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ABSTRACT
In this paper we present a precise data race detection tech-
nique for distributed memory parallel programs. Our tech-
nique, which we call Active Testing, builds on our previous
work on race detection for shared memory Java and C pro-
grams and it handles programs written using shared memory
approaches as well as bulk communication. Active testing
works in two phases: in the first phase, it performs an im-
precise dynamic analysis of an execution of the program and
finds potential data races that could happen if the program
is executed with a different thread schedule. In the second
phase, active testing re-executes the program by actively
controlling the thread schedule so that the data races re-
ported in the first phase can be confirmed. A key highlight
of our technique is that it can scalably handle distributed
programs with bulk communication and single- and split-
phase barriers. Another key feature of our technique is that
it is precise—a data race confirmed by active testing is an
actual data race present in the program; however, being a
testing approach, our technique can miss actual data races.
We implement the framework for the UPC programming lan-
guage and demonstrate scalability up to a thousand cores
for programs with both fine-grained and bulk (MPI style)
communication. The tool confirms previously known bugs
and uncovers several unknown ones. Our extensions cap-
ture constructs proposed in several modern programming
languages for High Performance Computing, most notably
non-blocking barriers and collectives.

1. INTRODUCTION
In order to achieve scalability and efficient utilization on

future Peta and Exascale systems, high performance scien-
tific computing uses hybrid parallelism: the SPMD paradigm
used for inter-node coordination is augmented with shared
memory approaches for intra-node programming. Many stud-
ies showcase the advantages of MPI+X (X=OpenMP, Uni-
fied Parallel C [15]), while others use Partitioned Global
Address Space (PGAS) languages: UPC [9], Co-Array For-
tran, Chapel and X10. In these approaches asynchrony is
employed at the shared memory node level as well as for
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inter-node coordination, resulting in a program where con-
currency bugs are likely to occur and are hard to find.

Currently, there are not many tools to help find concur-
rency bugs in distributed memory scientific programs. Most
of the existing work for SPMD programs uses static anal-
ysis, e.g. barrier matching [3, 70] or single value analy-
sis [30]. Static analysis requires extensive compiler support,
often lacks whole program information and reports a large
number of false positives. Debugger based approaches also
face challenges finding concurrency bugs due to their non-
determinism.

In this paper, we consider data races in distributed mem-
ory parallel programs. A parallel program has a data race if
there is a reachable state of the program where two threads
are trying to access the same memory location and at least
one of them is a write. Data races are often considered to
be bugs because programs with data races can compute un-
intended non-deterministic results.

We propose an active testing framework, called (UPC-
Thrille), to find concurrency bugs in distributed memory
programs with precision and scalability. Active testing works
in two phases. In the first phase, called the race prediction
phase, active testing performs an imprecise dynamic analy-
sis of a test execution of a program to find a set of pairs of
program statements that could potentially race in an (po-
tentially different) execution of the program. In the sec-
ond phase, called the race confirmation phase, active testing
tries to confirm the potential data races found in the first
phase. Specifically, for each pair of statements reported in
the first phase, active testing re-executes the program under
a controlled thread schedule in an attempt to bring the pro-
gram in a state where two threads have reached the pair of
statements, respectively, and are about to access the same
memory location and at least one of the accesses is a write.
If it succeeds, active testing has created an actual program
execution exhibiting the data race. Note that active testing
gives no false warnings because for each reported data race,
it creates a real execution exhibiting the data race; however,
it may miss real data races present in the program because
a dynamic analysis cannot find data races in parts of the
program that has not been executed. We have implemented
the framework for the UPC language, which provides sev-
eral constructs present in modern parallel programming lan-
guages: split-phase barriers, non-blocking communication
and a memory consistency model which affects message or-
dering. We present the first implementation of data race de-
tection dynamic analyses able to handle distributed memory
and demonstrate scalability up to a thousand cores.



In our implementation, we use a lockset-based [54] dy-
namic analysis in the first phase to identify potential data
races. We augment the UPC runtime calls for communica-
tion and synchronization with analysis specific instrumenta-
tion: this code is generic and can be retrofitted easily into
other runtimes. A lockset based analysis requires a cen-
tral thread to collect and analyze the memory accesses and
synchronization operations of all threads. Such an analy-
sis thread is easy to implement for non-distributed shared
memory programs. However, for distributed memory paral-
lel programs, a central analysis thread incurs a huge commu-
nication overhead; our initial experiments showed that such
an implementation of a central analysis thread fails to scale
beyond a few nodes. In this paper, we propose several novel
techniques to avoid such a central analysis and heavy com-
munication overhead. The experimental results show that
our implementation can scale to a thousand cores.

In our tool, for each task we build a database of “lo-
cal” events of interest, e.g. memory accesses for the data
race analysis. During execution, other remote tasks perform
queries on this database in order to detect the actions that
can lead to a data race. In Section 5 we discuss scalability
optimizations for this phase: efficient search data structures
and coaleascing of remote queries in synchronization opera-
tions.

The contributions of our work are summarized as follows:

• We propose a distributed dynamic analysis technique
to predict and confirm data races in distributed mem-
ory parallel programs. Our novel distributed analysis
eliminates the need for a central analysis thread; there-
fore, the technique scales to a large number of nodes.

• We extend the lockset-based data race detection al-
gorithm [54] to handle split-phase barrier and non-
blocking collective operations.

• We present and evaluate the first implementation of
data race detection on distributed memory.

2. ACTIVE TESTING OF PARALLEL
PROGRAMS

Our work in this paper builds on active testing that shows
promise both in terms of precise analysis and scalability for
distributed memory programs. The active testing method-
ology has been first introduced by Sen et al. [56, 33] for
shared memory programs and it handles at least five classes
of common concurrency bugs, namely data races [56], atom-
icity violations [49], deadlocks [34], missed notifications, and
bugs due to relaxed memory models [8]; it can easily be ex-
tended to other classes of concurrency bugs. Active testing
requires a separate, but similar, implementation for each
class of bugs. A key novelty of the approach is that it re-
quires mostly runtime instrumentation (i.e. little or no com-
piler support) and it can conveniently describe the analysis
for each class of bugs using two phases:

1. A predictive analysis phase, where active testing an-
alyzes the execution of a program to generate a set
(or database) of tuples—the format of a tuple being
specific to the class of the bug. At the end of the
execution, active testing makes queries on the set (or
database) of tuples such that each result of the query
represents a potential bug. Again the form of a query
is specific to a class of bugs.

2. A testing phase, where active testing re-executes the
program under controlled thread schedules in an at-
tempt to check the feasibility of each bug predicted in
the predictive analysis phase.

In our previous work we have implemented Active Testing
for Java [33] and C/pthreads [32] shared memory programs
and applied it to a large number of benchmarks, some con-
taining over 500K lines of code. The tool has been able to
find previously unknown bugs in several real-world Java and
C/pthreads programs.

We strongly believe that when porting applications from
a bulk synchronous MPI style to hybrid implementations
that are highly asynchronous, concurrency bugs will become
prevalent and efficient tools to assist developers in finding
these bugs are required. In this paper we present the de-
sign and implementation of the active testing framework for
the UPC programming language. As discussed later, UPC
contains most of the features present or proposed in mod-
ern parallel programming languages and our implementation
provides a proof of concept for the generality of the active
testing approach.

3. UNIFIED PARALLEL C
Unified Parallel C (UPC) is an extension to ISO C 99

that provides a Partitioned Global Address Space (PGAS)
abstraction using Single Program Multiple Data (SPMD)
parallelism. The memory is partitioned in a task (unit of ex-
ecution in UPC) local heap and a global heap. All tasks can
access memory residing in the global heap, while access to
the local heap is allowed only for the owner. The global heap
is logically partitioned between tasks and each task is said to
have local affinity with its sub-partition. Global memory can
be accessed either using pointer dereferences (load and store)
or using bulk communication primitives (memget(), mem-

put()). The language provides synchronization primitives,
namely locks, barriers and split phase barriers. Most of
the existing UPC implementations also provide non-blocking
communication primitives, e.g. upc_memget_nb(). The lan-
guage also provides a memory consistency model which im-
poses constraints on message ordering.

Locks and barriers are common synchronization constructs
in shared memory programming models (e.g. pthreads) and
previous work [56, 33] has shown how to build concurrency
analyses for these primitives. Bulk communication opera-
tions and split-phase barriers pose additional challeges to
these techniques. In Sections 4 and 5.1 we present new
formalisms to accommodate these language primitives into
active testing. The additional UPC language constructs
have similar counterparts in other languages: split-phase
barriers are similar to non-blocking barriers and collectives,
non-blocking communication is prevalent across languages.
Thus, programs written in UPC exhibit most of the char-
acteristics of other programming models: MPI+OpenMP,
X10, and Chapel.

In addition to the built-in synchronization operations, sev-
eral applications written in UPC implement ad-hoc primi-
tives using strict memory references. Since they impose only
constraints on message ordering within a single task, strict
memory references per se do not require special handling
within the active testing framework. However, their pres-
ence usually indicates application specific synchronization
mechanisms. In these programs, phase one of active test-



29 int bu i l d t a b l e ( int nitems , int cap ,
30 shared int ∗T, shared int ∗w, shared int ∗v )
31 {
32 int wj , v j ;
33 wj = w [ 0 ] ;
34 vj = v [ 0 ] ;
35 upc foral l ( int i = 0 ; i < wj ; i++; &T[ i ] )
36 T[ i ] = 0 ;
37 upc foral l ( int i = wj ; i <= cap ; i++; &T[ i ] )
38 T[ i ] = vj ;
39 upc ba r r i e r ;

}
108 int main ( int argc , char∗∗ argv )

{

140 upc foral l ( i = 0 ; i < nitems ; i++; i )
141 {
142 weight [ i ] = 1 + ( lrand48 ()%max weight ) ;
143 value [ i ] = 1 + ( lrand48 ()%max value ) ;
144 }
145 be s t va lu e = bu i l d t a b l e ( nitems , capac ity ,
146 to ta l , weight , va lue ) ;

Figure 1: Parallel knapsack implementation with data race.

ing may report false positives, i.e. races that will never be
confirmed by phase two. Eliminating these false positives
in phase one requires application semantic knowledge and
is beyond the scope of any “language only” testing method-
ology. Furthermore, phase two of active testing will not be
able to confirm the false positives and therefore will not re-
port them to users.

Achieving good performance and scalability is a challenge
that needs to be addressed when implementing active testing
in distributed memory environments: the implementation
of the tuple generation and the query phases can be easily
impaired by the high network latency. Another contribution
of our work, discussed throughout Section 5, is a suite of
optimizations for cluster based systems.

4. RACE DIRECTED ACTIVE TESTING
FOR UPC

Data races happen when in an execution two tasks are
about to access the same memory location, at least one ac-
cess is a write, and no ordering is imposed between these
concurrent accesses. Figure 1 is a partial listing for a UPC
program that computes the“0-1 knapsack”problem in paral-
lel using dynamic programming. Although not apparent at
first look, there are two data races in this program that can
lead to incorrect results. The first data race is between lines
33 and 142, and the second between lines 34 and 143. Since
a upc_forall statement is not a collective operation, there
is no ordering enforced between the write to weight[0] in
line 142 and the read from it in line 33. If the read happens
before the write, the table may be incorrectly initialized and
result in a wrong computation. The second race is similar to
the first. Ironically, the program has been assigned for years
as homework for graduate parallel programming courses at
UC Berkeley. The bug has been independently reported by
students at the time of this writing and detected by our
tools.

Our methodology for active testing for UPC proceeds in
two phases. We next describe these two phases in detail.

4.1 Phase I: Race Prediction Phase
In phase one of active testing, we run an imprecise dy-

namic analysis on an execution of the program to find po-
tential data races that are present in the program. The
analysis is a variant of a lockset based algorithm [54, 10,
47, 63]. The analysis checks if two tasks could potentially
access a memory location without holding a common lock.
Specifically, the analysis observes all memory accesses that
happen during an execution of the program and records the
locks held during each such access. If there exists two ac-
cesses to the same memory location by different tasks and
if a common lock is not held during the accesses and if at
least one of the accesses is a write, then the analysis reports
a potential data race. The analysis also reports the pairs
of statements where the tasks access the memory location,
respectively. Formally, the set of potential data races pairs
reported by the analysis is defined as follows:

Definition 1 (DP,E: Set of Potential Data Race Pairs).
Given an execution E of a program P , let us denote a mem-
ory access event by a task in the execution by e = (m, t, l, a, s),
where

1. m is the memory address range that is being accessed,

2. t is the task accessing the memory address range.

3. l is the set of locks held by t at the time of access,

4. a ∈ {READ,WRITE} is the access type, and

5. s is the label of the program statement that generates
the memory access event.

Let AP,E be the set of all memory access events in the exe-
cution E. Then the set of potential data race pairs reported
by the analysis is

DP,E = {(s1, s2) | ∃e1, e2 ∈ AP,E such that

e1 = (m1, t1, l1, a1, s1) ∧ e2 = (m2, t2, l2, a2, s2)

∧ m1 ∩m2 6= ∅ ∧ t1 6= t2 ∧ l1 ∩ l2 = ∅
∧ (a1 = WRITE ∨ a2 = WRITE)} .

Note that a race pair reported by the analysis can be a
false warning because the analysis does not check if the two
accesses are ordered by a synchronization operation. The
analysis simply checks if the program adheres to the idiom
that every memory access is consistently protected by a lock.
As such, the analysis can report data races that did not
actually happen in the execution E, but could happen if the
program is executed under a different thread schedule. This
predictive power of the analysis is crucial for increasing the
coverage of our active testing technique.

In lieu of lock based synchronization, scientific programs
tend to use barrier synchronization: a barrier partitions the
program execution into different phases and prevents a task
from advancing to the next phase before all other tasks have
completed the phase. Due to this kind of synchronization,
our phase one analysis reports a large number of false warn-
ings. In order to eliminate these false warnings, we propose
a modification to our analysis, called Barrier Aware May-
Happen-in-Parallel Analysis. We next describe this modified
analysis for phase one.

Barrier Aware May-Happen-in-Parallel Analysis
In order to hide communication latency in clusters, split
phase barriers are provided in the UPC language. Non-
blocking collectives serve a similar purpose in other lan-
guages. A split phase barrier in UPC is implemented by
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Figure 2: The regions of other tasks concurrent with a
shared access

a pair of calls upc_notify and upc_wait. As long as there
are no data conflicts, tasks can execute arbitrary code in be-
tween this pair of calls. In UPC, a task cannot progress from
a wait call until notifications from all other tasks arrive. To
illustrate which instructions can execute concurrently, we
formally define the happens-before [36] relation.

Definition 2 (Happens-before: →). The happens-before
relation → on a set of events is the smallest relation satis-
fying the following conditions.

1. e1 → e2 if e1 and e2 are events of the same task and
e1 precedes e2 in the execution,

2. e1 → e2 if e1 is a message send event (notify) and
e2 is the receive event of the same message (matching
wait), and

3. e1 → e2 if there exists an event e such that e1 → e and
e→ e2.

Events e1 and e2 are concurrent if they are not related by
the happens-before relation, i.e. if e1 6→ e2 and e1 6→ e2.

For our purposes, we only consider split-phase barriers,
since a single-phase barrier can be expressed as a consecutive
notify and wait with no statements in between.1 According
to the happens-before relation, a shared access a can happen
concurrently with an access from another task in the region
starting from the notify that matches the first wait before
a and ending at the wait matching the first notify after a.
Figure 2 illustrates this scenario. The arrows denote the
happens-before relation induced by the barrier synchroniza-
tion behavior, with the events affecting the ordering of the
shared access indicated as solid arrows. The upper diagram
shows the region of task T2 that can happen in parallel with
a shared access of task T1 between a wait and notify. Fol-
lowing the split-phase barrier semantics, the shared access

1This is how the Berkeley UPC Runtime defines single-phase
barriers: #define upc_barrier (x) { upc_notify(x);
upc_wait(x); }

cannot happen before all other tasks have notified waitA of
T1, and similarly other tasks cannot go beyond waitB be-
fore T1 executes notifyB . The lower diagram shows that a
shared access of T1 between a notify and wait can happen
in parallel with a larger region of other tasks.

Based on the happens-before relation of notify and wait

statements, we derive a may-happen-in-parallel relationship
between program blocks and incorporate barrier awareness
in the race detection analysis.

Definition 3 (May-happen-in-parallel: ||). Let each
task ti have a program phase counter pi ∈ N. Initially,
∀i. pi = 0. After a task executes each notify and wait,
the phase counter is increased by 1. Two phases p1 and p2
may happen in parallel, denoted as p1 || p2, if

p2 ∈
[
2
⌊p1

2

⌋
− 1, 2

⌊
p1 + 1

2

⌋
+ 1

]
.

The formula in Definition 3 unifies the fact that even phases
(global computation) can race with phases±1 and odd phases
(local computation) can race with phases ±2. Note that
p1 || p2 is a necessary condition for all statements in p1 to be
concurrent with statements in p2. We now extend the lock-
set algorithm with the barrier aware may-happen-in-parallel
analysis.

Definition 4. (Set of Barrier Aware Potential Data
Race Pairs: D̄P,E) We extend the memory access event in
Definition 1 by adding a field for the program phase p of task
t: e = (m, t, l, a, p, s) The set of potential data race pairs re-
ported by our analysis is

D̄P,E = {(s1, s2) | ∃e1, e2 ∈ AP,E such that p1||p2 ∧
m1 ∩m2 6= ∅ ∧ t1 6= t2 ∧ l1 ∩ l2 = ∅ ∧

(a1 = WRITE ∨ a2 = WRITE)} .

The first phase of active testing executes the program once
to build the set of possible data races D̄P,E from the above
definition. Each task builds a trace of memory accesses e =
(m, t, l, a, p, s) with respect to the barrier phases and set of
locks held at that program point. Each task maintains this
trace for the portion of the global heap with local affinity.
For any global memory reference in T1, phase I performs
a query operation on the trace of the task responsible for
maintaining state for that region, e.g. T2. If an outstanding
conflicting access is found on T2, the detection algorithm has
identified a potential data race, i.e. it has found a statement
pair (s1, s2) in D̄P,E .

4.2 Phase II: Race Confirmation Phase
From phase I, we get the set D̄P,E . For each statement

pair in D̄P,E , there is a possibility that it may be a false posi-
tive due to lack of application specific semantic information,
e.g. usage of custom synchronization operations. In the sec-
ond phase of active testing, we re-execute the program and
actively control the thread schedule in an effort to confirm
the real data races. Specifically, for each statement pair
(s1, s2) in D̄P,E , we try to create an execution state where
two tasks are about to execute s1 and s2, respectively, and
they are about to access the same memory location, and at
least one of the accesses is a write. Such an execution is
evidence that the data race over the statements s1 and s2
is a real race. The second phase works as follows. For each



statement pair (s1, s2) in D̄P,E , we execute the program.
During the execution, we pause the execution of any task
that reaches s1 (or s2). If some task, say t2, reaches s2 then
we check if there exists another task t1 such that t1 is cur-
rently paused at statement s1 and t1 is trying to access an
overlapping memory region with t2. If such a task t1 exists,
then active testing reports an actual data race. Otherwise,
we pause task t2 at statement s2 (or s1 respectively). This
process is repeated until program termination. Note that
the above execution could end up in a deadlock situation if
we end up pausing all the tasks in the program. In order
to avoid such deadlocks, we resume each paused task after
some time T . If T is large, it can significantly slow down
the execution. Conversely if T is small, we may miss a real
race because we did not give enough time for the other tasks
to catch up and create a data race. In our experiments, we
found that T = 10ms is a suitable pause time, which does
not slowdown an execution too much while confirming all
the real data races.

5. IMPLEMENTATION
We have implemented the Active Testing framework for

the Berkeley UPC [6] compiler. Currently, we support all op-
erations provided by the UPC v1.2 language specification:
memory accesses through pointers to shared, bulk transfers
(e.g. upc_memput), lock operations, and barrier operations.
The framework itself is implemented in the UPC program-
ming language and it can be easily ported to other UPC
compiler/runtime implementations, such as Cray UPC. We
next describe the implementation of the two phases of active
testing.

5.1 Implementation of Race Prediction Phase
The runtime instrumentation redefines all memory access

and synchronization operations by adding “before” and “af-
ter” calls into our analysis framework. For example, for any
data access we add THRILLE BEFORE(type, address) and
THRILLE AFTER(type, address) calls before and after the
actual data access statement, respectively. When linking
the application with our runtime, a write to shared memory
p[i] = 3 translates into:

THRILLE_BEFORE(write, p+i);

upcr_put_pshared_val(p+i, 3);

THRILLE_AFTER(write, p+i);

During execution, each task maintains a trace of memory
accesses to a particular portion of the shared heap. When-
ever a task accesses the shared heap it has to inform the
maintainer of that particular region. Overall, during phase
one there are two sources of program slowdown: 1) query-
ing a potentially large access trace and; 2) transmitting the
query data over the network. In the rest of this section we
describe optimizations designed to reduce the overhead of
these operations.

Data structures to represent memory accesses: The
data structure to represent memory accesses needs to sup-
port efficiently both single address queries as well as the ad-
dress range queries associated with bulk transfers. Previous
work on data races focuses on word level memory accesses
and uses hash tables to find conflicting addresses. To effi-
ciently find overlapping intervals, we use interval skip lists
(IS-list) [26].

Lock	 Trie

Interval Skip List

{I1, I3} {I2} {I2, I4}

{I1}

{I3}

I1 I2 I3 I4 ...

[10, 50) [20, 50) [10, 30) [30, 40) ...

{I4}

10 30 40 5020

L1

L2 L3

L4

thread:2
phase:	 11
access:	 READ
label:	 hello.upc:11

node

data

nodenodenode

data

data

{I2}

{I2}

Figure 3: Data structures used to efficiently find weaker-
than and racing accesses

Skip lists [51] are an alternative to balanced search trees
with probabilistic balancing. They are much easier to im-
plement and perform very well in practice. Skip lists are
essentially linked lists augmented with multiple forwarding
pointers at each node. The number of forwarding pointers is
called the level of a node, which is randomly assigned with a
geometric distribution when a node is inserted into the list.
Higher level nodes are rare, but can skip over many nodes,
contributing to the performance of skip lists (expected time
O(logn) for insert, delete, and search). Skip lists are also
space efficient: a node can be stored in memory with an
average of four machine words, one word for the key, one
word for the pointer to data, and an average of two forward
pointers with success probability p = 0.5 for the geometric
distribution.

An IS-list is essentially a skip list for all the endpoints
of intervals it contains, with edges representing the interval
spanned by the endpoints. Each node and edge is marked
with intervals that cover them. To efficiently handle overlap-
ping queries with minimal space overhead, only the highest
level edges that are subintervals of I (i.e. edge (n1, n2) ⊆ I
and 6 ∃ edge (n′

1, n
′
2). (n1, n2) ⊂ (n′

1, n
′
2) ⊆ I) need to be

marked, and a node n is marked with I if any of the in-
coming or outgoing edges of that node is marked with I and
n ∈ I. For example, in Figure 3, interval I2 = [20, 50), has
markers on the second level forward edge of node 20 and the
third level forward edge of node 30, because there are no
higher level edges that are contained in I2.

The operations on IS-lists are time and space efficient.
Inserting an interval takes expected time O(log2 n) where n
is the number of intervals in the IS-list. A search for in-
tervals overlapping a point can be found in expected time
O(logn+ L), where L is the number of matching intervals,
and searching for intervals overlapping an interval takes ex-



Algorithm 1: FindRace: Find an access in IS-list that
races with an access
Input: IS-list isl and access e

1 I ← Intervals in isl that overlap with e.m;
2 foreach interval i ∈ I do
3 N ← { i.node };
4 foreach node n ∈ N do
5 if n.data 6= NULL ∧ n.data.t 6= e.t ∧ n.data.p ||

e.p ∧ (n.data.a = WRITE ∨ e.a = WRITE)
then /* a race is found */

6 e′ = (i, {l: l ∈ path from n to root}, n.data);
7 return e′

8 else /* only traverse lock edges not held by e */
9 foreach c ∈ n.children do

10 if c.lock 6∈ e.l then N ← N ∪ {c};

Algorithm 2: AddAccess: Adds an access to IS-list
while reporting races and removing stronger accesses

Input: IS-list isl and access e
1 if 6 ∃e′ ∈ isl s.t. e′ v e then
2 if r ← FindRace(isl, e) then
3 Report r;
4 else
5 Insert e into isl;
6 Remove ∀e′ = e from isl;

pected time O(log2 n+L). The expected space required for
n intervals is O(n logn).

Figure 3 is an overview of how the database of shared
memory accesses is represented. Each memory access event
e = (m, t, l, a, p, s) is first grouped by the address range m
and inserted into the IS-list. Each interval is associated with
a lock trie that represents the locks l held during e. Each
node in the trie represents an access with all the locks in the
path from the root held. For example, the root of the trie
represents an access to m without any locks held. A trie
is used to represent locks to efficiently search for accesses
racing with e, by only following edges not included in e.l.
Algorithm 1 shows the full steps for finding racing accesses
in the trie.

Query Coalescing: The race prediction phase has to per-
form remote queries at each individual remote memory ac-
cess to check for conflicts. On a cluster, this amounts to per-
forming additional data transfers for each transfer present
in the application.

In our implementation, each task tracks all the remote ac-
cesses locally and delays all the queries until barrier bound-
aries. Inside barriers, tasks coalesce the query data by mem-
ory region into larger messages and perform point-to-point
communication with the maintainer of each region. Upon
receiving information from all other tasks, each task inde-
pendently computes all conflicting access that happen within
its region of the global shared heap.

Our implementation performs both communication - com-
munication and communication - computation overlap using
a “software pipelining” approach. Transfers for query data
are asynchronously initiated at a barrier operation and over-
lapped with each other. These transfers are allowed to pro-
ceed until the program executes the next barrier, at which
point they are completed, new transfers are initiated and
queries are performed for the requests just completed.

Extended Weaker-Than Relation: Keeping track of all
shared memory access can incur high space overhead for
tasks and increase the amount of communication required
between tasks. Thus, we prune redundant information about
accesses that do not contribute to finding additional data
races. For example, if a task reads and writes to the same
memory region, only the write information is required, be-
cause any races with the read would also imply a race with
the write. Similarly, a wider memory region, an access with
less locks held, and a memory region accessed by a lesser
number of tasks are all redundant information. Formally,
the weaker-than relation between memory accesses intro-
duced by Choi et al [10] identifies the accesses that can be
pruned. We extend this relation to handle memory ranges.

Definition 5 (Extended Weaker-Than: v). For two
memory access events e1 and e2,

e1 v e2 ⇔ e1.m ⊇ e2.m ∧ e1.t v e2.t ∧
e1.l ⊆ e2.l ∧ e1.a v e2.a

where

ti v tj ⇔ ti = tj ∨ ti = ∗ (multiple tasks)

ai v aj ⇔ ai = aj ∨ ai = WRITE

Only the weakest accesses are stored locally and sent to
other tasks at barriers. Also, when conflicting races are com-
puted, the weaker-than relation is used in Algorithm 2 to
prune redundant accesses from multiple tasks.

Exponential Backoff: We can further prune redundant
access information by dynamically throttling instrumenta-
tion on statements that are being repeatedly executed. For
each static access label (file, line number, variable), we keep
a probability for considering these accesses for conflict detec-
tion, initially all set to 1.0. Whenever a data race is detected
on a statement, we set the probability to 0, effectively dis-
abling instrumentation for that statement for the rest of the
execution. Each time an access is recorded, we reduce the
probability by a backoff factor, eventually disabling instru-
mentation for this statement after multiple unsuccessful at-
tempts at finding a conflicting access. For our experiments,
we used a backoff factor of 0.9 which was a good balance for
effectively finding potential data races with low overhead.
In Section 6, we discuss the performance gains achieved by
these optimizations.

Algorithm 3 is the complete scheduling algorithm for race
prediction. The global access list is the communication
channel to send shared access information between tasks.
Each task also maintains local IS-lists to keep track of its
memory accesses separately for each phase and affinity. The
probability of considering each program statement is ini-
tially set to 1.0. Lines 4-8 are the actions performed for each
memory access. We probabilistically add the shared access
information to the task’s local IS-list, while pruning all but
the weakest accesses (Algorithm 2). Lines 10-15 handle lock
acquires and releases. In case of a notify statement (lines 16-
20), before notifying the other tasks (line 19), we make sure
that all pending asynchronous transfers are complete (line
17) and initiate asynchronous transfers of accesses in the
current phase (line 18). For wait statements (lines 21-37),
we first wait for all other tasks (line 22), and then initiate
asynchronous transfers of accesses in the current phase (line
23). In lines 24-36, we check for barrier aware potential data



Algorithm 3: ThrilleRacerScheduler

1 Initially,
Global: ∀t ∈ T , p ∈ N, o ∈ T . global acc list[t, p, o] = ∅
Task local: p = 0, L = ∅, ∀s. prob[s] = 1.0, and

∀p ∈ N, o ∈ T . islist[p, o] = ∅
2 while i := next instruction of task t do
3 switch i do
4 case i = MEM(m,a,s)
5 e ← (m,t,L,a,p,s);
6 if random() < prob[s] then
7 AddAccess(islist[p,owner(m)], e);
8 prob[s] *= BACKOFF;

9 Execute i;

10 case i = LOCK(l)
11 Execute i;
12 L← L ∪ l;
13 case i = UNLOCK(l)
14 L← L\l;
15 Execute i;

16 case i = UPC NOTIFY
17 Synchronize all pending transfers;
18 foreach t′ 6= t do Asynchronously send

islist[p, t′] to global acc list[t, p, t′];
19 Execute i;
20 p++;

21 case i = UPC WAIT
22 Execute i;
23 foreach t′ 6= t do Asynchronously send

islist[p, t′] to global acc list[t, p, t′];
24 /* Check for races among all accesses

in phase p− 2 */

25 foreach t′ 6= t do
26 foreach e ∈ global acc list[t′, p− 2, t] do
27 AddAccess(islist[p-2,t], e);

28 /* Check races in phases p-2, p-3 */

29 foreach e ∈ islist[p− 2, t] do
30 AddAccess(islist[p-3,t], e);

31 /* Check races in phases p-2, p-1 */

32 foreach e ∈ islist[p− 2, t] do
33 AddAccess(islist[p-1,t], e);
34 foreach t′ 6= t do
35 foreach e ∈ global acc list[t′, p− 1, t] do
36 AddAccess(islist[p-1,t], e);

37 p++;

38 otherwise
39 Execute i;

race pairs (Definition 4) in the previous barrier phases based
on local information (islist) and information received from
other tasks (global acc list).

5.2 Implementation of Race Confirmation Phase
After collecting potential data race pairs from phase I,

we run the race testing phase on each pair to observe the
effects of the race in isolation. Algorithm 4 shows the com-
plete scheduling algorithm. We use an exponential back-
off optimization similar to phase I to keep the overhead of
phase II low and achieve scalability. bupc_sems, an exten-
sion in the Berkeley UPC runtime, are used as semaphores
to control the execution order of tasks. Each task announces
the memory access it is currently pending on in the global

Algorithm 4: ThrilleTesterScheduler

Input: Potential race pair s1, s2
1 Initially,

Global: Prob = 1.0, ∀t ∈ T . sem[t] = 1, pending[t] =
NULL

2 while i := next instruction of task t do
3 if Prob > 0 ∧ i = MEM(m,a,s) then
4 if s = s1 ∨ s = s2 then
5 if ∃t′. pending[t′].m ∩m 6= ∅ ∧

(pending[t′].a = WRITE ∨ a = WRITE) ∧
pending[t′].s 6= s then

6 Report race between tasks t and t’;
7 sem[t’].signal();
8 Prob = 0;

9 else if random() < Prob then
10 pending[t] = (m,a,s);
11 sem[t].wait(TIMEOUT);
12 pending[t] = NULL;
13 Prob *= BACKOFF;

14 Execute i;

data structure pending. Here, we only need to consider the
shared memory accesses in the program (line 3). If the state-
ment label matches one of the statements in the potential
data race pair (line 4), we first check if any other task is
pending on the other statement (line 5). If one is found
to be pending on an access with an overlapping memory
address and either access is a write, we report a real race
and signal the other task to proceed. Once a real race is
found, we disable testing (line 8) and continue execution of
the program normally.

If no other pending task meeting the race criteria is found,
we probabilistically post the information about the access
(line 10) and pause the task for some time (line 11). At line
12, either a real race was found and the semaphore released
by the other task (line 7) or the timeout could have expired.
In either case, we no longer announce this task as pending
on the memory access and reduce the probability of pausing.

Phase II is not guaranteed to be a complete approach—it
cannot confirm all real data races. However, the approach
was able to confirm all previously known races and artifi-
cially injected ones in our benchmarks.

6. EVALUATION
We evaluate data race detection on UPC fine-grained and

bulk communication benchmarks. For implementations us-
ing bulk communication primitives we use the NAS Paral-
lel Benchmarks (NPB) [43, 44], releases 2.3, 2.4, and 3.3.
For lack of space, we do not discuss NPB implementation
details. The fine-grained benchmarks were written by re-
searchers outside of our group and reflect the type of com-
munication/synchronization that is present in larger appli-
cations during data structure initializations, dynamic load
balancing, or remote event signaling.

The guppie benchmark performs random read/modify/write
accesses to a large distributed array, a common operation
in parallel hash table construction. The amount of work
is static and evenly distributed among tasks at execution
time. The mcop benchmark solves the matrix chain mul-
tiplication problem [13]. This is a classical combinatorial
problem that captures the characteristics of a large class
of parallel dynamic programming algorithms. The matrix



data is distributed along columns, and communication oc-
curs in the form of accesses to elements on the same row.
The psearch benchmark performs parallel unbalanced tree
search [48]. The benchmark is designed to be used as an
evaluation tool for dynamic load balancing strategies.

We built UPC-Thrille using the BUPC release 2.12.2 with
gcc 4.5.2.

6.1 UPC-Thrille on Shared Memory Systems
In Table 1 we show a summary of results obtained for

UPC-Thrille when running the benchmarks on a quad-core
2.66GHz Intel Core i7 workstation with 8GB RAM. We re-
port the total lines of source code (LoC) for each benchmark
and the runtime of the original program without any anal-
ysis. We report the runtime (RT) and overhead(OH) of the
program with race prediction (phase I) enabled and the av-
erage runtime and overhead for program re-execution with
race confirmation (phase II).

The total number of potential races predicted by phase I
is reported in column six. This number reflects the number
of racing memory accesses performed throughout the appli-
cation execution. The number in parentheses represents the
unique pairs of racing statements reported by UPC-Thrille
that are associated with the runtime races. Each pair of rac-
ing statements identified in phase I is tested in phase II and
we report the number of confirmed races in the last column.

The race prediction phase added for most benchmarks
only a small runtime overhead of up to 15%. The over-
head of the race confirmation phase is determined by the
granularity of the delays (pauses) introduced in the thread
schedule, as well as by the dynamic count of such pauses.
For all experiments, the overhead of phase II was negligible
when using a delay of 10ms.

Our results demonstrate that UPC-Thrille is able to pre-
cisely detect and report the races present in the benchmarks
evaluated. For all these benchmarks, the races manifest re-
gardless of the concurrency of the execution or the actual
input set. Any testing run at any concurrency will uncover
the same set of races.

6.2 Races Found
guppie: These races are expected in the program, as ran-
dom updates are made to a global table. One race is be-
tween a read of a table entry from one task and a write to
the same entry from another task. The other race is between
two writes from different tasks to the same location in the
table.

knapsack: This is our example program in Figure 1. Through
active testing, we can confirm that both races are indeed
real. Furthermore, by controlling the order in which the
race is resolved, we can force the program into an error. If
the initial value at line 33 (or 34) is read before the write at
line 142 (line 143, respectively), then the verification check
of the solution fails.

psearch: The races are in code that implements work steal-
ing. Shared variables hold the amount of stealable work
available for each task. A real race can result in work steal-
ing to fail, but does not affect the correctness of the program
because of carefully placed mutexes. One of the predicted
races is unrealizable because of this custom synchronization.

NPB 2.4 FT: This race is real but benign, as all tasks
initialize the variable dbg_sum to 0 at the same time.

NPB 2.4 MG: Two shared variables are read by each task
and then reset to 0 by task 0. It seems highly suspicious that
there is no barrier to wait for all the reads. We reproduced
both the races but it did not affect the solution computed.
After inspecting the code, the variables are actually used
only by task 0 for reporting purposes.

NPB 2.3 FT: The races in this version is quite devious.
The accesses to a shared variable dbg_sum is protected by
a lock sum_write. Then how could the accesses be racing?
It turns out that each task holds a different lock, because
the wrong function upc_global_lock_alloc() was called to
allocate the lock — a different global lock is returned to each
calling task. upc_all_lock_alloc(), a collective function
that returns the same lock to all tasks, should have been
used instead.

NPB 3.3 BT and SP: The races predicted by phase I in
these benchmarks cannot be confirmed in phase II, because
these benchmarks use custom synchronization operations.
Both benchmarks implement point-to-point synchronization
operations where one task performs a write operation (write
a) followed by a upc_fence (null strict memory reference),
while another task is polling on the value of the variable a.
The false positives are not caused by the strict operation per
se but by lack of semantic information about the application.

6.3 Scalability of UPC-Thrille on Distributed
Memory Systems

Some applications might have races that occur only at cer-
tain concurrency levels; thus, the overall scalability of UPC-
Thrille is important. In Figure 4 we present results for NPB
class C scaled up to 256 cores and class D up to 1024 cores
on the the Franklin [25] Cray XT4 system at NERSC. The
nodes contain a quad-core AMD Budapest 2.3GHz proces-
sor, connected with a Portals interconnect. The latency for
this network using Berkeley UPC [6] is around 11µs for eight
byte messages.

For all benchmarks, we plot the original application speedup
(no analysis) and the speedup with race prediction enabled
(phase 1). For benchmarks with races predicted, we also
present the scalability of the confirmation phase (phase 2).
The average slowdown of both phase I and phase II are less
than 1%. The maximum slowdown observed for phase I was
8.1% for IS class C at 128 cores. For phase II, MG class D
at 1024 cores had the maximum slowdown of 15%. These
results are obtained with an exponential backoff of 0.9.

For most of the benchmarks, the race prediction and con-
firmation phases scale well. For phase I, our implementation
introduces overhead mostly in barrier operations. Figure 5
compares the average per-barrier overhead of active test-
ing with the average application inter-barrier time, noted as
barrier length. The barrier length is computed as the total
application original execution time divided by the number of
barriers. The average per-barrier overhead of active testing
is computed as the total overhead divided by the number of
barriers and we further sub-divide it into computation and
communication overhead. serial computation is the average
overhead of the IS-lists lookup while communication is the
average overhead of communication added by UPC-Thrille.
Our implementation overlaps UPC-Thrille specific commu-



ThrilleRacer ThrilleTester
Benchmark LoC Runtime RT OH Pot. races Avg.RT Avg.OH Conf. races
guppie 277 2.094s 2.346s 1.120x 157 (2) 2.129s 1.017x 2
knapsack 191 2.099s 2.412s 1.149x 2 (2) 2.136s 1.018x 2
laplace 123 2.101s 2.444s 1.163x 0 (0) - - -
mcop 358 2.183s 2.198s 1.007x 0 (0) - - -
psearch 777 2.982s 3.037s 1.018x 11 (3) 3.095s 1.038x 2

N
A
S
P
a
ra
ll
el

B
en

ch
. FT 2.3 2306 8.711s 9.243s 1.061x 25 (2) 9.131s 1.048s 2

CG 2.4 1939 3.812s 3.831s 1.005x 0 (0) - - -
EP 2.4 763 10.022s 10.109s 1.009x 0 (0) - - -
FT 2.4 2374 7.036s 7.045s 1.001x 6 (1) 7.334s 1.042x 1
IS 2.4 1449 3.073s 3.106s 1.011x 0 (0) - - -
MG 2.4 2314 4.895s 5.045s 1.031x 9 (2) 4.955s 1.012x 2
BT 3.3 9626 48.78s 49.04s 1.005x 40 (8) 49.15s 1.008x 0
LU 3.3 6311 37.05s 37.22s 1.005x 0 (0) - - -
SP 3.3 5691 59.56s 59.70s 1.002x 32 (8) 61.36s 1.030x 0

Table 1: Results for race-directed active testing on benchmarks on a 4 core workstation. We present results for NPB class A.
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Figure 4: Scalability of active testing up to 1024 cores for NPB classes C and D. Class D was not available for benchmark IS.
We were unable to run FT class C on 1 core and class D on 1024 cores.
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nication with both internal lookups and the whole compu-
tation already present in the application between barriers.
Thus, communication measures only residuals after overlap-
ping and in most cases lookups are the main cause of slow-
down.

For reference, CG class C running on 256 cores (CG-C-
256) executes on average a barrier every 335µs, CG-D-256
every 2.7ms, while CG-D-1024 executes one at 1ms inter-
vals. In all these cases, the race prediction phase has a low
overhead, accounting for a few percent slowdown. These
considerations indicate that active testing has a good scala-
bility potential.

All optimizations applied provide good performance ben-
efits. weaker-than and the exponential back-off reduce the
volume and frequency of communication operations. For
example, in MG class C running on 64 cores, there were
a total of 4.7M shared accesses (memput, memget) for all
tasks. With weaker-than, we pruned 2.1M accesses (46%),
mostly shared reads because writes are weaker than reads
(Definition 5). With exponential backoff (factor=0.9), we
further pruned to 53K accesses but were still able to predict
all the data races as before. Each task communicated an
average of 10 bytes per barrier. The maximum bytes sent
by a task at a barrier was 23KB, but this number went down
after the effects of dynamic throttling kicked in.

7. OTHER RELATED WORK
Dynamic techniques for finding concurrency bugs can be

classified into two classes: predictive techniques and precise
techniques Predictive dynamic techniques [54, 63, 10, 46, 2,
27, 5, 34, 64, 65, 22, 20, 21] could predict concurrency bugs
that did not happen in a concurrent execution; however,
such techniques can report many false warnings. Phase I of
our active testing is a predictive technique. Precise dynamic
techniques, such as happens-before race detection [55, 16, 1,
11, 38, 53, 12, 42, 23] and atomicity monitoring [67, 37, 19,
24], are capable of detecting concurrency bugs that actually
happen in an execution. Therefore, these techniques are
precise, but they cannot give good coverage as predictive
dynamic techniques.

More recently, a few techniques have been proposed to
confirm potential bugs in concurrent programs using ran-
dom testing. Active random testing [56, 49, 34, 33] has been
proposed to confirm data races, deadlocks, and atomicity vi-
olations by biasing a random model checker. Havelund et
al. [4] uses a directed scheduler to confirm that a poten-
tial deadlock cycle could lead to a real deadlock. Similarly,
ConTest [45] uses the idea of introducing noise to increase
the probability of the occurrence of a deadlock. Shacham
et al. [57] have combined model checking with lockset based
algorithms to prove the existence of real races. CTrigger [50]
uses trace analysis, instead of trying out all possible sched-
ules, to systematically identify (likely) feasible unserializable
interleavings for the purpose of finding atomicity violations.
SideTrack [69] improves monitoring for atomicity violation
by generalizing an observed trace.

Static verification [17, 29, 52, 7, 41, 66] and model check-
ing [18, 31, 28, 61, 68] or path-sensitive search of the state
space is an alternative approach to finding bugs in concur-
rent programs. Model checkers, being exhaustive in nature,
can often find all concurrency related bugs in concurrent pro-
grams. Unfortunately, model checking does not scale with
program size. CHESS [39, 40] tames the scalability prob-

lem of model checking by bounding the number of preempt-
ing context switches to small numbers. However, CHESS
is not directed towards finding common concurrency bugs
quickly—it is geared towards systematic search and better
coverage.

So far there have been a lot of research effort to verify and
test concurrent and parallel programs written in Java and
C/pthreads for non-HPC platforms; the huge body of liter-
ature listed above supports this fact. There have also been
effort to test and verify HPC programs, mostly focussed on
C/MPI programs. ISP [59] is a push-button dynamic veri-
fier capable of detecting deadlocks, resource leaks, and asser-
tion violations in C/MPI programs. DAMPI [62] overcomes
ISP’s scalability limitations and scales to thousands of MPI
processes. Like ISP, DAMPI only tests for MPI Send/Recv
interleavings, but runs in a distributed way. In contrast to
our work, DAMPI instruments and reasons only about the
ordering of Send/Recv operations with respect to the MPI
ranks, and not about the memory accessed by these opera-
tions. Both ISP and DAMPI assume that program input is
fixed. TASS [58] removes this limitation by using symbolic
execution to reason about all possible inputs to a MPI pro-
gram, but it is work only at inception. MPI messages can be
intercepted and analyzed for bugs and anomalies. Intel Mes-
sageChecker [14] does a post-mortem analysis after collect-
ing message traces, while MARMOT [35] and Umpire [60]
check at runtime. Our proposed active testing technique
targets finding memory bugs in HPC programs and has to
extend the previous approaches with techniques to reason
about local memory accesses in conjunction with communi-
cation operations.

8. CONCLUSION
While a lot of work has been performed for bug finding

in concurrent programs, little has permeated into the HPC
application domain. Most of the previous HPC work tar-
gets C/MPI programs and reasons about interleavings of
MPI Send/Recv operations with respect to each other and
ignoring any intervening memory accesses. We are the first
to develop a race directed testing tool for distributed mem-
ory parallel programs. Out tool integrates reasoning about
memory accesses and communication operations. We extend
previous formalisms to handle HPC specific programming
model constructs and address several scalability challenges
introduced by the distributed memory nature of these appli-
cations. Our initial results show scalability up to a thousand
cores.
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