
Detecting Errors in Multithreaded Programs by

Generalized Predictive Analysis of Executions

Koushik Sen, Grigore Roşu, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,grosu,agha}@cs.uiuc.edu

Abstract. A predictive runtime analysis technique is proposed for de-
tecting violations of safety properties from apparently successful execu-
tions of concurrent systems. In this paper we focus on concurrent sys-
tems developed using common object-oriented multithreaded program-
ming languages, in particular, Java. Specifically, we provide an algorithm
to observe execution traces of multithreaded programs and, based on ap-
propriate code instrumentation that allows one to atomically extract a
partial-order causality from a linear sequence of events, we predict other
schedules that are compatible with the run. The technique uses a weak
happens-before relation which orders a write of a shared variable with
all its subsequent reads that occur before the next write to the vari-
able. A permutation of the observed events is a possible execution of a
program if and only if it does not contradict the weak happens-before
relation. Even though an observed execution trace may not violate the
given specification, our algorithm infers other possible executions (con-
sistent with the observed execution) that violate the given specification,
if such an execution exists. Therefore, it can predict concurrency errors
from non-violating runs.

1 Introduction

In multithreaded systems, threads can execute concurrently communicating with
each other through a set of shared variables, creating the potential for subtle
errors. The large number of potential interleavings makes it infeasible to check all
possible executions before deployment. Ordinary testing of such systems, on the
other hand, can be quite ineffective in practice, because of its low coverage with
respect to the number of interleavings and because of the difficulty to reproduce
many concurrency errors. The work presented in this paper builds upon our
experience with predictive runtime analysis (or predictive testing) techniques,
whose aim is to increase the effectiveness of testing by analyzing a class of
possible executions that are causally equivalent to the particular observed one.
What makes predictive analysis techniques appealing is the fact that some of
the causally equivalent executions may violate the requirements of the system
even though the observed execution does not.

Unlike model checking, predictive monitoring is not comprehensive. However,
it is far more efficient than model checking because it does not execute the pro-
gram but relies only on the information that is already available in a run-time

execution. Specifically, we use a relatively non-restrictive semantic precedence
relation, extracted entirely automatically at runtime via appropriate program
instrumentation, to cluster events into equivalence classes. We then allow per-
mutations of these equivalence classes and show how these permutations can be
used to determine the effect of a large number of alternate schedules of threads.

Initially permit=f and landing=f;

Thread t1: Thread t2:

permit=checkTower(); permit=f;

if(permit)

landing=t

else

landing=f

t1

write(permit=
 t
)

read(permit)

write(landing=
 t
)

e1

e
2

e3

write(permit=
 f
)

t2

e
'

Actual Execution
 Inferred

e1

e'

e3

e2

t1
 t2

write(landing=
 f
)

e1

e4

e2

t1

Un inferred

e'

t2

Fig. 1. Time increases downward and is assumed to be the same across the threads.

Example. Consider an execution of the multithreaded program in Figure 1 for
airplane landing. Suppose in an execution, one thread (t2) in the program sets
the variable permit to false (event e′). Another thread (t1) in the program
checks with the control tower to see if the plane has permission to land. It then
sets a variable permit to true (event e1). At a subsequent point, the thread
t1 reads the variable permit (event e2), checks if permit is true, and sets the
variable landing to true (event e3).

Suppose we want to check that the property that “if landing then immedi-
ately before permit is true”. For the observed execution e′, e1, e2, e3, the prop-
erty holds. However, since there is no causal connection between e′ and e1, and
they are executed by different threads, we may permute these writes. Permuting
only the writes would require us to actually execute the program along a different
path (as in model checking). This would be inefficient and generally not feasible
at runtime. We avoid doing so by requiring all associated reads (i.e., all reads
of a variable that follow the latest preceding write of the variable) to also be
permuted. This allows us to construct an alternate execution path, e1, e2, e

′, e3

and the monitor infers that the property could be violated at e3 and produces
the trace as a witness.

2

Observe that, given the semantics of the program, the order of events could
also have been: e1, e

′, e2, .. in which case landing would never be set to true.
We do not infer this path because doing so would require actually running the
program with a different schedule (or semantically analyzing it) to determine
which event happens instead of e3. In particular, this means that violations
of some properties may never be detected. For example, consider the property
that “if landing is modified then landing is true or always in the past permit
was false”. This property is not violated by either the execution we observed,
nor the alternate execution we constructed. However, it would be violated by
the execution trace e1, e

′, e2, .. and a model checker could detect this and our
method could not, unless a related trace was one of the test cases. However, we
show that our generalized analysis can very efficiently uncover many errors that
standard testing would not with the same set of test cases.

2 Related Work

A number of runtime monitoring tools have been developed. These tools include
NASA’s JPaX [10], University of Pennsylvania’s Java-MaC [13], Bell Labs’
PET [9], and the commercial analysis systems Temporal Rover and DBRover
[6, 7]. Our work builds on experience with related techniques and tools–namely,
Java PathExplorer (JPaX) [10] and its sub-system Eagle [2]. These tools
treat the execution of a program essentially as a flat, sequential trace of events
or states. We proposed predictive runtime analysis in [17, 18]. The technique was
based on checking a specification against executions that are causally consistent
with a given execution – i.e., executions that do not permute writes to the same
shared variable.

In this paper, we have significantly extended the strength of our prediction by
abstracting a multithreaded computation in terms of two novel relations: weak-
happens-before relation and atomicity relation on post-write set of read events.
As a consequence of abstracting multithreaded computations this way, we are
able increase the coverage of runtime analysis of multithreaded programs by be-
ing able to predict more valid multithreaded runs from a given single execution.
In particular, in the example described above, the existing predictive technique
would not have detected a violation of our specification.

3 Monitors for Safety Properties

Safety properties form an important class of properties in monitoring. This is
because once a system violates a safety property, there is no way to continue its
execution to satisfy the safety property later. Therefore, a monitor for a safety
property can precisely say at runtime when the property has been violated, so
that an external recovery action can be taken. From a monitoring perspective,
what is needed from a safety formula is a succinct representation of its bad
prefixes, which are finite sequences of states leading to a violation of the prop-
erty. Therefore, one can abstract away safety properties by languages over finite
words. Nondeterministic automata are a standard means to succinctly represent
languages over finite words. We next define a suitable version of automata, called
monitor, with the property that it has a “bad” state from which it never exits:

3

Definition 1. Let E be a finite or infinite set, that can be thought of as the set
of events generated by the program to monitor. Then an E-monitor or simply a
monitor, is a tuple Mon = 〈M,m0, b, ρ〉, where

– M is the set of states of the monitor;

– m0 ∈ M is the initial state of the monitor;

– b ∈ M is the final state of the monitor, also called bad state; and

– ρ : M×E → 2M is a non-deterministic transition relation with the property
that ρ(b, e) = {b} for any e ∈ E.

Sequences in E?, where ε is the empty one, are called (execution) traces. A trace
π is said to be a bad prefix in Mon iff b ∈ ρ({m0}, π), where ρ : 2M × E? →
2M is recursively defined as ρ(M, ε) = M and ρ(M,πe) = ρ(ρ(M,π), e), where
ρ : 2M×E → 2M is defined as ρ({m}∪M, e) = ρ(m, e)∪ρ(M, e) and ρ(∅, e) = ∅,
for all finite M ⊆ M and e ∈ E.

M is not required to be finite in the above definition, but 2M represents the
set of finite subsets of M. In practical situations it is often the case that the
monitor is not explicitly provided in a mathematical form as above. For example,
a monitor can be just any program whose execution is triggered by receiving
events from the monitored program; its state can be given by the values of its
local variables, and the bad state has some easy to detect property, such as a
specific variable having a negative value. There are fortunate situations in which
monitors can be automatically generated from formal specifications [16, 11, 2],
thus requiring the user to focus on system’s formal safety requirements rather
than on low level implementation details.

Example 1. Let us consider the program given in Figure 2. It consists of two
threads t1 and t2 accessing the variables x, y, and z. Let the safety property
that we want to monitor be “if x becomes positive then eventually in the past
x became negative” which can be written in past-time temporal logic as the
formula F = p → ♦· q, where p represents the event that x becomes positive and
q represents the event that x becomes negative. The monitor automaton for this
formula is given in Figure 2. State 4 in this automaton represents the bad state.
Suppose that one runs the program and observes the execution t1: x=-1; t1:

z=x+3; t2: x=1; t2: y=x+z; in that order; then, the safety property is not
violated for this execution. Moreover, with the “happens-before” relation given
in [17, 18] which disallows any permutation of two accesses of the same variable
except when both of them are reads, one cannot predict any other possible
valid run (obtained through a different scheduling) that violates the property.
However, as shown later in this paper, our approach allows an observer of the
execution above to predict another possible valid run that violates the safety
property, namely the one in which t2 executes first. The interesting aspect here
is that the observer does not see the code, but only the flat sequence of read and
write events of shared variables, time-stamped appropriately.

4

Initially x=0, y=0, z=0;

Thread t1: Thread t2:

x = -1; x = 1;

z = x+3; y = x+z;

Propositions: p : x becomes greater than 0

q
 : x becomes less than 0

r
 : any other event

Safety Property: p
 q

Monitor:

1

3
2

4

p

p,
q
,
r

p

q
,
r

q

r

.

Fig. 2. Two threads t1 and t2 and a monitor.

4 Abstracting Multithreaded Computations

A multithreaded program consists of n threads t1, t2, ..., tn that execute con-
currently and communicate with each other through a set of shared variables.
The computation of each thread is abstracted out in terms of events, while the
multithreaded computation is abstracted out in terms of a partial order ≺ on
events. There can be three types of events: an internal event, a read or a write
of a shared variable. Internal events can be reads or writes of local variables,
calling a function, the value of a variable crossing some threshold, etc. We use e

j
i

to represent the jth event generated by thread ti since the start of its execution.
When the thread or position of an event is not important we can refer to it
generically, such as e, e′, etc.; we may write e ∈ ti when event e is generated by
thread ti. Let us fix an arbitrary but fixed multithreaded execution and let S be
the set of all variables that are shared by more than one thread in the execution.

We can define a special “happens-before” relation over the accesses to each
shared variable: we say e x-happens-before e′, written e lx e′, iff e is a write of
x and e′ is a read of x such that the latest write to x that happens-before e′

is e. In other words, we say that e lx e′ if and only if the value of x read by
event e′ is the value written by the event e on variable x. This can be realized
by maintaining a counter for each shared variable, which is incremented at each
variable write. If the value of the counter at the read event e′ of x is same as
the counter value after the write event e of x, we say that e lx e′. Let Ei denote
the set of events of thread ti and let E denote

⋃
i Ei. Also, let l ⊆ E × E be

defined as follows:

1. ele′ when e and e′ are events of the same thread and e happens immediately
before e′;

2. e l e′ whenever there is an x ∈ S with e lx e′.

The partial order ≺ is the transitive closure of the relation l. Let 4 be the
transitive, reflexive closure of l. We say e||e′ if e 64 e′ and e′ 64 e, i.e., the
events e and e′ are causally unrelated. The partial order ≺ captures a special
causal “happens-before” relation among the events in different threads, which we
call weak-happens-before. This causality relation is called “weak” since it is less
constrained than the apparently more natural “happens-before” relation defined
and investigated in [17, 18], which assumed that e lx e′ also when e was a read

5

of x and e′ was a write of x or when both e and e′ were writes of x; we call the
causality in [18] apparently more natural since it captures exactly the common
intuition that any two unrelated read accesses to a variable can be permuted.

While the causality in [18] allowed JMPaX to have strong predictive capa-
bilities, the weak-happens-before causality considered in this paper significantly
increases the coverage of runtime analysis of multithreaded systems and implic-
itly the predictive strength of tools implementing it, by allowing more possible
runs to be inferred from just one observed execution of the system. All these pre-
dicted runs can occur under different thread scheduling or interleavings, meaning
that the increase in coverage comes at no expense, that is, our technique is still
free of false alarms. The fact that there are more possible execution traces to
analyze must be clearly regarded as an advantage in the context of predictive
runtime analysis; if, in the context of a highly unsynchronized multithreaded
program, one finds the number of possible runs too large to analyze effectively,
then one has the option to discard online as many of those “uninteresting” runs
as needed. JMPaX already provides this functionality by allowing its users to
tune an analysis breadth “knob”, ranging from only one possible execution (the
observed one), like in testing, to all possible executions, like in model-checking.

Unlike in [18], the weak-happens-before relation above is not sufficient to
completely describe the multithreaded computation; if e and e′ are two events
such that elx e′ and e′′ is another event writing x such that e′′||e and e′′||e′, one
cannot interleave e′′ between e and e′. This is because if e′′ happens in between e

and e′, then by the definition of lx, it is the case that e′′lx e′, which contradicts
e′′||e′. This observation suggests that given a write event, say e, of x, the set
{e} ∪ {e′ | e′ ∈ E ∧ e lx e′} should be regarded as atomic with respect to any
other event outside the set that reads or writes x. Such a set is called an atomic
set for the variable x. Therefore, each atomic set of x ∈ S contains exactly one
write and the corresponding reads. Any set which is a proper subset of an atomic
set is called an incomplete atomic set. The atomic sets define another relation,
called atomicity relation over the set of events E. We say that two events e and e′

are x-atomically related, denoted by e mx e′, if and only if e and e′ belong to the
same “atomic set” for the variable x. Formally, e mx e′ if an only if there exists
an event e′′ such that both e and e′ belong to the set {e′′} ∪ {e′′′ | e′′ lx e′′′}.
Therefore, mx is an equivalence relation on E. Let [e]x denote the corresponding
atomic equivalence class of an event e ∈ E.

The structure described by C = (E,≺,m) is called a multithreaded computa-
tion. A possible linearization of the events in E is consistent with ≺ if for any
two events e and e′ in E, e ≺ e′ implies that e appears before e′ in the lin-
earization. Similarly, a linearization of the events in E is consistent with m if for
any two events e and e′ and an arbitrary shared variable x, e mx e′ implies that
any other access (read or write) event e′′ of x, such that e′′ 6mx e, appears either
before or after both e and e′ in the linearization. Combining the two conditions,
we say that a linearization of the events E is consistent with a multithreaded
computation C = (E,≺,m) if and only if it is consistent with both ≺ and m.

6

Any such linearization of events consistent with the multithreaded computation
is called a consistent multithreaded run, or simply, a multithreaded run.

A multithreaded computation can be thought of as the most general assump-
tion that an observer of the multithreaded execution can make about the system
without knowing what it is supposed to do. Indeed, an external observer sim-
ply cannot disregard the order in which the same variable is modified and used
within the observed execution, because this order can be part of the semantics
of the multithreaded program. However, multiple consecutive writes of the same
variable can be permuted provided that the set of a write and all reads following
the write occur atomically. As seen in Section 6, by allowing an observer to an-
alyze multithreaded computations rather than just multithreaded executions, one
gets the benefit of predicting errors from analyzing successful executions, errors
which can occur under a different thread scheduling.

5 Capturing Multithreaded Computations

To capture and transmit to an external observer the weak-happens-before and
atomicity relations in a multithreaded computation, we use data-structures such
as vector clocks and atomicity identifiers, respectively, as explained below. The
algorithm based on vector clocks, which correctly and efficiently implements the
weak-happens-before relation, is motivated by related work [8, 3, 14, 1]. However,
the vector clock algorithm described in this paper differs from the algorithms
described in previous works, because our focus here is to implement a different,
less usual but more powerful w.r.t. monitoring “happens-before” relation. Let a
vector clock V : ThreadId → Nat be a partial map from thread identifiers to
natural numbers. We call such a map a dynamic vector clock (DVC) because
its partiality reflects the intuition that threads are dynamically created and
destroyed. To simplify the presentation, we assume that each DVC V is a total
map, where V [t] = 0 when V is not defined on thread t.

We associate a DVC with every thread ti and denote it by Vi. Moreover,
we associate a DVC Vx with every shared variable x. All the DVCs Vi are kept
empty at the beginning of the computation, so they do not consume any space.
For DVCs V and V ′, we say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j,
and we say that V < V ′ iff V ≤ V ′ and there is some j such that V [j] < V ′[j];
also, max{V, V ′} is the DVC with max{V, V ′}[j] = max{V [j], V ′[j]} for each j.

Further, we associate a counter, called atomicity identifier, with every shared
variable. Let cx denote the counter associated with a shared variable x. These
counters are initialized to 0. An atomicity counter associated with a variable
keeps track of its atomic sets. A set of events corresponding to a read or write
of x belong to an atomic set if and only if the atomicity identifiers associated
with the variable x at those events are the same.

At every event in the multithreaded computation the DVCs and the atomicity
identifiers are updated according to the following algorithm, which acts as a
program instrumentation technique to emit events to an external observer of the
system. If a thread ti with current DVC Vi processes event ek

i then

1. Vi[i] ← Vi[i] + 1;

7

2. if ek
i is a write of a shared variable x then

Vx ← Vi

cx ← cx + 1;
3. if ek

i is a read of a shared variable x then
Vi ← max{Vi, Vx};

4. if ek
i is a read or write of a shared variable x

then send message 〈ek
i , i, Vi, x, cx〉 to observer

else send message 〈ek
i , i, Vi,⊥,−1〉 to observer.

Intuitively, at every write event of a shared variable x, the DVC of x is
updated with the DVC of the thread writing x. Thus, the thread passes its
current time-stamp to the variable. This ensures that every event of the thread ti
till ek

i happens before any event that reads the value written to x. The atomicity
identifier is incremented by 1 to indicate that a new atomic set is starting; all
the following read events, before another write of the same variable, will share
the same atomicity identifier. At a read event of a variable x, the DVC of the
reading thread is updated with the maximum of the DVC of the thread and
the DVC of the variable x. This ensures that the read event happens after any
previous event of the thread and the last write event of the variable x.

Theorem 1. After event ek
i is processed by thread ti,

a) Vi[j] equals the number of events of tj that “weak-happens-before” ek
i ; if j = i

then this number is k;
b) Vx[j] is the number of events of tj that “weak-happens-before” the most recent

write of x; if i = j and ek
i is a write of x then this number also includes ek

i .

Therefore, if 〈e, i, V, x, c〉 and 〈e′, j, V ′, x′, c′〉 are different messages sent by the
algorithm, then e ≺ e′ if and only if V [i] ≤ V ′[i]; if i and j are not given, then
e ≺ e′ if and only if V < V ′. Moreover, e mx e′ if and only if x = x′ 6= ⊥ and
cx = c′x′ .

Therefore, the code instrumentation algorithm above correctly implements
the weak-happens-before and the atomicity relations.

6 Runtime Model Generation and Predictive Analysis

We now consider what happens at the observer’s site, which receives messages
〈e, i, V, x, c〉 from the running multithreaded program, and which, because of
Theorem 1, can infer the weak-happens-before and atomicity relations on these
events. The observer can effectively, online and in parallel. analyze all possible
interleavings of events that are consistent with the weak-happens-before and
atomicity relations. Only one of these corresponds to the real execution. Since
the other interleavings correspond to other possible executions, the presented
technique has the capability to predict violations from successful executions.

6.1 Multithreaded Computation Lattice

Inspired by [1], we show how to incrementally generate an abstract model from
a multithreaded computation, the computation lattice, with the properties: (1)
every path in the computation lattice corresponds to a consistent multithreaded

8

run; (2) every node in the computation lattice represents a set of events that can
be observed as a prefix of a consistent multithreaded run. Our purpose in this
paper is to check safety requirements against all consistent multithreaded runs
of a system by systematically and efficiently exploring the computation lattice.

Let us fix an arbitrary multithreaded computation C = (E,≺,m). Let ek
i be

the kth event generated by the thread ti since the start of its execution. A cut
Σ is a subset of E such that for all i ∈ [1, n], if ek

i ∈ Σ then el
i ∈ Σ for all l < k.

Let Σk1k2...kn denote the cut containing the latest events ek1

1 , ek2

2 , . . . , ekn

n from
each of the threads. If a thread i has not seen any event then ki is considered 0.

Definition 2 (Consistent Cut). A cut Σ is consistent if for all e, e′ ∈ E,
(a) if e ∈ Σ and e′ ≺ e then e′ ∈ Σ, and
(b) if e, e′ ∈ Σ and e 6mx e′ for some x ∈ S, then [e]x ⊆ Σ or [e′]x ⊆ Σ.

(a) says that a consistent cut is closed under the weak-happens-before re-
lation, and (b) says that a consistent cut can contain at most one incomplete
atomic set for any shared variable. Indeed, if (b) fails, then there is no way to
reorder the remaining events in E −Σ without violating the atomicity relation.

Definition 3. An event el
i is enabled for a consistent cut Σ = Σk1k2...kn iff

(a) l = ki + 1,
(b) for all events e ∈ E, if e ≺ el

i then e ∈ Σ, and
(c) if el

i is an access (read or write) event of an x ∈ S and e is any access event
of x in Σ then either el

i ∈ [e]x or [e]x ⊆ Σ.

Since el
i can be in at most one atomic set for a given shared variable, the

above actually says that el
i can be safely considered a next event in the execution.

Indeed, the following can be regarded as an equivalent definition of enabledness:

Proposition 1. el
i is enabled for a consistent Σ iff Σ ∪ {el

i} is also consistent.

Proof. Since Σ is a cut, all the events e1
i , e

2
i , . . . , e

ki

i are in Σ. Therefore, Σ∪{el
i}

contains all events em
i , for m < l, if l = ki + 1. This implies that Σ ∪ {el

i} is a
cut. Since Σ is a consistent cut, for all events e ∈ Σ, if e′ ≺ e then e′ ∈ Σ. It is
given that for all events e′ ≺ el

i, e′ ∈ Σ. Therefore, for all events e ∈ Σ ∪ {el
i},

if e′ ≺ e then e′ ∈ Σ. This is the first condition for Σ ∪ {el
i} being a consistent

cut. Let e be any access event of x in Σ. Given that Σ is a consistent cut, if
el
i ∈ [e]x then the second condition for the definition of consistent cut continues

to hold for Σ ∪ {el
i} because the addition of el

i to Σ cannot create a new atomic
set for x. Otherwise, if el

i 6∈ [e]x then we know that [e]x ⊆ Σ. This implies that
[e]x ⊆ Σ∪{el

i} or [el
i]x ⊆ Σ∪{el

i}. Hence, the second condition for the definition
of consistent cut holds for Σ∪{el

i}. Since both the first and second conditions for
the definition of consistent cut holds for the cut Σ∪{el

i}, Σ∪{el
i} is a consistent

cut. ut

Definition 4. If Σ = Σk1k2...kn is consistent and el
i is enabled for Σ, then let

δ(Σ, el
i) denote the consistent cut Σ ∪ {el

i}, that is, Σk1k2...ki−1(ki+1)ki+1...kn .

9

Therefore, δ maps a consistent cut Σ and a corresponding enabled event e

into another consistent cut, which can be regarded as the result of executing e

after executing all the events in Σ in some consistent way. Let ΣK0 = Σ00...0 be
the consistent cut at the beginning of the computation. Then

Proposition 2. A consistent multithreaded run R = e1e2 . . . e|E| generates a

sequence of consistent cuts ΣK0ΣK1 . . . ΣK|E| such that for all r ∈ 1, |E|, ΣKr−1

is a consistent cut, er is enabled for ΣKr−1 , and δ(ΣKr−1 , er) = ΣKr .

Proof. The proof is by induction on r. By definition ΣK0 is a consistent cut.
Moreover, it is easy to see that e1 is enabled in ΣK0 . Since ΣK0 is a consistent
cut and e1 is enabled in ΣK0 , δ(ΣK0 , e1) is defined. Let ΣK1 = δ(ΣK0 , e1).

Let us assume that ΣKr−1 is a consistent cut, er is enabled in ΣKr−1 , and
δ(ΣKr−1 , er) = ΣKr . Therefore, by Proposition 1, δ(ΣKr−1 , er) = ΣKr is also
a consistent cut. Let ΣKr = Σk1k2...kn and C = ΣKr . We want to prove that
er+1 is enabled in ΣKr . Let er+1 = el

i for some i and l i.e. er+1 is the lth event
of thread ti. For every event ek

i , such that k < l, ek
i ≺ el

i. Therefore, by the
definition of consistent run, in R, ek

i appears before el
i for all 0 < k < l. This

implies that all ek
i for 0 < k < l are included in C. Therefore, ki = l − 1. Thus

the first condition for er+1 being enabled for ΣKr is met. Since C is a consistent
cut, for all events e and e′, if e 6= el

i then (e ∈ C∪{el
i})∧(e′ ≺ e) → e′ ∈ C∪{el

i}.
Otherwise, if e = el

i then by the definition of consistent run, if e′ ≺ el
i then e′

appears before el
i in R. This implies that e′ is included in C ∪ {el

i}. Therefore,
for all events e and e′, if e ∈ C ∪ {el

i} and e′ ≺ e then e′ ∈ C ∪ {el
i}. Thus

the second condition for er+1 being enabled for ΣKr is met. Let er+1 be access
event of a shared variable x. Let e be an event in the incomplete atomic set (if
exists) for x in C. If e mx er+1, the third condition for the enabledness of an
event is not violated. If e 6mx er+1 and ∃e′ ∈ E − (C ∪ {el

i}) such that e mx e′

then any run that extends e1e2 . . . er+1 will be inconsistent with respect to the
“atomicity” relation. Therefore, if e 6mx er+1 then [e]x ⊆ C ∪ {er+1}. Thus the
third condition for er+1 being enabled for ΣKr is met. Therefore, we proved that
er+1 is enabled for the consistent cut ΣKr . Since, ΣKr is a consistent cut and
er+1 is enabled in ΣKr , δ(ΣKr , er+1) is defined. We let δ(ΣKr , er+1) = ΣKr+1 .

ut

From now on, we identify sequences ΣK0ΣK1 . . . ΣK|E| as above with multi-
threaded runs, and simply call them runs. We say that Σ leads-to Σ′, written
Σ Ã Σ′, when there is some run in which Σ and Σ′ are consecutive consistent
cuts. Let Ã∗ be the reflexive transitive closure of the relation Ã. The set of all
consistent cuts together with the relation Ã∗ forms a lattice with n mutually
orthogonal axes representing each thread. For a consistent cut Σk1k2...kn , we call
k1+k1+· · · kn its level. A path in the lattice is a sequence of consistent cuts where
the level increases by 1 between any two consecutive consistent cuts in the path.
Therefore, a run is just a path starting with Σ00...0 and ending with Σr1r2...rn ,
where ri is the total number of events of thread ti in the multithreaded com-
putation. This lattice, called computation lattice, can be regarded as an abstract
model of the running multithreaded program.

10

e11
=
q

e24
=
r

e23
=
r

e22
=
r

e21
=
p

e13
=
r

e12
=
r

t1
 t2

w
(x)

w
(
y
)

r
(
z
)

r
(x)

w
(x)

w
(
z
)

r
(x)

x=

-1

y

=

x+

z

x=

1

z
=
x+

3

e21
=p

e13
=
r

e13
=
r

e21
=p

e13
=
r

e22
=
r

e21
=p

e12
=
r

e11
=
q

e12
=
r

e11
=
q

e22
=
r

e22
=
r

e24
=
r

e23
=
r

Property

violated

Fig. 3. Successful Execution and Computation Lattice.

Figure 3 shows the weak-happens-before and atomicity relations on the events
generated by the multithreaded execution in Example 1, together with the cor-
responding computation lattice. The rectangular boxes enclose the atomic sets
{e1

1, e
2
1}, {e

3
1, e

3
2}, and {e1

2, e
2
2}. The actual execution is marked with solid edges in

the lattice. It can be readily seen that the temporal property defined in Example
1 holds on the actual execution of the program, but that it is violated on some
other consistent run represented by the sequence of events e1

2, e
2
2, e

1
1, e

2
1, e

3
1, e

3
2, e

4
2.

6.2 Level By Level Analysis of the Computation Lattice

A naive observer of a multithreaded program would just check the observed
execution trace against the monitor for the safety property, say Mon, and would
maintain at each moment a set of states, say MonStates, in Mon. When a new
event e arrives, it would replace MonStates by ρ(MonStates, e). If the bad state b

occurs in MonStates then a property violation error would be reported, meaning
that the current execution trace led to a bad prefix of the safety property. Here
we assume that the events are received in the order in which they are emitted.

A smart observer, as seen next, analyzes not only the observed execution
trace, but also all the other consistent runs of the multithreaded system, thus
being able to predict violations from successful executions. The observer receives
the events from the running program and enqueues them in an event queue Q.
At the same time, it traverses the computation lattice level-by-level and checks
whether the bad state of the monitor can be hit by any of the runs up to the
current level. We next provide an algorithm that a smart observer can use to
construct and traverse the computation lattice.

11

The observer maintains a set of consistent cuts, (CurrLevel), that are present
in the current level of the lattice. For each event e in Q, it tries to construct
a new consistent cut from the set of consistent cuts in the current level and
the event e. If the consistent cut is created successfully then it is added to the
set of consistent cuts (NextLevel) for the next level of the lattice. The process
continues until no more consistent cut can be created for the next level. At that
time, the current level is complete and the observer starts constructing the next
level by setting CurrLevel to NextLevel and NextLevel to the empty set, and
reallocating the space occupied by CurrLevel. Fig. 4 shows the pseudo-code.

while(not empty(Q)){
monitorLevel()

}

State cut(Σ, m, Q){
create Σ′ such that

VC(Σ′) = VC(Σ)
and AI(Σ′) = AI(Σ)

let m is of the form 〈e, i, V, x, c〉
VC(Σ′)[i] ← VC(Σ)[i] + 1
if c ≥ 0 and

∃〈e′, i′, V ′, x, c′〉 ∈ Q such that
V ′ 6≤ max(VC(Σ), V) and c = c′{

AI(Σ′)[x] ← c

}
for each s ∈ M(Σ){
M(Σ′) ← M(Σ′) ∪ ρ(s, e)
if b ∈ M(Σ′)

output ′property violated′}
return Σ′

}

boolean monitorLevel(){
for each m ∈ Q and Σ ∈ CurrLevel{

if enabled(Σ, m) {
NextLevel ← NextLevel] cut(Σ, m, Q)}}

Q ← removeUselessMessages(CurrLevel, Q)
CurrLevel ← NextLevel
NextLevel ← ∅

}

boolean enabled(Σ, m){
let m is of the form 〈e, i, V, x, c〉
if not(∀j 6= i : VC(Σ)[j] ≥ V [j] and

VC(Σ)[i] + 1 = V [i]) return false
if c ≥ 0 and AI(Σ)[x] ≥ 0 and AI(Σ)[x] 6= c{

return false
}
return true

}

Fig. 4. Level-by-level traversal.

Every consistent cut Σ contains a set of monitor states M(Σ), a DVC VC (Σ)
to represent the latest events from each thread that resulted in that consistent
cut, and an atomic identifier map AI(Σ) that maps every shared variable x to
the atomic identifier corresponding to the incomplete atomic set in Σ for x ∈ S,
if it exists, or to -1 if there is no incomplete atomic set for x in Σ. The predicate
enabled(Σ,m), checks if the event e contained in the message m is enabled in
the consistent cut Σ. For that, it first checks if for every event e′ ∈ Σ, e′ ≺ e,
by comparing the DVCs. If this is not the case then enabled(Σ,m) returns false.
Otherwise, it checks if the atomic identifier of e matches the atomic identifier of
the incomplete atomic set, if it exists, for the shared variable x. If this is not the
case, then enabled(Σ,m) returns false; otherwise returns true. The correctness of
the function follows from Theorem 1 and the definition of enabledness of an event
for a consistent cut. It essentially says that event e can generate a consecutive
consistent cut from the consistent cut Σ iff Σ “knows” everything e knows about
the current evolution of the multithreaded system except for the event e itself.

12

Note that e may know less than Σ knows with respect to the evolution of other
threads in the system, because Σ has global information.

The function cut(Σ,m,Q), which implements the function δ in Definition 4,
creates a new consistent cut Σ′, as the consistent cut resulting from Σ after
adding the event e of message m. It first copies the DVC and the atomic identifier
map associated with Σ to Σ′. Then it increments the ith element of the DVC of
Σ′ and updates the atomic identifier map of Σ′ for variable x with the atomic
identifier of e if Σ′ still contains an incomplete atomic set for x. For every monitor
state s in M(Σ), it applies the monitoring function ρ to s and e and adds the
resulting states in the set M(Σ′). After the update, if M(Σ′) contains the bad
state b then a ‘property violated’ error is raised.

The merging operation nextLevel] Σ adds the consistent cut Σ to the set
nextLevel. If Σ is already present in nextLevel, it updates the existing cut’s
MonStates with the union of the existing state’s MonStates and the Monstates
of Σ. Two consistent cuts are the same if their DVCs are equal. The function
removeUselessMessages(CurrLevel,Q) removes from Q all the messages that can-
not contribute to the construction of any cut at the next level. To do so, it creates
a DVC Vmin for which each component is the minimum of the corresponding
component of the DVCs of all the consistent cuts in the set CurrLevel. It then
removes all the messages in Q whose DVCs are less than or equal to Vmin. This
function makes sure that we do not store any unnecessary messages.

6.3 Handling Synchronization Constructs

In Java, one can synchronize blocks of statements by using the keyword
synchronize with an object over which the block is synchronized. When the
execution enters the synchronized block, it acquires the lock associated with the
object and releases the lock when it exits the block. The main goal of synchro-
nization is to attain atomicity: if two synchronized blocks over the same lock are
executed by two different threads, then their execution cannot be interleaved.
This atomicity can be naturally achieved in our approach by generating dummy
write and read events of the lock variable when the lock is acquired or released,
respectively. In particular, since in Java synchronized blocks holding the same
lock cannot be interleaved, so corresponding events cannot be permuted, locks
are considered shared variables and a write event of a lock is generated whenever
a lock is acquired, and a read event of the lock is generated whenever a lock is
released. This way, we make a block holding a lock atomic with respect to any
other block holding the same lock, thus avoiding reporting any false alarms.

7 Application to Data-Race Detection

Since the predictive runtime analysis approach discussed in the previous sections
is parameterized by a very generic concept of monitor as a nondeterministic
finite state machine of bad prefixes, it can be applied to predict violations of
requirements specifications given in a variety of formalisms. Temporal logics and
regular expressions are just special cases. In particular, our technique can be
used as a complementary approach to model-checking, when the total number
of states to be model-checked is prohibitively large.

13

We next discuss another interesting application of our runtime analysis tech-
nique, namely in predicting data-races from data-race-free executions. The idea
is to specify some simple temporal logic formulae, which, if violated, imply the
existence of data-races in a multithreaded computation. A data-race occurs when
two threads access a shared variable simultaneously without any synchronization
and at least one of the accesses is a write. Data-races can lead to very unexpected
behaviors of concurrent systems, and are notorious for their difficulty to detect.
Plain testing can easily escape data-races, due to their dependency on thread-
scheduling. For example, suppose that two threads increment a shared variable
x simultaneously by executing statements x++ without any synchronization. If
the initial value of x is 0 then at the end of the execution the value of x can be
1 or 2. The former is obviously wrong, but hard to catch during testing.

It has been broadly recognized that tools capable of detecting data-races
automatically in programs at runtime can be very valuable. There has been
a substantial effort dedicated to developing tools and techniques that detect
data-races online, such as those based on “happens-before” relations over locks
[5], or those based on locksets, such as Eraser [15]. We next show how one can
use our predictive runtime analysis technique to precisely detect data-races in
a way somewhat similar to [5]. An advantage of our technique over the for-
mer approaches based on “happens-before” causality, such as the one in [5],
is that we can permute two synchronized blocks holding the same lock due
to our less constrained weak-happens-before relation. For example, if one sees
the execution trace t1: z=1; t1: lock(l); t1: x=0; t1: unlock(l); t2:

lock(l); t2: y=10; t2: unlock(l); t2: z=0;, then the “happens-before”
data-race detection algorithm in [5] cannot detect the potential data-race over
the variable z. However, it is easy to see that our approach can construct
the consistent run t2: lock(l); t2: y=10; t2: unlock(l); t2: z=0; t1:

z=1; t1: lock(l); t1: x=0; t1: unlock(l); that exhibits the data-race
over z. Moreover, since we do the analysis at runtime, we can take a necessary
recovery action whenever we find a data-race.

We conservatively say that two accesses of a shared variable x, of which at
least one is a write, by two threads are in data-race conflict, if one can permute
events consistently with the multithreaded computation such that the two ac-
cesses become consecutive events. Using our predictive monitoring approach, one
can detect such data-race conflicts by monitoring the following simple property
for every shared variable x and for every pair of threads ti and tj :

(write(x, ti) → ¬¯ write(x, tj)) ∧(write(x, ti) → ¬¯ read(x, tj))
∧(read(x, ti) → ¬¯ write(x, tj))

where the temporal operator ¯F means “F holds at the previous event”, the
events read(x, t) (or write(x, t)) are generated whenever the thread t reads (or
writes) x. The first conjunct in the formula states the absence of write-write data-
races. A write-write data-race happens if there is a consistent run in which two
different threads write a variable x consecutively. Similarly, the second and the
third conjunct state the absence of write-read and read-write data-races. Using
our approach, by monitoring the above formulae, one can detect data-races in
multithreaded programs precisely, that is, without false positives.

14

8 Implementation

We have implemented this novel predictive runtime analysis technique as part
of version 3.0 of the tool Java MultiPathExplorer (JMPaX) [12], designed to
monitor multithreaded Java programs. The current implementation is written
in Java and it removes the previous limitation of version 2.0 that all the shared
variables are static and of type int. The tool has three main modules, the
instrumentation module, the observer module and the monitor module.

The instrumentation module takes a specification file and a list of class files as
command line arguments, and it instruments each class file provided as argument
to send messages to the observer module whenever a relevant read, write, or
internal event occurs at runtime. The instrumentation module uses the BCEL
Java library [4] to modify Java class files.

The observer module generates the lattice level-by-level as the events are re-
ceived from the instrumented program. The monitor module reads the require-
ments specification file, currently using either linear temporal logic or regular
expression formalism, and generates the non-deterministic monitor correspond-
ing to the bad prefixes of the specification. An implementation of the monitor
transition function ρ is provided as an interface method to the observer module.
This method raises an exception if at any point the set of states returned by ρ

contains the “bad” state of the monitor. The system being modular, the user
can plug in his/her own monitor module for his/her logic of choice.

9 Conclusion

We have developed a simple and efficient technique to predict violations of safety
properties of concurrent object-oriented programs. Our algorithm requires main-
taining an atomic identifier map for every consistent cut. The size of this map
is linearly proportional to the number of shared variables. This can lead to con-
sumption of a large amount of memory space if the number of shared variables
is large and slow down the monitoring process. As an aside, this reinforces the
view that avoiding unnecessary sharing of variables is good software practice;
in this case, fewer variables will improve the efficiency of monitoring (as well
as reduce the chances of errors). While our technique will not find all errors, it
can be applied to detect important software errors such as unintended data-race
conditions which may otherwise be missed. The technique is, however, sound: it
does not produce any false positives (any errors predicted could actually occur
in a different execution).

References

1. O. Babaoğlu and K. Marzullo. Consistent global states of distributed systems: Fun-
damental concepts and mechanisms. In S. Mullender, editor, Distributed Systems,
pages 55–96. 1993.

15

2. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifica-
tion. In Proc. of 5th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’04), volume 2937 of LNCS, pages 44–57, 2004.

3. H. W. Cain and M. H. Lipasti. Verifying sequential consistency using vector clocks.
In Proceedings of the 14th annual ACM Symposium on Parallel Algorithms and
Architectures, pages 153–154. ACM, 2002.

4. M. Dahm. Byte code engineering with the BCEL API. Technical Report B-17-98,
Freie Universitat at Berlin, Institut für Informatik, April 2001.

5. A. Dinning and E. Schonberg. Detecting access anomalies in programs with crit-
ical sections. In Proc. of the ACM/ONR Workshop on Parallel and Distributed
Debugging, 1991.

6. D. Drusinsky. Temporal Rover. http://www.time-rover.com.
7. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking

and Software Verification, volume 1885 of LNCS, pages 323–330, 2000.
8. C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the 1988 ACM

SIGPLAN and SIGOPS workshop on Parallel and Distributed debugging, pages
183–194. ACM, 1988.

9. E. L. Gunter, R. P. Kurshan, and D. Peled. PET: An interactive software testing
tool. In Proc. of Computer Aided Verification (CAV’00), volume 1885 of LNCS,
pages 552–556, 2000.

10. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
Proc. of Workshop on Runtime Verification (RV’01), volume 55 of ENTCS, 2001.

11. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of LNCS, pages 342–356, 2002.

12. Java MultiPathExplorer (JMPaX). Download: http://fsl.cs.uiuc.edu/jmpax/.
13. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance

Tool for Java. In Proceedings of the 1st Workshop on Runtime Verification (RV’01),
volume 55 of ENTCS, 2001.

14. F. Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms: proceedings of the International Workshop on Parallel and
Distributed Algorithms, pages 215–226. Elsevier, 1989.

15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

16. K. Sen and G. Roşu. Generating optimal monitors for extended regular expres-
sions. In Proc. of the 3rd Workshop on Runtime Verification (RV’03), volume 89
of ENTCS, pages 162–181, 2003.

17. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. In Proceedings of 4th joint European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’03). ACM, 2003.

18. K. Sen, G. Roşu, and G. Agha. Online efficient predictive safety analysis of mul-
tithreaded programs. In Proc. of 10th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’04), volume 2988
of LNCS, pages 123–138, 2004.

16

