
CS162
Operating Systems and
Systems Programming

Lecture 15

Demand Paging (Finished),
General I/O

March 18th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 15.23/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Precise Exceptions
• Precise state of the machine is preserved as if

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 15.33/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• PTE helps us implement demand paging
– Valid Page in memory, PTE points at physical page
– Not Valid Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

Recall: Demand Paging Mechanisms

Lec 15.43/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary: Steps in Handling a Page Fault

Lec 15.53/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Management & Access to the Memory Hierarchy

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
(10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs
0.3 3

10kBs 100kBs

Secondary
Storage
(SSD)

100,000
(0.1 ms)
100GBs

Managed in
Hardware

Managed in Software - OS

PT

PT
PTPT

Accessed in Hardware

TLB

TLB

?

Lec 15.63/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Some questions for this lecture!

• During a page fault, where does the OS get a
free frame?
– Keeps a free list
– Unix runs a “reaper” if memory gets too full
– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory
resources:
» utilization? fairness? priority?

– allocation of disk paging bandwidth

Lec 15.73/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Demand Paging Cost Model
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT p < 2.5 x 10-6

– This is about 1 page fault in 400000!
Lec 15.83/18/15 Kubiatowicz CS162 ©UCB Spring 2015

What Factors Lead to Misses?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory,
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out
prematurely because of the replacement policy

– How to fix? Better replacement policy

Lec 15.93/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

Lec 15.103/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 15.113/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.123/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Where will D be brought in? Look for page not
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Lec 15.133/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

Lec 15.143/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this
obvious property!

Lec 15.153/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

Lec 15.163/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Problems with website (cs162.eecs.Berkeley.edu)
– Ran out of space/crashed yesterday
– Restore of bad checkpoint caused phantom HW3 to
appear (it was last year’s version)

– Everything should be ok now – please check
• No sections this week!
• Spring Break is next week!

– No class!
• Still working on the grading of exams

– No deadline yet, will let you know
– Solutions are done!

» Will be posted on new handout link shortly
• Checkpoint 1 moved to after Spring Break

– Monday, 3/30

Lec 15.173/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO
Lec 15.183/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 15.193/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.203/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit,

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only

Lec 15.213/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU
– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 15.223/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims

Lec 15.233/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0 FIFO
– If all LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes
– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 15.243/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 15.253/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:
– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page physical page
– Do we need a reverse mapping (i.e. physical page
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,

then multiple virtual-pages per physical page
» Can’t push page out to disk without invalidating all PTEs

Lec 15.263/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 15.273/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = si
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si

Lec 15.283/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 15.293/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 15.303/18/15 Kubiatowicz CS162 ©UCB Spring 2015

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working SetThrashing
– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 15.313/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Working-Set Model

• working-set window fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent (varies in time)
– if too small will not encompass entire locality
– if too large will encompass several localities
– if = will encompass entire program

• D = |WSi| total demand frames
• if D > m Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

Lec 15.323/18/15 Kubiatowicz CS162 ©UCB Spring 2015

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 15.333/18/15 Kubiatowicz CS162 ©UCB Spring 2015

You are here …

Course Structure: Spiral

9/26/14 UCB CS162 Fa14 L1 19

intro

Lec 15.343/18/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 15.353/18/15 Kubiatowicz CS162 ©UCB Spring 2015

In a picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers

as if they were memory
– Write commands and arguments, read status and results

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

Lec 15.363/18/15 Kubiatowicz CS162 ©UCB Spring 2015

The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

Lec 15.373/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Kernel Device Structure

The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 15.383/18/15 Kubiatowicz CS162 ©UCB Spring 2015

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device
driver”) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture
– Can only scratch surface!

Lec 15.393/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
Lec 15.403/18/15 Kubiatowicz CS162 ©UCB Spring 2015

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 15.413/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces:
– Four OOO cores

» New Advanced Vector eXtensions
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 -ops/cycle

– Integrated GPU
– System Agent (Memory and Fast I/O)
– Shared L3 cache divided in 4 banks
– On-chip Ring bus network

» Both coherent and non-coherent transactions
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DDR3 DRAM
– High-speed PCI-Express (for Graphics cards)
– DMI Connection to SouthBridge (PCH)

Lec 15.423/18/15 Kubiatowicz CS162 ©UCB Spring 2015

SandyBridge I/O: PCH

• Platform Controller Hub
– Used to be

“SouthBridge,” but no
“NorthBridge” now

– Connected to processor
with proprietary bus
» Direct Media

Interface
– Code name “Cougar

Point” for SandyBridge
processors

• Types of I/O on PCH:
– USB
– Ethernet
– Audio
– BIOS support
– More PCI Express (lower

speed than on Processor)
– Sata (for Disks)

SandyBridge
System Configuration

Lec 15.433/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Modern I/O Systems

network

Lec 15.443/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: PCI Architecture

CPURAM Memory
Bus

USB
Controller

SCSI
Controller Scanner

Hard
Disk

CD ROM

Root
Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices

Lec 15.453/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!!
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m

Lec 15.463/18/15 Kubiatowicz CS162 ©UCB Spring 2015

How does the processor actually talk to the device?

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 15.473/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Memory-Mapped Display Controller

• Memory-Mapped:
– Hardware maps control registers and

display memory into physical address space
» Addresses set by hardware jumpers or

programming at boot time
– Simply writing to display memory (also

called the “frame buffer”) changes image
on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to command-

queue area
» Say enter a set of triangles that describe

some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register may cause
on-board graphics hardware to do
something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 15.483/18/15 Kubiatowicz CS162 ©UCB Spring 2015

addr
len

Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data blocks to/from memory directly

• Sample interaction with DMA controller (from OSC):

Lec 15.493/18/15 Kubiatowicz CS162 ©UCB Spring 2015

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Lec 15.503/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (1/2)
• Precise Exception specifies a single instruction for

which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have
started

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

Lec 15.513/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary (2/2)
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

