
CS162
Operating Systems and
Systems Programming

Lecture 14

Caching (Finished),
Demand Paging

March 16th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 14.23/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: In Machine Structures (eg. 61C) …

• Caching is the key to memory system performance

• Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
• HitRate + MissRate = 1
• HitRate = 90% => Average Access Time = 19 ns
• HitRate = 99% => Average Access Time = 10.9ns

Processor

Main
Memory
(DRAM)

100ns10ns

Second
Level
Cache
(SRAM)

Processor
Main
Memory
(DRAM)

100ns

Access time = 100ns

Lec 14.33/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Memory Hierarchy

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
(10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
Storage
(SSD)

100,000
(0.1 ms)

100GBs

Lec 14.43/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

Recall: How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

Lec 14.53/16/15 Kubiatowicz CS162 ©UCB Spring 2015

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

Lec 14.63/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

Lec 14.73/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 14.83/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

Lec 14.93/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

Lec 14.103/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

• Write back: The information is written only to the
block in the cache.

– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

Review: What happens on a write?

Lec 14.113/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 14.123/16/15 Kubiatowicz CS162 ©UCB Spring 2015

What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

Lec 14.133/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Transparent Exceptions: TLB/Page fault

• How to transparently restart faulting instructions?
– (Consider load or store that gets TLB or Page fault)
– Could we just skip faulting instruction?

» No: need to perform load or store after reconnecting
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Software
Load TLB

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 1

Fa
ul
ti
ng

In
st

 2

Fa
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.143/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhereld r1,(sp)
» Precise exception state consists of two PCs: PC and nPC

– Delayed exceptions:
» Example: div r1, r2, r3ld r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?

Lec 14.153/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Precise Exceptions
• Precise  state of the machine is preserved as if

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 14.163/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Still working on the grading of exams
– No deadline yet, will let you know

• Solutions are done!
– Will post them on the website

• Checkpoint 1 for Project 2 delayed
– Now due Monday after Spring Break

Lec 14.173/16/15 Kubiatowicz CS162 ©UCB Spring 2015

What happens on a Context Switch?
• Need to do something, since TLBs map virtual

addresses to physical addresses
– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

– Called “TLB Consistency”

Lec 14.183/16/15 Kubiatowicz CS162 ©UCB Spring 2015

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 14.193/16/15 Kubiatowicz CS162 ©UCB Spring 2015

TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 14.203/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 14.213/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 14.223/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Overlapping TLB & Cache Access (1/2)

• Main idea:
– Offset in virtual address exactly covers the
“cache index” and “byte select”

– Thus can select the cached byte(s) in parallel to
perform address translation

OffsetVirtual Page #

indextag / page # byte

virtual address

physical address

Lec 14.233/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 14.243/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Lec 14.253/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Lec 14.263/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

Lec 14.273/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are all places that caching arises in
Operating Systems?

• Direct use of caching techniques
– paged virtual memory (mem as cache for disk)
– TLB (cache of PTEs)
– file systems (cache disk blocks in memory)
– DNS (cache hostname => IP address translations)
– Web proxies (cache recently accessed pages)

• Which pages to keep in memory?
– All-important “Policy” aspect of virtual memory
– Will spend a bit more time on this in a moment

Lec 14.283/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Impact of caches on Operating Systems

• Indirect - dealing with cache effects
• Process scheduling

– which and how many processes are active ?
– large memory footprints versus small ones ?
– priorities ?
– Shared pages mapped into VAS of multiple processes ?

• Impact of thread scheduling on cache performance
– rapid interleaving of threads (small quantum) may degrade

cache performance
» increase average memory access time (AMAT) !!!

• Designing operating system data structures for cache
performance

• Maintaining the correctness of various caches
– TLB consistency:

» With PT across context switches ?
» Across updates to the PT ?

Lec 14.293/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Working Set Model

• As a program executes it transitions through a
sequence of “working sets” consisting of varying
sized subsets of the address space

Time

A
dd

re
ss

Lec 14.303/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Cache Behavior under WS model

• Amortized by fraction of time the WS is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages. Others ?

H
it
 R

at
e

Cache Size

new working set fits

0

1

Lec 14.313/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α1/ra

• Although rare to access items below the top few, there
are so many that it yields a “heavy tailed” distribution.

• Substantial value from even a tiny cache
• Substantial misses from even a very large one

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Es
ti
m
at

ed
 H

it
 R

at
e

Po
pu

la
ri
ty

 (
%
 a

cc
es

se
s)

Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

Lec 14.323/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 14.333/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB

Lec 14.343/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?

» Fully associative: arbitrary virtualphysical mapping
– How do we find a page in the cache when look for it?

» First check TLB, then page-table traversal
– What is page replacement policy? (i.e. LRU, Random…)

» This requires more explanation… (kinda LRU)
– What happens on a miss?

» Go to lower level to fill miss (i.e. disk)
– What happens on a write? (write-through, write back)

» Definitely write-back. Need dirty bit!

Lec 14.353/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12

Lec 14.363/16/15 Kubiatowicz CS162 ©UCB Spring 2015

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 14.373/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and

symbols
– OS loads it into memory, initializes registers (and initial stack

pointer)
– program sets up stack and heap upon initialization: CRT0

disk (huge) memory

code

data

info

exe

Lec 14.383/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block
on disk

– called the backing store
– typically in an optimized block store, but can think of it

like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel
code &
data

user page
frames

user
pagetable

Lec 14.393/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

Lec 14.403/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Create Virtual Address Space of the Process

• User Page table maps entire VAS
– resident pages to the frame in memory they occupy
– the portion of it that the HW needs to access must
be resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS – per process

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

PT

Lec 14.413/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find

them on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

VAS – per process

Lec 14.423/16/15 Kubiatowicz CS162 ©UCB Spring 2015

What data structure is required to map non-
resident pages to disk?

• FindBlock(PID, page#) => disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap
storage is contiguous on disk

– Could use hash table (like Inverted PT)
• Usually want backing store for resident pages too.
• May map code segment directly to on-disk image

– Saves a copy of code to swap file
• May share code segment with multiple instances of

the program

Lec 14.433/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Provide Backing Store for VAS

43

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

Lec 14.443/16/15 Kubiatowicz CS162 ©UCB Spring 2015

On page Fault …

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 14.453/16/15 Kubiatowicz CS162 ©UCB Spring 2015

On page Fault … find & start load

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 14.463/16/15 Kubiatowicz CS162 ©UCB Spring 2015

On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 14.473/16/15 Kubiatowicz CS162 ©UCB Spring 2015

On page Fault … update PTE

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 14.483/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel
code &
data

user pag
frames

user
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 14.493/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary: Steps in Handling a Page Fault

Lec 14.503/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:

– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page
– Do we need a reverse mapping (i.e. physical page 
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

Lec 14.513/16/15 Kubiatowicz CS162 ©UCB Spring 2015

Summary
• A cache of translations called a “Translation Lookaside

Buffer” (TLB)
– Relatively small number of entries (< 512)
– Fully Associative (Since conflict misses expensive)
– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be
really fast

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

