CS162
Operating Systems and
Systems Programming
Lecture 15

Demand Paging (Finished),
General I/0

March 18th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Precise Exceptions

Precise = state of the machine is preserved as if
program executed up to the offending instruction
- All previous instructions completed

- Offending instruction and all following instructions act as
if they have not even started

- Same system code will work on different implementations
- Difficult in the presence of pipelining, out-of-order
execution, ...
- MIPS takes this position
Imprecise = system software has to figure out what is
where and put it all back together

+ Performance goals often lead designers to forsake

precise interrupts

- system software developers, user, markets etc. usually
wish they had not done this

* Modern techniques for out-of-order execution and

branch prediction help implement precise interrupts

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.2

Recall: Demand Paging Mechanisms

* PTE helps us implement demand paging

- Valid = Page in memory, PTE points at physical page

- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary

* Suppose user references page with invalid PTE?

- Memory Management Unit (MMU) traps to OS

» Resulting trap is a "Page Fault” ’ LE
- What does OS do on a Page Fault?: - '
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.3

Summary: Steps in Handling a Page Fault

z'g“\ page is on
B/ backing store

operating
s
ystem /5\
\
reference
trap

resat page

table

@
load M [
—~ E
® |
restart page table |
instruction |
= 1free [ramel e ——
® ' O)

bring in

| missing page

physical .

memory

3/18/15

Kubiatowicz €5162 ®UCB Spring 2015

Lec 15.4

Management & Access to the Memory Hierarchy

4 Managed in Managed in Software - OS
§ Hardware
Processor

TLB —

- ! — [c PT

(1] - PT
elilgl |8 i PT

= Q 3 Secondary

IS e Secondary Storage
TLB =i s Storage (Disk)
s Memor
= (S| | [5S Y| | (ssD)

= N 2O (DRAM)

el l|lo o 38

— o (1]

afl 8] [g] [[22

o
lal/|a] [®

ccessed in Hardwar
Speed|(ns): 0.3 || 1 3 10-30 100 (13‘1’*‘;?5) 1‘1'10821'23’0
Size (bytes): 100Bs||10kBs 100kBs MBs GBs 100GBs TBs
3/18/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 15.5

Some questions for this lecture!

* During a page fault, where does the OS get a
free frame?

- Keeps a free list
- Unix runs a "reaper” if memory gets too full
- As a last resort, evict a dirty page first
* How can we organize these mechanisms?
- Work on the replacement policy
+ How many page frames/process?

- Like thread scheduling, need to “schedule” memory
resources:
» utilization? fairness? priority?
- allocation of disk paging bandwidth

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.6

Demand Paging Cost Model

Since Demand Paging like caching, can compute
average access time! ("Effective Access Time")
- EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
- EAT = Hit Time + Miss Rate x Miss Penalty
Example:
- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- Suppose p = Probability of miss, 1-p = Probably of hit
- Then, we can compute EAT as follows:
EAT =200ns + p x 8 ms
= 200ns + p x 8,000,000ns

+ If one access out of 1,000 causes a page fault, then

EAT = 8.2 ps:

- This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
- 200ns x 1.1 < EAT = p < 2.5 x 10-¢
- This is about 1 page fault in 400000!

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.7

What Factors Lead to Misses?

+ Compulsory Misses:
- Pages that have never been paged into memory before
- How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.
* Capacity Misses:
- Not enough memory. Must somehow increase size.
- Can we do this?
» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust
percentage of memory allocated to each onel!
+ Conflict Misses:
- Technically, conflict misses don't exist in virtual memory,
since it is a “fully-associative” cache
* Policy Misses:
- Caused when pages were in memory, but kicked out
prematurely because of the replacement policy
- How to fix? Better replacement policy
3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.8

Page Replacement Policies

* Why do we care about Replacement Policy?
- Replacement is an issue with any cache
- Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
+ FIFO (First In, First Out)
- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
* MIN (Minimum):
- Replace page that won't be used for the longest time
- 6reat, but can't really know future...
- Makes good comparison case, however
* RANDOM:
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable - makes it hard to make real-time

Replacement Policies (Con't)

* LRU (Least Recently Used):
- Replace page that hasn't been used for the longest time

- Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

- Seems like LRU should be a good approximation to MIN.
* How to implement LRU? Use a list!

Head—*{Page 6 Page 7 Page 1 Page 2

Tail (LRV)
- On each use, remove page from list and place at head
- LRU page is at tail
+ Problems with this scheme for paging?

- Need to know immediately when each page used so that
can change position in list...

- Many instructions for each hardware access

guarantees + In practice, people approximate LRU (more later)
3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.9 3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.10
Example: FIFO Example: MIN

* Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

-ABCABDADBCEB
+ Consider FIFO Page replacement:

Ref:]A |B ([C |A |B |[D |[A |[D |B |C |B
1 A D Cc
2 B A
3 Cc B

- FIFO: 7 faults.

- When referencing D, replacing A is bad choice, since
need A again right away

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.11

* Suppose we have the same reference stream:
-ABCABDADBCEB
+ Consider MIN Page replacement:

Ref:]A |B (€ |A |B |[D |[A |D (B (C |B
1 A c
2 B
3 Cc D
- MIN: 5 faults

- Where will D be brought in? Look for page not
referenced farthest in future.

+ What will LRU do?
- Same decisions as MIN here, but won't always be true!

3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.12

When will LRU perform badly?

+ Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

Ref:]JA |[B |[€¢ |D |[A |[B |[€C |[D |[A |[B |C |D
_Egge:
1 A D c B
2 B A D (&
3 c B A D

- Every reference is a page fault!
* MIN Does much better:

Ref:]A (B | |[D |A (B |[€C |[D |A (B |C |D
1 A B
2 B Cc
3 c |D

3/1m= et L B trec—ri13

6raph of Page Faults Versus The Number of Frames

N s @
T 1 1T

number of page faults
=
T

e —

N &2 O @
T

i 2 > : : ”
number of frames
* One desirable property: When you add memory the
miss rate goes down
- Does this always happen?
- Seems like it should, right?
* No: BelLady's anomaly
- Certain replacement algorithms (FIFO) don't have this
obvious property!
3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.14

Adding Memory Doesn't Always Help Fault Rate

+ Does adding memory reduce number of page faults?
- Yes for LRU and MIN
- Not necessarily for FIFO! (Called Belady's anomaly)

Ref:] A B|C|D|/A|B|E|A|B|C|D|E
Page:

1 A D E

3 [4 B
4 D c
+ After adding memory:

- With FIFO, contents can be completely different

- In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.15

Administrivia

* Problems with website (cs162.eecs.Berkeley.edu)
- Ran out of space/crashed yesterday

- Restore of bad checkpoint caused phantom HW3 to
appear (it was last year's version)

- Everything should be ok now - please check
* No sections this week!
+ Spring Break is next week!

- No class!
- Still working on the grading of exams

- No deadline yet, will let you know

- Solutions are done!
» Will be posted on new handout link shortly

+ Checkpoint 1 moved to after Spring Break
- Monday, 3/30

3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.16

Implementing LRU

* Perfect:
- Timestamp page on each reference
- Keep list of pages ordered by time of reference
- Too expensive to implement in reality for many reasons
* Clock Algorithm: Arrange physical pages in circle with
single clock hand
- Approximate LRU (approx to approx to MIN)
- Replace an old page, not the oldest page
+ Details:
- Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time

» Nachos hardware sets use bit in the TLB: you have to copy
this back to page table when TLB entry gets replaced
- On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—>used recently; clear and leave alone
O—selected candidate for replacement
- Will always find a page or loop forever?
» Even i}l all use bits set, will eventually loop around=FIFO
3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.17

Clock Algorithm: Not Recently Used
~ T~
/7 S . Advances only on page fault!
/ \ Check for pages not used recently
Mark pages as not used recently

l Set of all pages \
in Memory]
\

N L/
\ [r— ’
* What if hand moving slowly?
- 6ood sign or bad sign?
» Not many page faults and/or find page quickly
* What if hand is moving quickly?
- Lots of page faults and/or lots of reference bits set
* One way to view clock algorithm:
- Crude partitioning of pages into two groups: young and old
- Why not partition into more than 2 groups?
3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.18

Nth Chance version of Clock Algorithm

* N™ chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
» 1=clear use and also clear counter (used in last sweep)
» O=increment counter: if count=N, replace page
- Means that clock hand has to sweer by N times without
page being used before page is replaced
* How do we pick N?
- Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
- Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
* What about dirty pages?

- Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

- Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.19

Clock Algorithms: Details

* Which bits of a PTE entry are useful to us?

- Use: Set when page is referenced. cleared by clock
algorithm

- Modified: set when page is modified, cleared when page
written to disk

- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
* Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit,
and marks page as read-write.

» Whenever page comes back in from disk, mark read-only

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.20

Clock Algorithms Details (continued)

* Do we really need a hardware-supported “use” bit?
- No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only
- Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write
- When clock hand passes by, reset use and modified bits
and mark page as invalid again
* Remember, however, that clock is just an
approximation of LRU

- Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

- Need to identify an old page, not oldest pagel!
- Answer: second chance list
3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.21

Second-Chance List Algorithm (VAX/VMS)

Y L " LRU victim

Directly & Second
Mapped Pages |:| /% Chance List
Marked: RW I:I Marked: Invalid
List: FIFO [List: LRU
r'4

. New New
Page-in . .
From disk Active Sc

Pages icti
- Split memory in fwo: Active Ii‘é?t{ﬁfl\/), SC list (Invalid)
+ Access pages in Active list at full speed
+ Otherwise, Page Fault
- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid
- Desired Page On SC List: move to front of Active list,
mark R
- Not on SC list: page in to front of Active list, mark RW:;
page out LRU victim at end of SC list

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.22

Second-Chance List Algorithm (con't)

* How many pages for second chance list?

- If 0 = FIFO

- If all = LRU, but page fault on every page reference
* Pick intermediate value. Result is:

- Pro: Few disk accesses (page only goes to disk if unused
for a long time)

- Con: Increased overhead trapping to OS (software /
hardware tradeoff)

+ With page translation, we can adapt to any kind of
access the program makes

- Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

* Question: why didn't VAX include “use” bit?

- Strecker (architect) asked OS people, they said they
didn't need it, so didn't implement it

- He later got blamed, but VAX did OK anyway

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.23

Free List

4 \ Advances as needed to keep

/ freelist full ("background”)
Set of all pages

in Memory l

/

N /
NS _ -

——pFree Pages

For Processes
* Keep set of free pages ready for use in demand paging
- Freelist filled in background by Clock algorithm or other
technique ("Pageout demon”)
- Dirty pages start copying back to disk when enter list
+ Like VAX second-chance list
- If page needed before reused, just return to active set
* Advantage: Faster for page fauf*r
- Can always use page (or pages) immediately on fault

3/18/15 Kubiatowicz €5162 ©®UCB Spring 2015 Lec 15.24

Demand Paging (more details)

+ Does software-loaded TLB need use bit?
Two Options:

- Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table
- Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU
* Core Map
- Page tables map virtual page — physical page
- Do we need a reverse mapping (i.e. physical page —
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page
» Can't push page out to disk without invalidating all PTEs

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.25

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?
- Does every process get the same fraction of memory?
Different fractions?
- Should we completely swap some processes out of memory?
* Each process needs minimum number of pages
- Want to make sure that all processes that are loaded into
memory can make forward progress
- Example: IBM 370 - 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle fo

* Possible Replacement Scopes:

- Global replacement - process selects replacement frame
from set of all frames: one process can take a frame
from another

- Local replacement - each process selects from only its own
set of allocated frames

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.26

Fixed/Priority Allocation

* Equal allocation (Fixed Scheme):
- Every rr'ocess gets same amount of memory
- Example: 100 frames, 5 processes—=process gets 20 frames
* Proportional allocation (Fixed Scheme)
- Allocate according to the size of process
- Computation proceeds as follows:
s; = size of process p;and S = Is;
m = total number of frames

. S;
a; = allocation for p, = gx m

* Priority Allocation:
- Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
- Possible behavior: If process p, generates a page fault,
select for replacement a frame ?r‘om a process with lower
priority number
* Perhaps we should use an adaptive scheme instead???
- What if some application just needs more memory?

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.27

Page-Fault Frequency Allocation

+ Can we reduce Capacity misses by dynamically
changing the number of pages/application?

\ increase number

of frames
upper bound

page-fault rate

lower bound

\"H-—u‘x__‘_ decrease number

e — of frames

number of frames
+ Establish "acceptable” page-fault rate
- If actual rate too low, process loses frame
- If actual rate too high, process gains frame
* Question: What if we just don't have enough memory?

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.28

Thrashing
—

CPU utilization

i—.

thrashing

degree of multiprogramming

+ If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

3/18/15

- low CPU utilization

- operating system spends most of its time swapping to disk
* Thrashing = a process is busy swapping pages in and out

Questions:
- How do we detect Thrashing?

- What is best response to Thrashing?

Kubiatowicz €5162 ®UCB Spring 2015

Lec 15.29

Locality In A Memory-Reference Pattern

* Program Memory Access
Patterns have temporal
and spatial locality

- 6roup of Pages accessed
along a given time slice
called the "Working Set"

- Working Set defines
minimum number of pages
needed for process to
behave well

* Not enough memory for
Working Set=Thrashing

- Better to swap out
process?

3/18/15

Kubiatowicz CS162 ©UCB Spring 2015

Lec 15.30

3/18/15

Working-Set Model

page reference table

.}
r1
WS(t,) = {1,2,5,6.7}

WS(t,) = {3.4})

...26186777751623412344434344413234443444...

T

t,

A = working-set window = fixed number of page

references
- Example: 10,000 instructions

WS, (working set of Process P) = total set of pages

referenced in the most recent A (varies in time)
- if A too small will not encompass entire locality
- if A too large will encompass several localities

- if A = o = will encompass entire program
D = Z| WS/ = total demand frames

if O > m = Thrashing

- Policy: if O > m, then suspend/swap out processes
- This can improve overall system behavior by a lot!
Kubiatowicz 5162 ©®UCB Spring 2015

Lec 15.31

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur
the first time that a page is seen

- Pages that are touched for the first time
- Pages that are touched after process is swapped

out/swapped back in
* Clustering:

- On a page-fault, bring in multiple pages “around” the

faulting page

- Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

* Working Set Tracking:

- Use algorithm to try to track working set of application
- When swapping process back in, swap in working set

3/18/15

Kubiatowicz 5162 ©®UCB Spring 2015

Lec 15.32

You are here ...

OS Basics: I/0

. Threads
Course Structure: Spiral ; Address Spaces W/’ﬂdawss"ck .
rocesses les ers
Software OS Hardware Virtualization
Hardware 54
e S
. ¢l y@ﬂ@%@f
o (C)
q’é’ - o Processor Protection
. '
P c,0ne G ‘2; Bounda
g B intro 3 3
— L) O intro \.7 s
@% ‘%‘ O g Network
7, lo W 2 letworks
©/@ e@% 9) Aouann? \?\'
%)
Ng e
°s Biyqeyed ® __
> s _ —
UCB CS162 Fal4 L1 - t-—i-:\\) Displays
a Inputs
3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.33 3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.34
In a picture The Requirements of I/0
*+ So far in this course:
- We have learned how to manage CPU, memory
Processor * What about I/0?
o — - Without I/0, computers are useless (disembodied brains?)
=1 =1 |~ - But... thousands of devices, each slightly different
&l [al |8 hiterrupts » How can we standardize the interfaces to these devices?
| |3 =] - Devices unreliable: media failures and transmission errors
HEEHE head SEEEEy » How can we make them reliable???
o — e (tgi':f)e - Devices unpredictable and/or slow
—1 =1 |o <z & \ » How can we manage them if we don't know what they will do
g 2l |e 8o ' or how they will perform?
@l 8] (8] |[&5 * Some operational parameters:
HEEHEE - Byte/Block
= » Some devices provide single byte at a time (e.g. keyboard)

I/0 devices you recognize are supported by I/O Controllers

Processors accesses them by reading and writing IO registers
as if they were memory
- Write commands and arguments, read status and results

3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.35

» Others provide whole blocks (e.g. disks, networks, etc)
- Sequential/Random

» Some devices must be accessed sequentially (e.g. tape)

» Others can be accessed randomly (e.g. disk, cdq, etc.)
- Polling/Interrupts

» Some devices require continual monitoring

» Others generate interrupts when they need service

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.36

Kernel Device Structure

The System Call Interface
i - -

Process Memory . Device q
Management Management Al Control e) 1
Concurrency, Virtual Files and dirs: TTYs and .
multitasking memory the VFS device access Connectivity

File System]
Types Network
Subsystem
Architecture EEEE . 4
D d Memory Device
ependent M Control
Code anagen Block SR IF drivers |1
Devices
: EEEE EEEE
1

S

).,
Q@ ‘

3/18/15 Kubiatowicz €5162 ©UCB Spring 20T5 Lec 15.37

The Goal of the I/0 Subsystem

+ Provide Uniform Interfaces, Despite Wide Range of
Different Devices

- This code works on many different devices:
FILE fd = fopen(*/dev/something”,”’rw”);
for (int i = 0; i < 10; i++) {
fprintf(fd,”Count %d\n”",1);
close(fd);

- Why? Because code that controls devices (“device
driver”) implements standard interface.

* We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

- Can only scratch surface!

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.38

Want Standard Interfaces to Devices
¢ Block Devices: e.g. disk drives, tape drives, DVD-ROM

- Access blocks of data
- Commands include open(), read(), write(), seek()
- Raw I/O or file-system access
- Memory-mapped file access possible
+ Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
- Single characters at a time
- Commands include get(), put()
- Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth

- Different enough from block/character to have own
interface

- Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

- Usage: pipes, FIFOs, streams, queues, mailboxes

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.39

How Does User Deal with Timing?

* Blocking Interface: “"Wait"

- When request data (e.g. read() system call), put
process to sleep until data is ready

- When write data (e.g. write() system call), put process
to sleep until device is ready for data

* Non-blocking Interface: “"Don't Wait"

- Returns quickly from read or write request with count of
bytes successfully transferred

- Read may return nothing, write may write nothing
* Asynchronous Interface: "Tell Me Later”

- When request data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When send data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.40

Chip-scale features of Recent x86 (SandyBridge)

- Significant pieces:
- Four OOO cores

» New Advanced Vector eXtensions
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 p-ops/cycle

- Integrated GPU

- System Agent (Memory and Fast I/0)

SandyBridge I/0: PCH

PCl Express* 2.0
Graphics

POl Express* 2.0
Graphics

PCl Express* 2.0 k:
Graphics [

Intel High
Definition Audio

502
14 Hi-Speed USB 2.0 Ports; SEllal CEt e
Dual EHCI; USB Port Disable IS

+ Platform Controller Hub

- Used to be
~SouthBridge,” but no
NorthBridge” now

- Connected to processor
with proprietary bus

» Direct Media
Interface

- Code name "Cougar,

Point” for SandyBridge

- Shared L3 cache divided in 4 banks P g— | [T processors
- On-chip Ring bus network T EET™ o * Types of I/0 on PCH:
» Both coherent and non-coherent transactions — - UsB
» High-BW access to L3 Cache e - Ethernet
Graphics + Integrated I/0 - Audio
- - Integrated memory controller (IMC)) - BIOS ;uppgrt (
» Two independent channels of DDR3 DRAM S . - More PCTI Express (lower
; ; andyBridge
- High-speed PCI-Express (for Graphics cards) System C); nfi ?.lr‘a tion) ;pt::red(;hanb?:k:)rocessor)
- DMI Connection to SouthBridge (PCH) Y 9 ata (for
3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.41 3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.42
Modern I/O Systems Example: PCI Architecture
G
© __ Memory
Al QSB RAM |« Bus » CPU
81w A
ot 8 ‘C,r\ Host Bridge
_ [~ v - Y PCI #0
e SCSl controller ISA Bridge PCI Bridge
| —_— | | < PCT #1
[S ISA
IDE disk controller | | expansion bus | [keyboard Controller PCI Slots UsB SCSI
T — T Controller | | Controller
e
:'ai:sk:: '({\il.'-E:' pap!:ll:el | s:éi:l. o
3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.43 3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.44

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

.
HyperTransport {32-pair) _
PCI Express 2,0 (+32) [N
Infiniband (QDRA 12X)
serial ATA (SATA-300) [
gigabit ethernet [N

scsi bus
Frowro
bard o [
0.00001 0,001 0.1 10 1000 100000 10m

- Device Rates vary over 12 orders of magnitude !l!
- System better be able to handle this wide range
- Better not have high overhead/byte for fast devices!

- Better not waste time waiting for slow devices
3/18/15 Kubiatowicz 5162 ®UCB Spring 2015 Lec 15.45

How does the processor actually talk to the device? _

/
Processor Memory Bus Regular
Memory
Bus Device "’\“
Adan =B
dapto Address+ | Controller Ss—
Other Devices Data Bus Hardware
or Buses nterface Controller
Interrupt Request
read
. . write Addressable
« CPV interacts with a Controller con"r:_l Memory
- Contains a set of registers that B s.::;:: 5:‘:{‘ or
can be read and wriften 9

- May contain memory for request (port oxz%emory Mapped
queues or bit-mapped images ion;
* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
- I/0 instructions: in/out instructions
» Example from the Intel architecture: out Ox21,AL
- Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions
3/18/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 15.46

Example: Memory-Mapped Display Controller

* Memory-Mapped:
- Hardware maps control registers and 0x80020000 | Graphics
display memory into physical address space Command
» Addresses set by hardware jumpers or Queue
programming at boot time
. o . 0x80010000 | _.

- Simply writing to display memory (also Display
called the “frame buffer”) changes image Memory
on screen

» Addr: Ox8000FO00—O0x8000FFFF 0x8000F000
- Writing graphics description to command-
queue area
» Say enfer a set of triangles that describe 0x0007F004 | Command
some scene 0x0007F000 | Status
» Addr: 0x80010000—0x8001FFFF

- Writing to the command register may cause
on-bodrd graphics hardware to do —T
something

» Say render the above scene Physical Address
» Addr: 0x0007F004 ' NS :\Qsp ace
- Can protect with address translation — &
Ss—
3/18/15 Kubiatowicz CS162 ®UCB Spring 2015 Lec 15.47

Transferring Data To/From Controller

* Programmed I/O:

- Each byte transferred via processor in/out or load/store

- Pro: Simple hardware, easy to program

- Con: Consumes processor cycles proportional to data size

Direct Memory Access:

- Give controller access to memory bus

- Ask it to transfer data blocks to/from memory directly
+ Sample interaction with DMA controller (from OSC):

1. device driver is told

to transfer disk data CPU

to buffer at address X

5. DMA controller 2. device driver tells

transfers bytes lo disk controller to

buffer X, increasing transfer C bytes

memoary address from disk to buff; caéhe
and decreasing C at address X ==t
untilC =0

]

.when C = 0, DMA ;
interrupts CPU to signal addrinterrupt

butter
transfer completion _ﬁf“f‘f"ﬂ'

PCI bus

& 3. disk controller initiates
IDE"disk DMA transter
controller 4. disk controller sends

T each byte to DMA
controller

Y
A

i)
3/18/15 K &

is|

{ \dis

P

D B
x.

dis|

I/0 Device Notifying the OS

* The OS needs to know when:
- The I/0 device has completed an operation
- The I/0 operation has encountered an error

+ I/0 Interrupt:
- Device generates an interrupt whenever it needs service
- Pro: handles unpredictable events well
- Con: interrupts relatively high overhead

* Polling:
- OS periodically checks a device-specific status register

» TI/0 device puts completion information in status register
- Pro: low overhead
- Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

+ Actual devices combine both polling and interrupts

- For instance - High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.49

Summary (1/2)

Pr}-‘qc:fe Exception specifies a single instruction for
which:
- All previous instructions have completed (committed state)
- No fol(ljowing instructions nor actual instruction have
starte

Replacement policies

- FIFO: Place pages on queue, replace page at end

- MIN: Replace page that will be used farthest in future

- LRU: Replace page used farthest in past
Clock Algorithm: Approximation to LRU

- Arrange all pages in circular list

- Sweep through them, marking as not “in use”

- If page not “in use” for one pass, than can replace
Nth-chance clock algorithm: Another approx LRU

- Give pages multiple passes of clock hand before replacing
Second-Chance List algorithm: Yet another approx LRU

- Divide pages into two groups, one of which is truly LRU
and managed on page faults.

3/18/15 Kubiatowicz €5162 ©UCB Spring 2015 Lec 15.50

Summary (2/2)

* Working Set:
- Set of pages touched by a process recently
+ Thrashing: a process is busy swapping pages in and out
- Process will thrash if working set doesn't fit in memory
- Need to swap out a process
+ I/0 Devices Types:
- Many different speeds (0.1 bytes/sec to GBytes/sec)
- Different Access Patterns:
» Block Devices, Character Devices, Network Devices
- Different Access Timing:
» Blocking, Non-blocking, Asynchronous
+ I/0 Controllers: Hardware that controls actual device
- Processor Accesses through I/O instructions, load/store
to special physical memory
- Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

3/18/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 15.51

