
CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

January 21st, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 1.21/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Greatest Artifact of Human Civilization…

Lec 1.31/21/15 Kubiatowicz CS162 ©UCB Spring 2015

3 Billion Internet Users by …

1969

2.0 B 1/26/11

1974

RF
C

67
5

TC
P/

IP

WWW

A
RP

A
N
et Internet

H
TT

P
0.

9

1990 2010

2.8 B

Lec 1.41/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Operating Systems at the heart of it all …

• Make the incredible advance in the underlying
hardware available to a rapid evolving body of
applications.

– Processing, Communications, Storage, Interaction

• The key building blocks
– Scheduling
– Concurrency
– Address spaces
– Protection, Isolation, Security
– Networking, distributed systems
– Persistent storage, transactions, consistency,
resilience

– Interfaces to all devices

Lec 1.51/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: What’s in a Search Query?

• Complex interaction of multiple components in
multiple administrative domains

– Systems, services, protocols, …

Datacenter

Load
balancer

Ad Server

DNS
Servers

Search
Index

DNS
request

create
result
page

Page
store

Lec 1.61/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Why take CS162?

• Some of you will actually design and build
operating systems or components of them.

– Perhaps more now than ever
• Many of you will create systems that utilize the

core concepts in operating systems.
– Whether you build software or hardware
– The concepts and design patterns appear at many
levels

• All of you will build applications, etc. that utilize
operating systems

– The better you understand their design and
implementation, the better use you’ll make of
them.

Lec 1.71/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Goals for Today

• What is an Operating System?
– And – what is it not?

• Examples of Operating Systems design
• What makes Operating Systems So Exciting?
• Oh, and “How does this class operate?”

Interactive is important!
Ask Questions!

Slides courtesy of David Culler, John Kubiatowicz, AJ Shankar,
George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica,
Doug Tygar, and David Wagner.

Lec 1.81/21/15 Kubiatowicz CS162 ©UCB Spring 2015

What is an operating system?
• Special layer of software that provides application

software access to hardware resources
– Convenient abstraction of complex hardware devices
– Protected access to shared resources
– Security and authentication
– Communication amongst logical entities

Hardware

appln
appln

appln

OS

Lec 1.91/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Operator …

Switchboard Operator

Computer Operators

Lec 1.101/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: “Virtual Machine” Boundary

storage

OS Hardware Virtualization

Hardware
Software

Processor

Memory

Networks

Displays

Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

Threads

Lec 1.111/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Interfaces Provide Essential Boundaries

• Why do interfaces look the way that they do?
– History, Functionality, Stupidity, Bugs, Management
– CS152  Machine interface
– CS160  Human interface
– CS169  Software engineering/management

• Should responsibilities be pushed across boundaries?
– RISC architectures, Graphical Pipeline Architectures

instruction set

software

hardware

Lec 1.121/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: Program => Process

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Lec 1.131/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: Context Switch

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Lec 1.141/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: Scheduling, Protection

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Lec 1.151/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 1.161/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Basics: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 1.171/21/15 Kubiatowicz CS162 ©UCB Spring 2015

What make Operating Systems
exciting and Challenging

Lec 1.181/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Lec 1.191/21/15 Kubiatowicz CS162 ©UCB Spring 2015

People-to-Computer Ratio Over Time

• Today: Multiple CPUs/person!
– Approaching 100s?

From David Culler

Lec 1.201/21/15 Kubiatowicz CS162 ©UCB Spring 2015

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

New Challenge: Slowdown in Joy’s law of Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

 Sea change in chip
design: multiple “cores” or
processors per chip

3X

Lec 1.211/21/15 Kubiatowicz CS162 ©UCB Spring 2015

ManyCore Chips: The future is here

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Parallelism must be exploited at all levels

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two FP-engines / core
– Mesh-like network
– 100 million transistors
– 65nm feature size

• Intel Single-Chip Cloud
Computer (August 2010)
– 24 “tiles” with two cores/tile
– 24-router mesh network
– 4 DDR3 memory controllers
– Hardware support for message-passing

Lec 1.221/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Another Challenge: Power Density

• Moore’s Law Extrapolation
– Potential power density reaching amazing levels!

• Flip side: Battery life very important
– Moore’s law can yield more functionality at equivalent
(or less) total energy consumption

Lec 1.231/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Storage Capacity

• Retail hard disk capacity in GB
(source: http://www.digitaltonto.com/2011/our-emergent-digital-future/)

Lec 1.241/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Network Capacity

(source: http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side)

Lec 1.251/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Internet Scale: .96 Billion Hosts

https://www.isc.org/solutions/survey

963,518,598996,230,757 July 2013

Lec 1.261/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Internet Scale: Almost 2.5 Billion Users!

(source: http://www.internetworldstats.com/stats.htm)

Lec 1.271/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Not Only PCs connected to the Internet

• Smartphone shipments now exceed PC
shipments!

• 2011 shipments:
– 487M smartphones
– 414M PC clients

» 210M notebooks
» 112M desktops
» 63M tablets

– 25M smart TVs

• 4 billion phones in the world  smartphone
over next decade

Lec 1.281/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Societal Scale Information Systems
(Or the “Internet of Things”?)

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large
distributed system

– Microprocessors in
everything

– Vast infrastructure behind
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Lec 1.291/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Who am I?
• Professor John Kubiatowicz (Prof “Kubi”)

– Background in Hardware Design
» Alewife project at MIT
» Designed CMMU, Modified SPAR C processor
» Helped to write operating system

– Background in Operating Systems
» Worked for Project Athena (MIT)
» OS Developer (device drivers,

network file systems)
» Worked on Clustered High-Availability systems

(CLAM Associates)
» OS lead researcher for Tessellation OS

– Peer-to-Peer
» OceanStore project –

Store your data for 1000 years
» Tapestry and Bamboo –

Find your data around globe
» SwarmLab Global DataPlane for the

Internet of Things (IoT)
– Quantum Computing

» Well, this is just cool, but probably not apropos

Tessellation
A
lewife

O
ceanStore

Lec 1.301/21/15 Kubiatowicz CS162 ©UCB Spring 2015

CS162 Team - GSIs:
• Vaishaal Shankar

– Head GSI
– Sec: 105 (Th 2-3P)
– cs162-

ta@inst.eecs.berkeley.edu

• Roger Chen
– Sec: 106 (Th 3-4P), 107 (Th

4-5P)
– cs162-

tb@inst.eecs.berkeley.edu

• Jason Jia
– Sec: 102 (F 11-12P)
– cs126-

tc@inst.eecs.berkeley.edu

• Erik Krogen
– Sec: 103 (F 10-11P)
– cs162-

td@inst.eecs.berkeley.edu

• Daniel Liu
– Sec: 112 (F 3-4P)
– cs162-te@inst.eecs.berkeley.edu

• William Liu
– Sec: 109 (F 10-11A)
– cs162-tf@inst.eecs.berkeley.edu

• Alec Mouri
– Sec: 101 (Th 10-11A), 102 (Th 11-

12P)
– cs162-tg@inst.eecs.berkeley.edu

• Luca Zuccarini
– Sec: 111 (F 2-3P)
– cs162-th@inst.eecs.berkeley.edu

• Iris Wang
– Sec: 104 (Th 1-2P), 108 (Th 5-6P)
– cs162-ti@inst.eecs.berkeley.edu

Lec 1.311/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Infrastructure, Textbook & Readings

• Infrastructure
– Website: http://cs162.eecs.berkeley.edu
– Piazza: https://piazza.com/berkeley/spring2015/cs162
– Webcast: Yes! Will post link when available

• Textbook: Operating Systems: Principles and Practice
(2nd Edition) Anderson and Dahlin

• Recommend: Operating Systems Concepts,
9th Edition Silbershatz, Galvin, Gagne

– Copies in Bechtel
• Online supplements

– See course website
– Includes Appendices, sample problems, etc.
– Networking, Databases, Software Eng, Security
– Some Research Papers!

Lec 1.321/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Syllabus

• OS Concepts: How to Navigate as a Systems Programmer!
– Process, I/O, Networks and VM

• Concurrency
– Threads, scheduling, locks, deadlock, scalability, fairness

• Address Space
– Virtual memory, address translation, protection, sharing

• File Systems
– i/o devices, file objects, storage, naming, caching,

performance, paging, transactions, databases
• Distributed Systems (8)

– Protocols, N-Tiers, RPC, NFS, DHTs, Consistency, Scalability,
multicast

• Reliability & Security
– Fault tolerance, protection, security

• Cloud Infrastructure

Lec 1.331/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Learning by Doing

• Individual Homework (1-2 weeks): Learn Systems
Programming

– 0. Tools, Autograding, recall C, executable
– 1. Simple Shell
– 2. Web server
– …

• Three Group Projects
– 1. Threads & Scheduling (Pintos in C)
– 2. User-programs (Pintos in C)
– 3. Key-value store (Java)

1/21/2015 UCB CS162 Fa14 L# 33 Lec 1.341/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Getting started
• Start homework 0 immediately

– Gets cs162-xx@cory.eecs.berkeley.edu (and other inst
m/c)

– Github account
– Registration survey
– Vagrant virtualbox – VM environment for the course

» Consistent, managed environment on your machine
– icluster24.eecs.berkeley.edu is same
– Get familiar with all the cs162 tools
– Submit to autograder via git

• Go to section this week (starting tomorrow!)
– Also, watch for us to post various small help-sessions

• Waitlist ???
– Drop Deadline: January 30th

– If you are not serious about taking, please drop early

Lec 1.351/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Group Project Simulates Industrial Environment
• Project teams have 4 members (try really hard to get 4

members – 3 members requires serious justification)
– Must work in groups in “the real world”
– Same section much perferred

• Communicate with colleagues (team members)
– Communication problems are natural
– What have you done?
– What answers you need from others?
– You must document your work!!!

• Communicate with supervisor (TAs)
– What is the team’s plan?
– What is each member’s responsibility?
– Short progress reports are required
– Design Documents: High-level description for a manager!

Lec 1.361/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Grading

• 40% midterms/Final
• 40% projects
• 15% homework
• 5% participation
• Project grading

– [10 pts] Initial design
– [10 pts] Design review
– [50 pts] Code (3 checkpoints)
– [30 pts] Final design
– [0 pts] Peer Evaluation

• Submission via git push to release branch
– Triggers autograder

• Regular git push so TA sees your progress

Lec 1.371/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Personal Integrity

• UCB Academic Honor Code: "As a member of the
UC Berkeley community, I act with honesty,
integrity, and respect for others."

http://asuc.org/honorcode/resources/HC%20Guide%20for%20Syllabi.pdf

Lec 1.381/21/15 Kubiatowicz CS162 ©UCB Spring 2015

CS 162 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other
groups
Helping debug someone else’s code (in another group)
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from from
prior years

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against
offenders

Lec 1.391/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Typical Lecture Format

• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture
• 5-Minute Break (water, stretch)
• 25-Minute Lecture
• Instructor will come to class early & stay after to answer

questions

Attention

Time

20 min.Break “In Conclusion, ...”25 min.Break 25 min.

Lec 1.401/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Lecture Goal

Interactive!!!

Lec 1.411/21/15 Kubiatowicz CS162 ©UCB Spring 2015

What is an Operating System?

• Referee
– Manage sharing of resources, Protection,
Isolation

» Resource allocation, isolation, communication
• Illusionist

– Provide clean, easy to use abstractions of
physical resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 1.421/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Challenge: Complexity

• Applications consisting of…
– … a variety of software modules that …
– … run on a variety of devices (machines) that

» … implement different hardware architectures
» … run competing applications
» … fail in unexpected ways
» … can be under a variety of attacks

• Not feasible to test software for all possible
environments and combinations of components and
devices

– The question is not whether there are bugs but how
serious are the bugs!

Lec 1.431/21/15 Kubiatowicz CS162 ©UCB Spring 2015

A modern processor: SandyBridge

• Package: LGA 1155
– 1155 pins
– 95W design envelope

• Cache:
– L1: 32K Inst, 32K Data

(3 clock access)
– L2: 256K (8 clock access)
– Shared L3: 3MB – 20MB

(not out yet)

• Transistor count:
– 504 Million (2 cores, 3MB L3)
– 2.27 Billion (8 cores, 20MB L3)

• Note that ring bus is on high
metal layers – above the Shared
L3 Cache

Lec 1.441/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Functionality comes with great complexity!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

SandyBridge I/O
Configuration

Lec 1.451/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Sample of Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

SSD, Disks, Cloud Storage

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID/Replication

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

Lec 1.461/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Increasing Software Complexity

From MIT’s 6.033 course

Lec 1.471/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

• A lot of similarity with the Internet of Things?
– Complexity, QoS, Inaccessbility, Power limitations … ?

Lec 1.481/21/15 Kubiatowicz CS162 ©UCB Spring 2015

How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS
– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers

– Different networking environment
» Cable, DSL, Wireless, Firewalls,…

• Questions:
– Does the programmer need to write a single program
that performs many independent activities?

– Does every program have to be altered for every
piece of hardware?

– Does a faulty program crash everything?
– Does every program have access to all hardware?

Lec 1.491/21/15 Kubiatowicz CS162 ©UCB Spring 2015

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks 

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 1.501/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Virtual Machines

• Software emulation of an abstract machine
– Give programs illusion they own the machine
– Make it look like hardware has features you want

• Two types of “Virtual Machine”s
– Process VM: supports the execution of a single
program; this functionality typically provided by OS

– System VM: supports the execution of an entire OS
and its applications (e.g., VMWare Fusion, Virtual box,
Parallels Desktop, Xen)

Lec 1.511/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Process VMs

• Programming simplicity
– Each process thinks it has all memory/CPU time
– Each process thinks it owns all devices
– Different devices appear to have same high level
interface

– Device interfaces more powerful than raw hardware
» Bitmapped display  windowing system
» Ethernet card  reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes
– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

Lec 1.521/21/15 Kubiatowicz CS162 ©UCB Spring 2015

System Virtual Machines: Layers of OSs

• Useful for OS development
– When OS crashes, restricted to one VM
– Can aid testing programs on other OSs

Lec 1.531/21/15 Kubiatowicz CS162 ©UCB Spring 2015

What is an Operating System,… Really?

• Most Likely:
– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser? 

• Is this only interesting to Academics??

Lec 1.541/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel.

– Everything else is either a system program (ships
with the operating system) or an application
program

Lec 1.551/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 1.561/21/15 Kubiatowicz CS162 ©UCB Spring 2015

CPU MMU

Virtual
Addresses

Physical
Addresses

Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 1.571/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 1.581/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Address Translation Details

• For now, assume translation happens with table
(called a Page Table):

• Translation helps protection:
– Control translations, control access
– Should Users be able to change Page Table???

Virtual
Address

Page Table

index
into
page
table

V Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset
10

Physical
Address

Lec 1.591/21/15 Kubiatowicz CS162 ©UCB Spring 2015

Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify  Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 1.601/21/15 Kubiatowicz CS162 ©UCB Spring 2015

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 1.611/21/15 Kubiatowicz CS162 ©UCB Spring 2015

“In conclusion…”

• Operating systems provide a virtual machine
abstraction to handle diverse hardware

• Operating systems coordinate resources and
protect users from each other

• Operating systems simplify application
development by providing standard services

• Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

• CS162 combines things from many other areas of
computer science –

– Languages, data structures, hardware, and
algorithms

