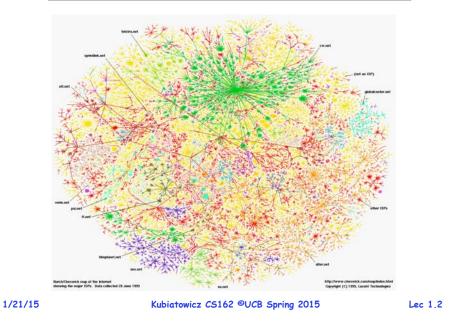


What is an Operating System?

January 21st, 2015 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu


1990

Kubiatowicz CS162 ©UCB Spring 2015

1969 1974

1/21/15

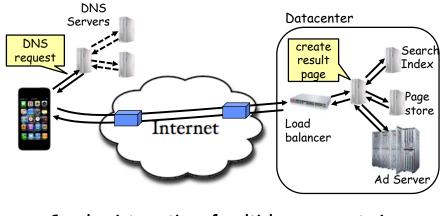
Greatest Artifact of Human Civilization...

Operating Systems at the heart of it all ...

• Make the incredible advance in the underlying hardware available to a rapid evolving body of applications.

- Processing, Communications, Storage, Interaction

00.000


Number of apps in Apple App Store and Android Market (01/2010 – 12/2011)

Android overtak Apple at 425,00

- The key building blocks
 - Scheduling
 - Concurrency
 - Address spaces
 - Protection, Isolation, Security 🚏
 - Networking, distributed systems
 - Persistent storage, transactions, consistency, resilience
 - Interfaces to all devices

2010

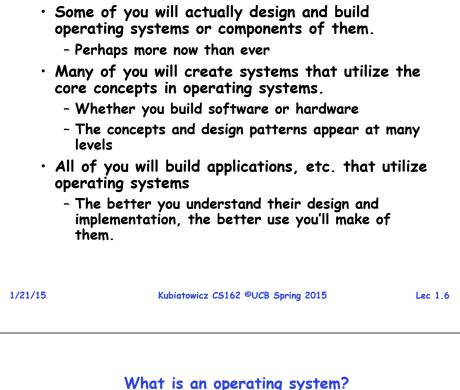
Example: What's in a Search Query?

• Complex interaction of multiple components in multiple administrative domains

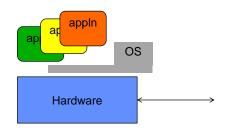
- Systems, services, protocols, ...

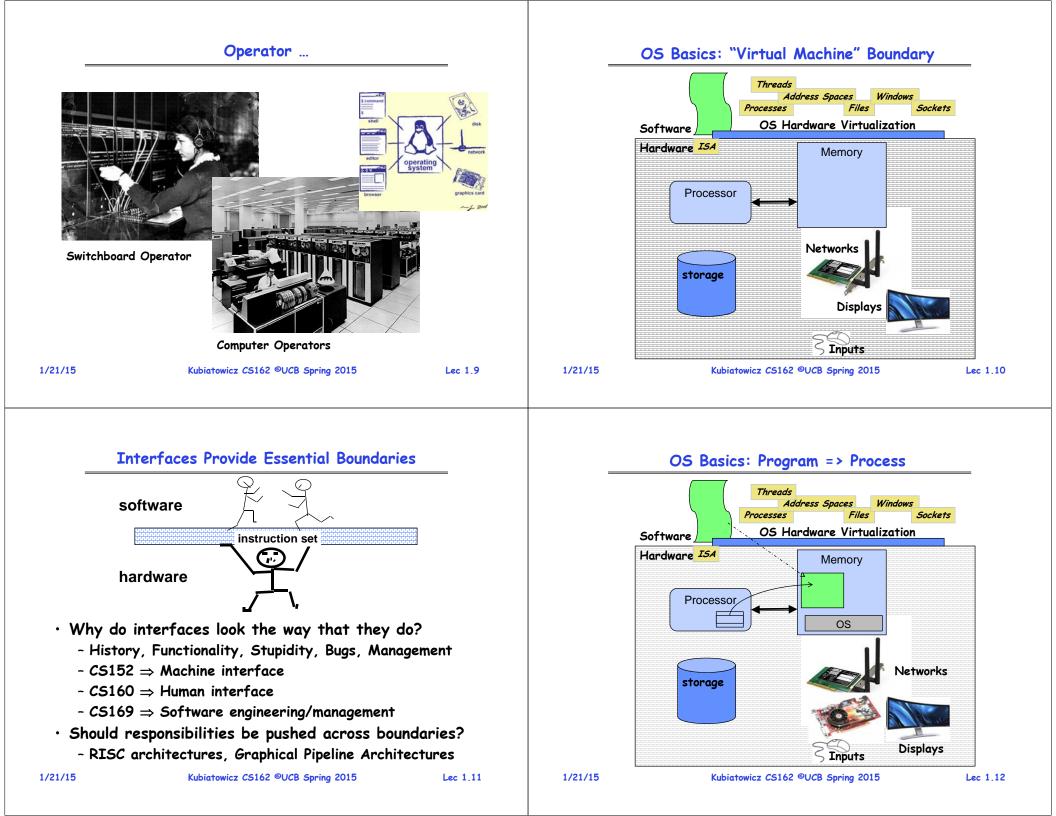
1/21/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec 1.5 1/21/15 Kubiatowicz CS162 ©UCB Spring 2015 Lec

Goals for Today


- What is an Operating System? - And - what is it not?
- Examples of Operating Systems design
- What makes Operating Systems So Exciting?
- Oh, and "How does this class operate?"

Interactive is important!

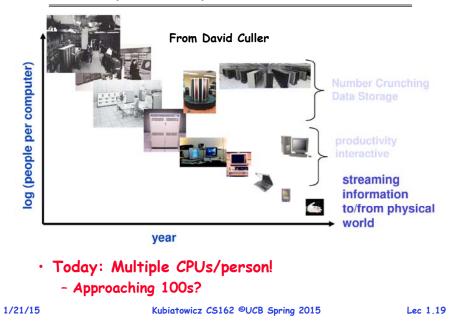

Ask Questions!


Slides courtesy of David Culler, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

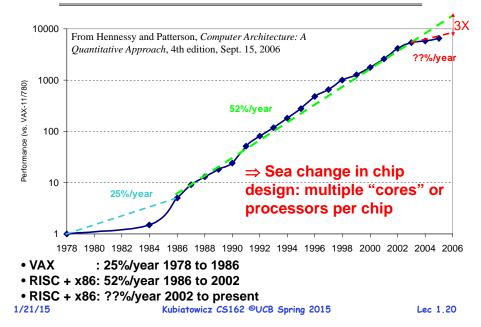
Why take CS162?

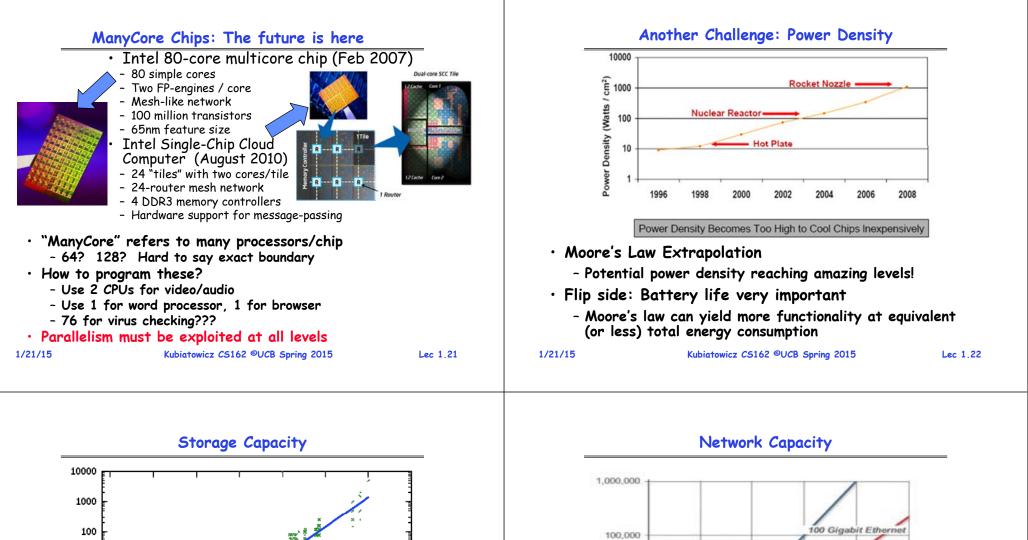
- Special layer of software that provides application software access to hardware resources
 - Convenient abstraction of complex hardware devices
 - Protected access to shared resources
 - Security and authentication
 - Communication amongst logical entities

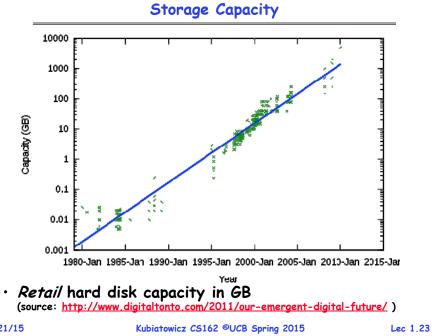
1/21/15

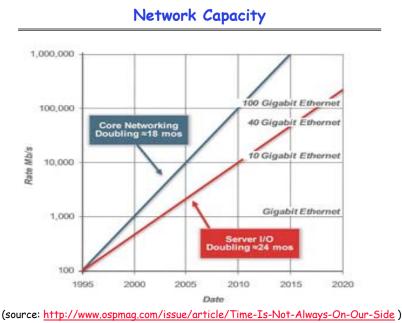

Kubiatowicz CS162 ©UCB Spring 2015

Lec 1.15

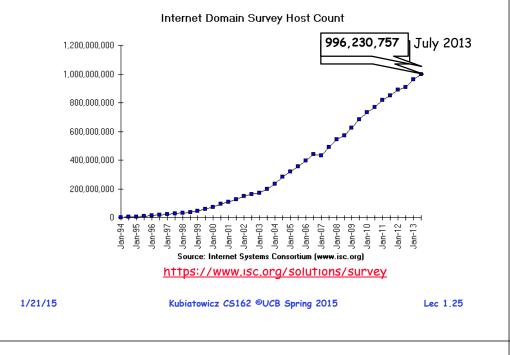

1/21/15




People-to-Computer Ratio Over Time



New Challenge: Slowdown in Joy's law of Performance



Internet Scale: .96 Billion Hosts

Not Only PCs connected to the Internet

- Smartphone shipments now exceed PC shipments!
- 2011 shipments:
 487M smartphones
 414M PC clients

 210M notebooks
 112M desktops
 63M tablets
 25M smart TVs

· 4 billion phones in the world \rightarrow smartphone over next decade

Internet Scale: Almost 2.5 Billion Users!

MODED INTERNET USACE AND DODUL ATION STATISTICS

WORLD		ecember 31				
World Regions	Population (2014 Est.)	Internet Users Dec. 31, 2000	Internet Users Latest Data	Penetration (% Population)	Growth 2000-2014	Users % of Table
<u>Africa</u>	1,125,721,038	4,514,400	240,146,482	21.3 %	5,219.6 %	8.6 %
Asia	3,996,408,007	114,304,000	1,265,143,702	31.7 %	1,006.8 %	45.1 %
Europe	825,802,657	105,096,093	566,261,317	68.6 %	438.8 %	20.2 %
Middle East	231,062,860	3,284,800	103,829,614	44.9 %	3,060.9 %	3.7 %
North America	353,860,227	108,096,800	300,287,577	84.9 %	177.8 %	10.7 %
Latin America / Caribbean	612,279,181	18,068,919	302,006,016	49.3 %	1,571.4 %	10.8 %
<u> Oceania / Australia</u>	36,724,649	7,620,480	24,804,226	67.5 %	225.5 %	0.9 %
WORLD TOTAL	7,181,858,619	360,985,492	2,802,478,934	39.0 %	676.3 %	100.0 %
Telecommunications Union, by help and methodology, please n www.internetworldstats.com. Co	efer to the Site Surfin	ng Guide. (6) Info 4, Miniwatts Mar	mation in this site keting Group. All rig	may be cited, givi ghts reserved worl	ng the due c	
1/21/15			UCB Spring 20	,	Le	c 1.26
(Or	al Scale] the "Inte	Informaternet of	tion Syst Things"?	ems ?)	Massive Ch	ster
Societ (Or The world is distributed sy - Microproces everything - Vast infras- them	<u>the "Inte</u> a large /stem /sors in	ernet of	Things"?			
• The world is distributed sy - Microproces everything - Vast infras	<u>the "Inte</u> a large /stem /sors in	ernet of	Things"?		Alable, F	Reliable
Or The world is distributed sy - Microproces everything - Vast infrast them Internet	<u>the "Inte</u> a large /stem /sors in	ernet of	Things"?	Sca Databa Inform	alable, F cure Se ises iation C e Stora Games	Reliable rvices ollectio
(Or The world is distributed sy - Microproces everything - Vast infrast them Internet	<u>the "Inte</u> a large /stem /sors in	ernet of	Things"?	Databa Inform Remote Online	alable, F cure Se ises iation C e Stora Games	Reliable rvices ollectio

Who am I?

- Professor John Kubiatowicz (Prof "Kubi")
 - Background in Hardware Design
 - » Alewife project at MIT
 - » Designed CMMU, Modified SPAR C processor
 - » Helped to write operating system
 - Background in Operating Systems
 - » Worked for Project Athena (MIT)
 - » OS Developer (device drivers, network file systems)
 - » Worked on Clustered High-Availability systems (CLAM Associates)
 - » OS lead researcher for Tessellation OS

- Peer-to-Peer

- » OceanStore project -Store your data for 1000 years
- » Tapestry and Bamboo -Find your data around globe
- » SwarmLab Global DataPlane for the Internet of Things (IoT)
- Quantum Computing
- » Well, this is just cool, but probably not apropos 1/21/15

Infrastructure, Textbook & Readings

• Infrastructure

- Website: http://cs162.eecs.berkeley.edu
- Piazza: https://piazza.com/berkeley/spring2015/cs162
- Webcast: Yes! Will post link when available
- Textbook: Operating Systems: Principles and Practice (2nd Edition) Anderson and Dahlin Doerating
- Recommend: Operating Systems Concepts. 9th Edition Silbershatz, Galvin, Gagne
 - Copies in Bechtel
- Online supplements
 - See course website
 - Includes Appendices, sample problems, etc.
 - Networking, Databases, Software Eng, Security
 - Some Research Papers!

Kubiatowicz CS162 ©UCB Spring 2015

CS162 Team - GSIs:

Daniel Liu

William Liu

Alec Mouri

12P)

Luca Zuccarini

Sec: 112 (F 3-4P)

- Sec: 109 (F 10-11A)

cs162-te@inst.eecs.berkelev.edu

- Vaishaal Shankar
- Head GSI - Sec: 105 (Th 2-3P)
- cs162-
- ta@inst.eecs.berkeley.edu
- Roger Chen - Sec: 106 (Th 3-4P), 107 (Th
 - 4-5P) cs162
 - tb@inst.eecs.berkeley.edu
- Jason Jia - Sec: 102 (F 11-12P)
- cs126
 - tc@inst.eecs.berkeley.edu
- Erik Krogen - Sec: 103 (F 10-11P)
 - cs162td@inst.eecs.berkelev.edu
- 1/21/15

cs162-th@inst.eecs.berkelev.edu

Iris Wang - Sec: 104 (Th 1-2P), 108 (Th 5-6P

- Sec: 111 (F 2-3P)

cs162-ti@inst.eecs.berkelev.edu

Kubiatowicz CS162 ©UCB Spring 2015

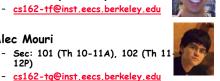
Lec 1.30

Syllabus

- OS Concepts: How to Navigate as a Systems Programmer! - Process, I/O, Networks and VM
- · Concurrency
 - Threads, scheduling, locks, deadlock, scalability, fairness
- Address Space
 - Virtual memory, address translation, protection, sharing
- File Systems
 - i/o devices, file objects, storage, naming, caching, performance, paging, transactions, databases
- Distributed Systems (8)
 - Protocols, N-Tiers, RPC, NFS, DHTs, Consistency, Scalability, multicast
- Reliability & Security
 - Fault tolerance, protection, security
- Cloud Infrastructure

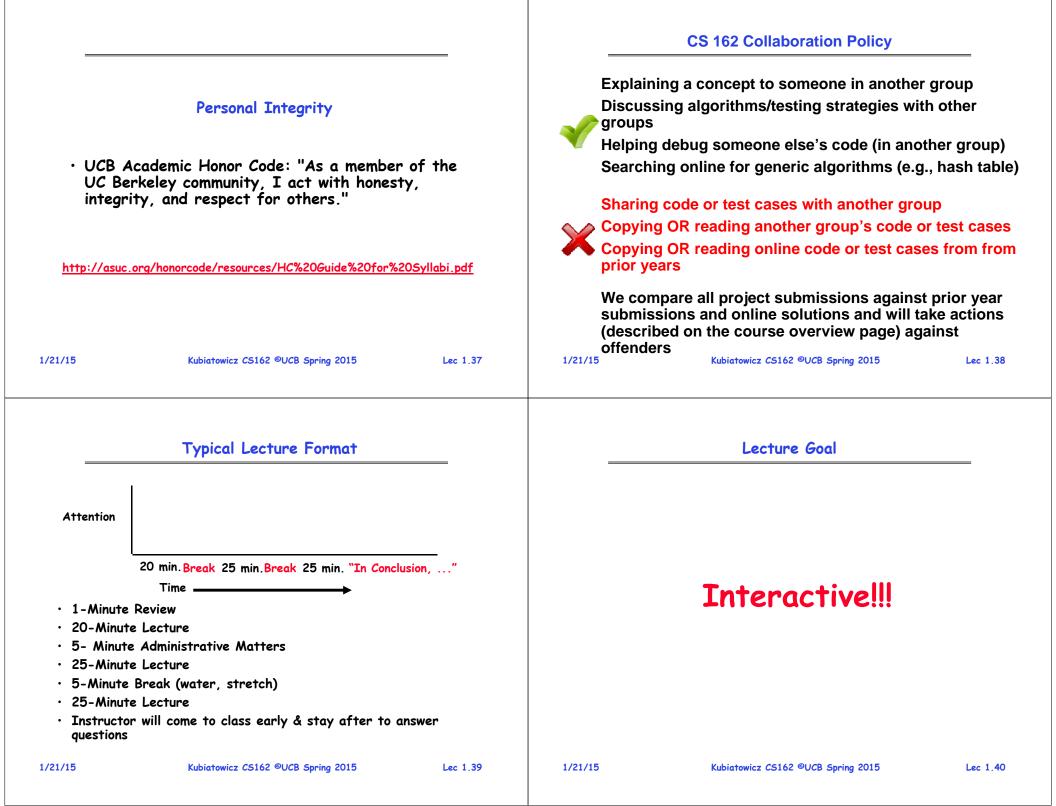
OPERATING SYSTEM

CONCEPTS

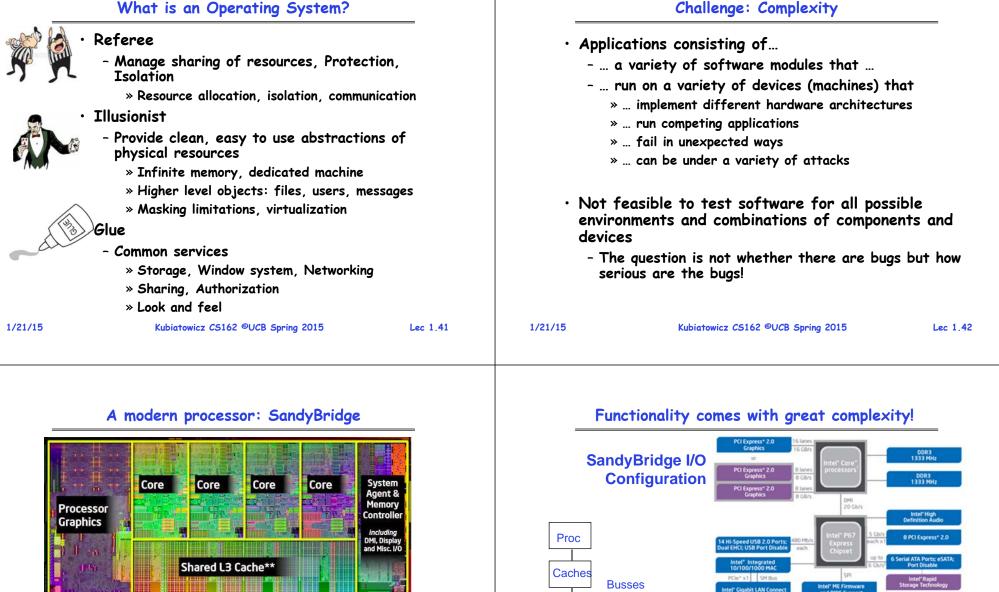

Lec 1.31

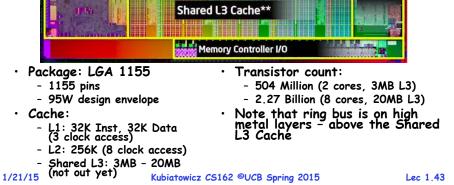
Alewife

Tessellation


Learning by Doing

Getting started Start homework 0 immediately Individual Homework (1-2 weeks): Learn Systems - Gets cs162-xx@cory.eecs.berkeley.edu (and other inst Programming m/c) - 0. Tools, Autograding, recall C, executable - Github account - 1. Simple Shell - Registration survey - 2. Web server - Vagrant virtualbox - VM environment for the course » Consistent, managed environment on your machine • Three Group Projects - icluster24.eecs.berkeley.edu is same - 1. Threads & Scheduling (Pintos in C) - Get familiar with all the cs162 tools - 2. User-programs (Pintos in C) - Submit to autograder via git - 3. Key-value store (Java) • Go to section this week (starting tomorrow!) - Also, watch for us to post various small help-sessions Waitlist ??? - Drop Deadline: January 30th - If you are not serious about taking, please drop early Kubiatowicz CS162 ©UCB Spring 2015 Lec 1.34 1/21/2015 Lec 1.333 1/21/15 KU/CB/CS162 (Fd94 Haring 2015 Grading Group Project Simulates Industrial Environment • Project teams have 4 members (try really hard to get 4 40% midterms/Final members - 3 members requires serious justification) · 40% projects - Must work in groups in "the real world" 15% homework - Same section much perferred 5% participation • Communicate with colleagues (team members) - Communication problems are natural


- What have you done?
- What answers you need from others?
- You must document your work!!!
- Communicate with supervisor (TAs)
 - What is the team's plan?
 - What is each member's responsibility?
 - Short progress reports are required
 - Design Documents: High-level description for a manager!


1/21/15

- Project grading
 - [10 pts] Initial design
 - [10 pts] Design review
 - [50 pts] Code (3 checkpoints)
 - [30 pts] Final design
 - [0 pts] Peer Evaluation
- Submission via *git push* to release branch
 - Triggers autograder
- Regular git push so TA sees your progress

Kubiatowicz CS162 ©UCB Spring 2015

Networks

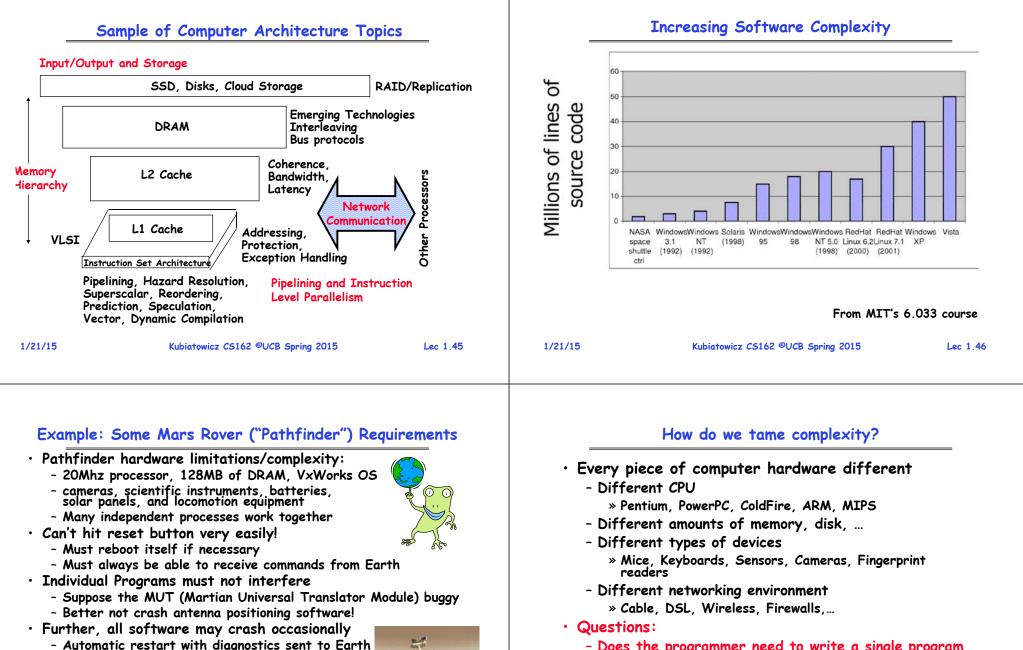
adapters

Controllers

Disks

Displays

Keyboards


Memory

I/O Devices:

1/21/15

Lec 1.44

..... Ontiona

- Periodic checkpoint of results saved?
- Certain functions time critical:
 - Need to stop before hitting something
 - Must track orbit of Earth for communication
- A lot of similarity with the Internet of Things?

- Complexity, QoS, Inaccessbility, Power limitations ... ? 1/21/15 Kubiatowicz CS162 ©UCB Spring 2015

- Does the programmer need to write a single program that performs many independent activities?
- Does every program have to be altered for every piece of hardware?
- Does a faulty program crash everything?
- Does every program have access to all hardware?

OS Tool: Virtual Machine Abstraction

Application

- Virtual Machine Interface

Operating System

Physical Machine Interface

Hardware

- Software Engineering Problem:
 - Turn hardware/software quirks \Rightarrow what programmers want/need
 - Optimize for convenience, utilization, security, reliability, etc...
- For Any OS area (e.g. file systems, virtual memory, networking, scheduling):
 - What's the hardware interface? (physical reality)
 - What's the application interface? (nicer abstraction)

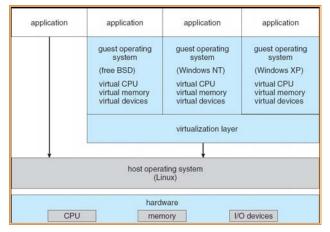
1/21/15	
---------	--

Kubiatowicz CS162 ©UCB Spring 2015

Process VMs

- Programming simplicity
 - Each process thinks it has all memory/CPU time
 - Each process thinks it owns all devices
 - Different devices appear to have same high level interface
 - Device interfaces more powerful than raw hardware
 - ${\sc *}$ Bitmapped display \Rightarrow windowing system
 - » Ethernet card \Rightarrow reliable, ordered, networking (TCP/IP)
- Fault Isolation
 - Processes unable to directly impact other processes
 - Bugs cannot crash whole machine
- Protection and Portability
 - Java interface safe and stable across many platforms

- Software emulation of an abstract machine
 - Give programs illusion they own the machine
 - Make it look like hardware has features you want
- Two types of "Virtual Machine"s
 - Process VM: supports the execution of a single program; this functionality typically provided by OS
 - System VM: supports the execution of an entire OS and its applications (e.g., VMWare Fusion, Virtual box, Parallels Desktop, Xen)

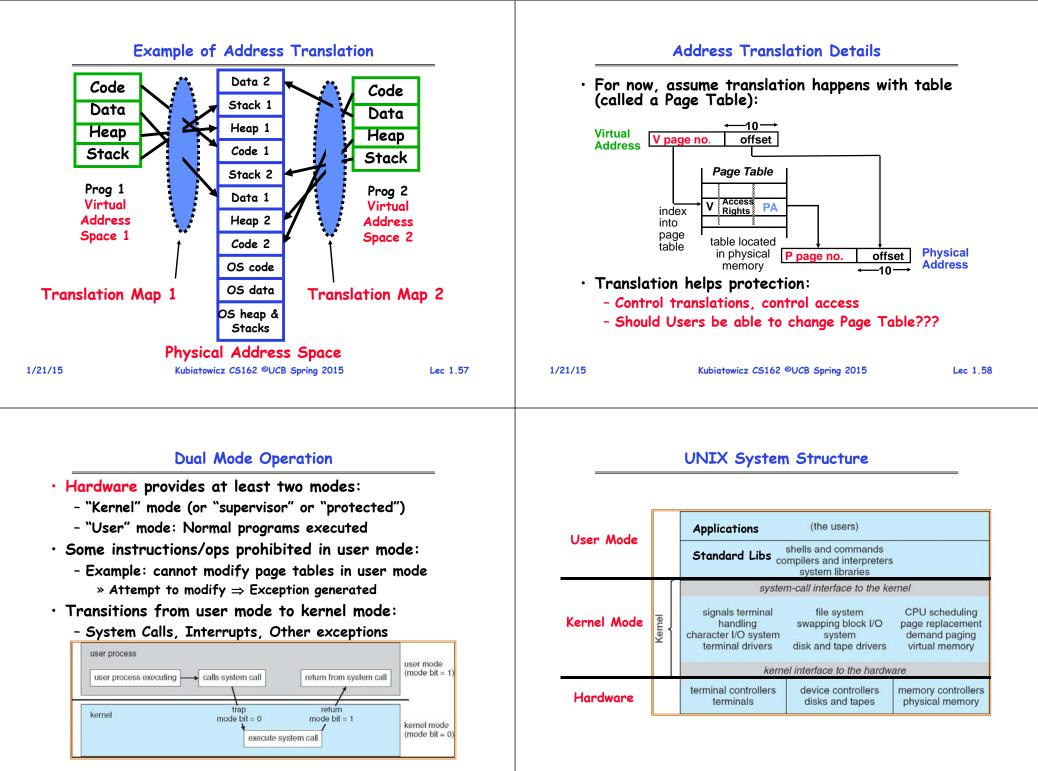

1/21/15

Kubiatowicz CS162 ©UCB Spring 2015

Lec 1.50

System Virtual Machines: Layers of OSs

- Useful for OS development
 - When OS crashes, restricted to one VM
 - Can aid testing programs on other OSs


Lec 1.51

Lec 1.49

1/21/15

Most Likely: - Memory Management - I/O Management - CPU Scheduling - Communications? (Does Email belong in OS?) - Multitasking/multiprogramming? What about? - File System? - Multimedia Support? - User Interface? - Internet Browser? © Is this only interesting to Academics??		 No universally accepted definition "Everything a vendor ships when you order an operating system" is good approximation But varies wildly "The one program running at all times on the computer" is the kernel. Everything else is either a system program (ships with the operating system) or an application program 			
	Kubiatowicz CS162 ©UCB Spring 2015	Lec 1.53	1/21/15	Kubiatowicz CS162 ©UCB Spring 2015	Lec 1.54
 Example: Protecting Processes from Each Other Problem: Run multiple applications in such a way that they are protected from one another Goal: Keep User Programs from Crashing OS Keep User Programs from Crashing each other [Keep Parts of OS from crashing other parts?] (Some of the required) Mechanisms: Address Translation 			 Address Translation Address Space A group of memory addresses usable by something Each program (process) and kernel has potentially different address spaces. Address Translation: Translate from Virtual Addresses (emitted by CPU) into Physical Addresses (of memory) Mapping often performed in Hardware by Memory Management Unit (MMU) 		
	Mode Operation			Virtual Addresses MMU	

1/21/15

"In conclusion..."

Op	erating systems provide a virtual machine
abs	traction to handle diverse hardware
Op	erating systems coordinate resources and
pro	tect users from each other
Öp	erating systems simplify application
dev	elopment by providing standard services
Op	erating systems can provide an array of fault
con	tainment, fault tolerance, and fault recovery
	162 combines things from many other areas of nputer science –
- I	anguages, data structures, hardware, and algorithms

1/21/15	Kubiatowicz CS162 ©UCB Spring 2015	Lec 1.61