CS162
Operating Systems and
Systems Programming
Lecture 14

Caching (Finished),
Demand Paging

March 16, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: In Machine Structures (eg. 61C) ...

* Caching is the key to memory system performance

Main
Processor |€ —>t ?geRr;o,\g
Access time = 100ns
100ns
Second Main
Level
Processor |¢& >|Cache |&—> ?g%nl\o%
(SRAM)
10ns 100ns

* Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
¢ HitRate + MissRate =1

» HitRate = 90% => Average Access Time = 19 ns

» HitRate = 99% => Average Access Time = 10.9ns

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.2

Review: Memory Hierarchy

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Core]
BEEELE
&l [a] |9
| |9 |8
o 9 o Secondary
| & = Ve Secondary Storage
Core < - amn Storage (Disk)
=] [- W W Memory (SSD)
gl 1= |8 8 9| | | OrAW)
g. (%] o 3 (7]
0 W o =
I3 2 =]
(o] |® i
100,000 10,000,000
. 0. 1 10-30 1 ' OUY,
Speed (ns): 0.3 3 00 0.1 ms) (10 ms)
Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs
Lec 14.3

3/16/15 Kubiatowicz €5162 ©UCB Spring 2015

Recall: How is a Block found in a Cache?

Block Address Block
[Index offset

)

Set Select

Tag

Data Select
*+ Index Used to Lookup Candidates in Cache
- Index identifies the set
* Tag used to identify actual copy
- If no candidates match, then declare cache miss

* Block is minimum quantum of caching
- Data select field used to select data within block
- Many caching applications don't have data select field

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.4

Review: Direct Mapped Cache

+ Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tazg
- The lowest M bits are the Byte Select (Block Size = 2M)
. Exam!Ie: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

31 9 4 0
| Cache Tag | Cache Index | Byte Select |
Ex: 0x50 Ex: i)xOl Ex: 0x00
Valid Bit Cache Tag Cache Data
I PP ... Byte31).... . [.Byte 1.1.BytdQ.1.0
|| 0x50 Byte 63| * * | Byte 33| Byte 32| 1+
T T s 5
] Byte 1023 -+ Byte 99231
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 145

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0
| Cache Tag | Cachelndex | Byte Select |
—]
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

Y
3/16/15 H'tl | cache Block Lec 14.6

Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

- Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

- We need N 27-bit comparators

- Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long) | Byte Select |
Ex: 0x01
Cache Tag Valid Bit ~ Cache Data
——()—] Byte 31| - - |Bytel | Byte 0
® Byte 63| -+ | Byte 33| Byte 32
)
2/
)
ZJ

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.7

Where does a Block Get Placed in a Cache?
* Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:

block 12 can go block 12 can go block 12 can go

only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.8

Review: Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 52% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.9

Review: What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

* Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?

- WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
- WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.10

Caching Applied to Address Translation
N

Physical

Physical
Memory

Translate
(MMUL)

Data Read or Write
(untranslated)

* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
*+ Can we have a TLB hierarchy?

- Sure: multiple levels at different sizes/speeds
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.11

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal
- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.12

Transparent Exceptions: TLB/Page fault

31 [+)] [=)] [=)]
User —g E _3 + _g ..g _3 E
w - w e w - w -
TLB Faults | 1
0s Softwar Fetch page/
Load TL| Load TLB

* How to transparently restart faulting instructions?
- (Consider load or store that gets TLB or Page fault)
- Could we just skip faulting instruction?
» No: need to perform load or store after reconnecting
physical page
* Hardware must help out by saving:
- Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????
- Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc
* What if an instruction has side-effects?

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.13

Consider weird things that can happen

* What if an instruction has side effects?
- Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messyl!)
- Examﬂle 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
- Example 2: strcpy (r1), (r2)
» Source and destination overlap: can't unwind in principle!
» IBM S/370 and VAX solution: execute twice - once
read-only
* What about "RISC" processors?
- For instance delayed branches?
» Example: bne somewhere
Id r1,(sp)
» Precise exception state consists of two PCs: PC and nPC
- Delayed exceptions:
» Example: ~ div r1, r2, r3
Id r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?
3/16/15 Kubiatowicz €5162 ®UCB Spring 2015

Lec 14.14

Precise Exceptions

* Precise = state of the machine is preserved as if
program executed up to the offending instruction
- All previous instructions completed
- Offending instruction and all following instructions act as
if they have not even started
- Same system code will work on different implementations
- Difficult in the presence of pipelining, out-of-order
execution, ...
- MIPS takes this position
 Imprecise = system software has to figure out what is
where and put it all back together
+ Performance goals often lead designers to forsake
precise interrupts
- system software developers, user, markets etc. usually
wish they had not done this
* Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.15

Administrivia

- Still working on the grading of exams
- No deadline yet, will let you know

* Solutions are donel
- Will post them on the website

+ Checkpoint 1 for Project 2 delayed
- Now due Monday after Spring Break

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.16

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

* Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
- Called "TLB Consistency”

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.17

What TLB organization makes sense?

» TLB »| Cache » Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!

- This arqgues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?
» TLB mostly unused for small programs

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.18

TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |AccessASID

OxFAOQ0 0x0003 Y N Y R/W | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.19

Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline
Ilnst Fetch | Dcd/ Reg IALU | EA | Memory I Write Reg |
|TLB | I-Cache | RF | Operation | | WB |
| EA.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || | | | V. Page Number | Offset |

A_rl 20 12

Oxx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.20

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:

Virtual Address

[Vpageno. | offset |
|

TLB Lookup

RCTESS
V Rights | _PA

[Ppageno. | offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.21

Overlapping TLB & Cache Access (1/2)

* Main idea:

- Offset in virtual address exactly covers the
“cache index” and "byte select”

- Thus can select the cached byte(s) in parallel to
perform address translation

virtual address
physical address | tag / page #

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.22

Overlapping TLB & Cache Access
+ Here is how this might work with a 4K cache:
[assoc l
lookup index

32 |TLB ‘—‘ ’—' 4K Cache 1K
| . |

10 2 4 bytes—
|page # | disp [og

Hit/
Miss

FN @ FN Data Hit/
Miss
* What if cache size is increased to 8KB?
- Overlap not complete
- Need to do something else. See €S152/252
* Another option: Virtual Caches
- Tags in cache are virtual addresses
- Translation only happens on cache misses

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.23

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
PageTablePir > Ph¥sica re\s:
Page Table —]
(15t level)
Page Table
(2nd |evel)
3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.24

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
L J
Physica regs:
Page #
a
TLB:
l]
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.25

Putting Everything Together: Cache

Physical
Memory:
Physica regs:
Page #
—cache:
tag: Block:
l
3/16/15 Kubiatowicz €S162 ©! Lec 14.26

Where are all places that caching arises in
Operating Systems?

- Direct use of caching techniques
- paged virtual memory (mem as cache for disk)
- TLB (cache of PTEs)
- file systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)
* Which pages to keep in memory?
- All-important “Policy” aspect of virtual memory
- Will spend a bit more time on this in a moment

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.27

Impact of caches on Operating Systems

Indirect - dealing with cache effects
Process scheduling

- which and how many processes are active ?

- large memory footprints versus small ones ?

- priorities ?

- Shared pages mapped into VAS of multiple processes ?
Impact of thread scheduling on cache performance

- rapid interleaving of threads (small quantum) may degrade
cache performance

» increase average memory access time (AMAT) lll
Designing operating system data structures for cache
performance
Maintaining the correctness of various caches

- TLB consistency:
» With PT across context switches ?
» Across updates to the PT ?

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.28

Working Set Model

*+ As a program executes it transitions through a
sequence of “working sets” consisting of varying
sized subsets of the address space

Address

Time

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.29

Cache Behavior under WS model

14
Q
5 new working set fits ‘
o
X
T —)
(0]

Cache Size
+ Amortized by fraction of time the WS is active
* Transitions from one WS to the next
+ Capacity, Conflict, Compulsory misses
- Applicable to memory caches and pages. Others ?
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.30

Another model of Locality: Zipf

P access(rank) = 1/rank

1

18% | 09
« \ o
S 16% 08 +
7] \ o
9 14% 07 &
§ 12% \ 06 =
: I

2 o/

T 10% .~ — 05 T
Z 8% ——pop a=1 04 £
§ o —+03 E
2 4% /\ ——Hit Rate(cache) | o,
° w

& 29 o1

0% e T T 0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Rank

+ Likelihood of accessing item of rank r is al/re

+ Although rare to access items below the top few, there
are so many that it yields a "heavy tailed” distribution.

+ Substantial value from even a tiny cache

+ Substantial misses from even a very large one
3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.31

Demand Paging

* Modern programs require a lot of physical memory
- Memory per system growing faster than 25%-30%/year
* But they don't use all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10%
of their code

- Wasteful to require all of user's code to be in memory
+ Solution: use main memory as cache for disk

Processor

Control

Tertiary
Secondary |Storage

Second

189S Level |[Memory| Btorage | |(Tape)
Datapath | [3° & Cache ||(DRAM)| [Disk)
= SRAM
3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.32

........... Illusion of Infinite Memory

@ @)

E— Table Physical Disk
Virtual Memory 50068
Memory 512 MB

4 GB

- Disk is larger than physical memory =
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency
* Principle: Transgarenf Level of Indirection (page table)
- Supports flexible placement of physical data
» Data could be on disk or somewhere across network
- Variable location of data transparent to user program

» Performance issue, not correctness issue
3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.33

Demand Paging is Caching

- Since Demand Paging is Caching, must ask:

- What is block size?
» 1 page

- What is organization of this cache (i.e. direct-mapped,

set-associative, fully-associative)?

» Fully associative: arbitrary virtual—physical mapping

- How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

- What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)

- What happens on a miss?
» 6o to lower level to fill miss (i.e. disk)

- What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

3/16/15 Kubiatowicz €S162 ©UCB Spring 2015 Lec 14.34

Review: What is in a PTE?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
+ Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free 3|2
(Physical Page Number) (0S) O|L|D{AIG 3 uwP
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.35

Demand Paging Mechanisms

*+ PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary
* Suppose user references page with invalid PTE?
- Memory Management Unit (MMU) traps to OS

» Resulting trap is a "Page Fault” ’ L
- What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue

3/16/15 Kubiatowicz €5162 ©®UCB Spring 2015 Lec 14.36

Loading an executable into memory

disk (huge)

\\

memory

ey

° .exe

- lives on disk in the file system

- contains contents of code & data segments, relocation entries and
symbols

- OS loads it into memory, initializes registers (and initial stack
pointer

- program sets up stack and heap upon initialization: CRTO

[\)

Create Virtual Address Space of the Process

disk (huge)

~ kernel user page
L nfa,
| s
. code

process VAS memory

frames

-sbrk user
heap pagetable
data kernel
w code code &
data

- Utilized pages in the VAS are backed by a page block
on disk

- called the backing store

- thicaIIy in an optimized block store, but can think of it
like a file

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.37 3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.38
Create Virtual Address Space of the Process Create Virtual Address Space of the Process
disk (huge, TB) process VAS (GBs) memory disk (huge, TB) VAS - per process PT memory
~ kernel ~ kernel
user page user page
— | stocki | frames — EEY frames
o) o)
- heap user - heap user
data pagetable data / pagetable
data data
& kernel & / kernel
code code & code code &
U p bl ire VA data — data
ser age. '.I'a e rncsps entire VAS . * User Page table maps entire VAS
* All the utilized regions are backed on disk - resident pages to the frame in memory they occupy
- swapped info and out of memory as needed - the portion of it that the HW needs to access must
* For every process be resident in memory
3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.39 3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.40

Provide Backing Store for VAS

disk (huge, TB) VAS - per process memory
N~ kernel | | |
; -N user page
] fromes
Iy 1% user
18 / pagetable
B / kernel
code &
— data

* User Page table maps entire VAS

* Resident pages mapped to memory frames

* For all other pages, OS must record where to find
them on disk

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.41

What data structure is required to map non-
resident pages to disk?
FindBlock(PID, page#) => disk_block
- Some OSs utilize spare space in PTE for paged blocks
- Like the PT, but purely software
Where to store it?

- In memory - can be compact representation if swap
storage is contiguous on disk

- Could use hash table (like Inverted PT)
Usually want backing store for resident pages too.
* May map code segment directly to on-disk image
- Saves a copy of code to swap file

* May share code segment with multiple instances of
the program

3/16/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 14.42

Provide Backing Store for VAS

disk (huge, TB) VAS 1 PT 1
T B — memory
~N_ kernel

e stack)

151'—0‘3'([&\ heap | Tt user pa
Bou— ¥ frames
| heap M Tgarg [T | heap
P . VAS 2 PT2 -
54 kernel] / pageta

/’ code
1= iy
Wi | code &
data
heap |
data /]
code /
3/16/15 ——owe- Cs10z ©OUCB Spring 2015 43 Lec 14.43

On page Fault ...

disk (huge, TB) VAS 1 PT 1
memory

~ | o]
]sT_ackr\ heap | T user pa
‘]—r B u— ; frames
heap | \& ________________________ eap
data | . eode™} [pem=—
,m i ™ code pagetabl
SO < 7 k |
A tack erne
AN data

heap active process & PT
data 7
code /

3/16/15 eorerevren CoTUZ OUCB Spring 2015 Lec 14.44

On page Fault .. find & start load

On page Fault

.. schedule other P or T

disk (huge, TB) VAS 1 PT 1 disk (huge, TB) VAS 1 PT 1
RS memory memory
\\7/ kernel \\7/ kernel
[heap [| user pa, | stack [heap [T T frames.
heap [e . heap heap mmmmmmE e Fecuy’ /,“if’i"
.. VAs 2 P tser .. VAS 2 P LN tcer
data . code] [T - data | . ‘eode™} [T T4
< \-}“\ kernel) // code/ A pagetabl X \-E‘\ kernel) // code/ A pagetabl
7 stack kernel +ack kernel
| L_STacK | | ﬁ code & ‘._. code &
data data
heap | y active process & PT heap | y active process & PT
data data
code / code /|
3/16/15 e—rerern Cotoz ©UCB Spring 2015 Lec 14.45 3/16/15 o= C510%¥ ©UCB Spring 2015 Lec 14.46
On page Fault ... update PTE Eventually reschedule faulting thread
disk (huge, TB) VAS1 PT1 disk (huge, TB) VAS1 PT1
RS memory SRS memory
~N_ kernel ~N_ kernel
. stak [stack | . stk (Estock]
[heap | user pa | stack [heap [frames.
hgqp e heqp \EEEEE e hed[y
3 N <VAS 2 PH user : - ’VAS 2 P” fa user
data | . eode™} [=] data | "\ ‘eode™ [R
N . kernel pagetabl N L. kernel // code pagetabl
} tack erne ; tack erne
:_EI_ J ﬁ code & _EI_ J code &
data data
heap | y active process & PT heap | y active process & PT
data data
code / code /
—E Lec 14.47 3/16/15 ereremren L5102 OUCB Spring 2015 Lec 14.48

3/16/15

©UCB Spring 2015

Summary: Steps in Handling a Page Fault

Sy pagelison
\2/ backing stare e
/
e~ o
operating
system
reference
trap
@,
<L e
load M [
=
®
restart page table
instruction
free frame - e |E
(e 1 £ I
® O]
reset page bring in
table | missing page
physical .
memaory

3/16/15

Kubiatowicz €5162 ®UCB Spring 2015

Lec 14.49

Demand Paging (more details)

* Does software-loaded TLB need use bit?
Two Options:
- Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

- Software manages TLB entries as FIFO list: everything
not in TLB is Second-Chance list, managed as strict LRU

* Core Map
- Page tables map virtual page — physical page
- Do we need a reverse mapping (i.e. physical page —
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page
» Can't push page out to disk without invalidating all PTEs

3/16/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 14.50

Summary

« A cache of translations called a “"Translation Lookaside

Buffer” (TLB)

- Relatively small number of entries (< 512)

- Fully Associative (Since conflict misses expensive)

- TLB entries contain PTE and optional process ID
+ On TLB miss, page table must be traversed

- If located PTE is invalid, cause Page Fault
* On context switch/change in page table

- TLB entries must be invalidated somehow
* TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be

really fast

* Precise Exception specifies a single instruction for which:
- All previous instructions have completed (committed state)
- No following instructions nor actual instruction have started

3/16/15

Kubiatowicz 5162 ©®UCB Spring 2015

Lec 14.51

