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Recall: Precise Exceptions
• Precise  state of the machine is preserved as if 

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as 
if they have not even started

– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order 
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is 

where and put it all back together
• Performance goals often lead designers to forsake 

precise interrupts
– system software developers, user, markets etc. usually 
wish they had not done this

• Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts
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• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find 
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs 
another process from ready queue
» Suspended process sits on wait queue

Recall: Demand Paging Mechanisms
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Summary: Steps in Handling a Page Fault
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Some questions for this lecture!

• During a page fault, where does the OS get a 
free frame?
– Keeps a free list
– Unix runs a “reaper” if memory gets too full
– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory 
resources:
» utilization?  fairness? priority?

– allocation of disk paging bandwidth
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute 

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then 
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!
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What Factors Lead to Misses?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, 
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy

– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time.

– Bad, because throws out heavily used pages instead of 
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time 
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time 
guarantees
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a 
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that 
can change position in list… 

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: 
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults. 
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults 
– Where will D be brought in? Look for page not 
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?
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Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the 
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this 
obvious property!
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Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with 
X pages are a subset of contents with X+1 Page
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Administrivia

• Problems with website (cs162.eecs.Berkeley.edu)
– Ran out of space/crashed yesterday
– Restore of bad checkpoint caused phantom HW3 to 
appear (it was last year’s version)

– Everything should be ok now – please check
• No sections this week!
• Spring Break is next week!

– No class!
• Still working on the grading of exams

– No deadline yet, will let you know
– Solutions are done!

» Will be posted on new handout link shortly
• Checkpoint 1 moved to after Spring Break

– Monday, 3/30
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Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy 

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO
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Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm: 

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?
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Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without 
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give 
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.203/18/15 Kubiatowicz CS162 ©UCB Spring 2015

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock 
algorithm

– Modified: set when page is modified, cleared when page 
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit, 

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only
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Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits 
and mark page as invalid again 

• Remember, however, that clock is just an 
approximation of LRU
– Can we do a better approximation, given that we have 
to take page faults on some reads and writes to collect 
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to 
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, 
mark RW

– Not on SC list: page in to front of Active list, mark RW; 
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims
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Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value.  Result is:
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time) 

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff)

• With page translation, we can adapt to any kind of 
access the program makes
– Later, we will show how to use page translation / 
protection to share memory between threads on widely 
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
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Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other 
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep 
freelist full (“background”)

D

D

Free Pages
For Processes
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Demand Paging (more details) 

• Does software-loaded TLB need use bit? 
Two Options:
– Hardware sets use bit in TLB; when TLB entry is 
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything 
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page 
– Do we need a reverse mapping (i.e. physical page 
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing, 

then multiple virtual-pages per physical page
» Can’t push page out to disk without invalidating all PTEs
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Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?  
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into 
memory can make forward progress

– Example:  IBM 370 – 6 pages to handle SS MOVE 
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame 
from set of all frames; one process can take a frame 
from another

– Local replacement – each process selects from only its own 
set of allocated frames
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Fixed/Priority Allocation
• Equal allocation (Fixed Scheme): 

– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = si
m = total number of frames

ai = allocation for pi = 

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, 
select for replacement a frame from a process with lower 
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si 
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Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically 

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
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Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?
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• Program Memory Access 
Patterns have temporal 
and spatial locality
– Group of Pages accessed 
along a given time slice 
called the “Working Set”

– Working Set defines 
minimum number of pages 
needed for process to 
behave well

• Not enough memory for 
Working SetThrashing
– Better to swap out 
process?

Locality In A Memory-Reference Pattern
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Working-Set Model

•   working-set window  fixed number of page 
references 
– Example:  10,000 instructions

• WSi (working set of Process Pi) = total set of pages 
referenced in the most recent  (varies in time)
– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames 
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!
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What about Compulsory Misses?

• Recall that compulsory misses are misses that occur 
the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped 
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the 
faulting page

– Since efficiency of disk reads increases with sequential 
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set



Lec 15.333/18/15 Kubiatowicz CS162 ©UCB Spring 2015

You are here …

Course Structure: Spiral 
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OS Basics: I/O

storage
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In a picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers 

as if they were memory
– Write commands and arguments, read status and results

Core

Core

Secondary
Storage 
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage 
(SSD)

I/O 
Controllers

Read / 
Write

Read / 
Write wires

interrupts

DMA transfer
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The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do 
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service
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Kernel Device Structure

The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code
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Manager

Device
Control

Network
Subsystem

File System 
Types
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Files and dirs:
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TTYs and
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The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of 
Different Devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why?  Because code that controls devices (“device 
driver”) implements standard interface.

• We will try to get a flavor for what is involved in 
actually controlling devices in rest of lecture
– Can only scratch surface!
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Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, 
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own 
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
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How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put 
process to sleep until data is ready

– When write data (e.g. write() system call), put process 
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of 
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return 
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return 
immediately; later kernel takes data and notifies user 
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Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces:
– Four OOO cores

» New Advanced Vector eXtensions
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 -ops/cycle

– Integrated GPU
– System Agent (Memory and Fast I/O)
– Shared L3 cache divided in 4 banks
– On-chip Ring bus network 

» Both coherent and non-coherent transactions
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DDR3 DRAM
– High-speed PCI-Express (for Graphics cards)
– DMI Connection to SouthBridge (PCH)
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SandyBridge I/O: PCH

• Platform Controller Hub
– Used to be 

“SouthBridge,” but no 
“NorthBridge” now

– Connected to processor 
with proprietary bus
» Direct Media 

Interface
– Code name “Cougar 

Point” for SandyBridge
processors

• Types of I/O on PCH:
– USB
– Ethernet
– Audio
– BIOS support
– More PCI Express (lower 

speed than on Processor)
– Sata (for Disks)

SandyBridge
System Configuration
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Modern I/O Systems

network
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Example: PCI Architecture

CPURAM Memory
Bus

USB
Controller

SCSI
Controller Scanner

Hard 
Disk

CD ROM

Root 
Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices
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Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!!
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m
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How does the processor actually talk to the device?

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

• CPU interacts with a Controller
– Contains a set of registers that 
can be read and written

– May contain memory for request 
queues or bit-mapped images 

• Regardless of the complexity of the connections and 
buses, processor accesses registers in two ways: 
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses
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Example: Memory-Mapped Display Controller

• Memory-Mapped:
– Hardware maps control registers and 

display memory into physical address space
» Addresses set by hardware jumpers or 

programming at boot time
– Simply writing to display memory (also 

called the “frame buffer”) changes image 
on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to command-

queue area 
» Say enter a set of triangles that describe 

some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register may cause 
on-board graphics hardware to do 
something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000
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Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data blocks to/from memory directly

• Sample interaction with DMA controller (from OSC):
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I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead 

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or 
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter: 

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
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Summary (1/2)
• Precise Exception specifies a single instruction for 

which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have 
started 

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU 
and managed on page faults.
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Summary (2/2)
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store 
to special physical memory

– Report their results through either interrupts or a status 
register that processor looks at occasionally (polling)


