAT security holes

• FAT has no access rights
• FAT has no header in the file blocks
• Just gives and index into the FAT

– (file number = block number)

Lec 18.384/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Characteristics of Files

• Most files are small
• Most of the space is occupied

by the rare big ones

Lec 18.394/6/15 Kubiatowicz CS162 ©UCB Spring 2015

So what about a “real” file system

• Meet the inode

file_number

Lec 18.404/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Unix Fast File System (Optimization on Unix Filesystem)

• Original inode format appeared in BSD 4.1
– Berkeley Standard Distribution Unix
– Part of your heritage!

• File Number is index into inode arrays
• Multi-level index structure

– Great for little to large files
– Asymmetric tree with fixed sized blocks

• Metadata associated with the file
– Rather than in the directory that points to it

• UNIX FFS: BSD 4.2: Locality Heuristics
– Block group placement
– Reserve space

• Scalable directory structure

Lec 18.414/6/15 Kubiatowicz CS162 ©UCB Spring 2015

An “almost real” file system

• Pintos: src/filesys/file.c, inode.c

file_number

Lec 18.424/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS: File Attributes

• Inode metadata

User
Group
9 basic access control bits

- UGO x RWX
Setuid bit

- execute at owner permissions
- rather than user

Getgid bit
- execute at group’s permissions

Lec 18.434/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS: Data Storage

• Small files: 12 pointers direct to data blocks

Direct pointers

4kB blocks sufficient
For files up to 48KB

Lec 18.444/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS: Data Storage

• Large files: 1,2,3 level indirect pointers

Indirect pointers
- point to a disk block

containing only pointers
- 4 kB blocks => 1024 ptrs

=> 4 MB @ level 2
=> 4 GB @ level 3
=> 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB

Lec 18.454/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Freespace Management

• Bit vector with a bit per storage block
• Stored at a fixed location within the file system

Lec 18.464/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders
– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, seek
back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 18.474/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks
– Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an ls of that
directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header array

on each of many cylinders. For small directories, can fit
all data, file headers, etc. in same cylinder no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk at
same time

» Reliability: whatever happens to the disk, you can find
many of the files (even if directories disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

Lec 18.484/6/15 Kubiatowicz CS162 ©UCB Spring 2015

Locality: Block Groups

• File system volume is divided
into a set of block groups
– Close set of tracks

• File data blocks, metadata,
and free space are
interleaved within block group
– Avoid huge seeks between

user data and system
structure

• Put directory and its files in
common block group

• First-Free allocation of new
file block
– Few little holes at start,

big sequential runs at end
of group

– Avoids fragmentation
– Sequential layout for big

• Reserve space in the BG

Lec 18.494/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space

at end

Lec 18.504/6/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS

• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires
both an inode and a data block)

– Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent
fragmentation

Lec 18.514/6/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Summary
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• Multilevel Indexed Scheme

– Inode contains file info, direct pointers to blocks,
– indirect blocks, doubly indirect, etc..

• 4.2 BSD Multilevel index files
– Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc.

– Optimizations for sequential access: start new files in
open ranges of free blocks, rotational Optimization

• Naming: act of translating from user-visible names to
actual system resources
– Directories used for naming for local file systems

