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Abstract. We investigate the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not kndwn.
stead in IDTMCs, each transition is associated with an interval in which the ac-
tual transition probability must lie. We consider two semantic interpretatians fo
the uncertainty in the transition probabilities of an IDTMC. In the first interpre
tation, we think of an IDTMC as representing a (possibly uncountablei)yfarh
(classical) discrete-time Markov Chains, where each member of thigyfana
Markov Chain whose transition probabilities lie within the interval range given
in the IDTMC. This semantic interpretation we call Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Intervalrkbv
Decision Process (IMDP), we view the uncertainty as being resolvedighro
non-determinism. In other words, each time a state is visited, we adiadissar
pick a transition distribution that respects the interval constraints, and take a
probabilistic step according to the chosen distribution. We show that the PCTL
model checking problem for both Uncertain Markov Chain semanticdrated

val Markov Decision Process semantics is decidable in PSPACE. We ralge p
lower bounds for these model checking problems.

1 Introduction

Discrete time stochastic models suchzascrete Time Markov Chain®TMCs) have
been used to analyze the correctness, reliability, andpednce of systems [8, 11, 19,
13]. In a DTMC, the system is assumed to have finitely manestatnd the system’s
future behavior is completely determined by its currentesterom each state of the
system, the probability of transitioning to any other giwtate at the next step is fixed
and is given by the transition probability matrix of the DTMC

The assumption that the system makes transitions accotaiadixed distribution
at each step and that this distribution is precisely knowerwmodeling, is a strong
assumption that may often not hold in practice [12, 15, 2, lf4he system being
modeled is an open system, i.e., interacts with an envirobntteen uncertainty in the
transitions may arise due to imperfect information aboetghvironment. For example,
consider a system that interacts with an imperfect comnatioic medium that may lose
messages. The probability of message loss may either depecttbice of the commu-
nication medium or on a complicated, time-varying dependemm events that are not
precisely understood at the time of modeling the system tigrcsource of impreci-
sion is that the transition probabilities in the system nhage often estimated through
statistical experiments, which only provide bounds on thedition probabilities.



In order to faithfully capture these system uncertaintiessiochastic models,
the model ofinterval-valued Discrete-time Markov Chains (IDTM8as been intro-
duced [12, 14]. These are DTMC models where the exact priityatfi taking a state
transition is not known, and instead the transition prolitghs assumed to lie within
a range associated with the transition. Two semantic irgéaions have been sug-
gested for such modelkincertain Markov ChaingUMC) [12] is an interpretation of
an IDTMC as a family of (possibly uncountably many) DTMCs eseach member of
the family is a DTMC whose transition probabilities lie wittthe interval range given
in the IDTMC. In the second interpretation, callederval Markov Decision Process
(IMDP), we view the uncertainty as being resolved through-determinism. In other
words, each time a state is visited, we adversarially pidlaasition distribution that
respects the interval constraints, and take a probabikstip according to the chosen
distribution. Thus, IMDPs allow the possibility of modaiia non-deterministic choice
made from a set of (possibly) uncountably many choices. ADBVtan be seen as a
generalization of Markov Decision Processes (MDPs) [1213B,

We investigate the problem of model checking PCTL specitioatfor IDTMC.
The two semantic interpretations of IDTMCs yield very diéfiat model checking re-
sults (whenever the property has at least two probabiligtierators, not necessarily
nested; see example in Figure 1) and require different ilgoic techniques. For the
case of UMCs, we show that PCTL model checking problem cartheced to finding
feasible solutions to inequality constraints, much likéhie case of DTMC and MDP [8,
4, 3,19, 7]. However, there is one important difference. @tiestraints to be solved in
the case of UMCs are polynomial and not just linear (as for CEMANd MDPSs). Since
theexistential theory of realis decidable in PSPACE [18, 6], the feasibility of the poly-
nomial constraints arising in model checking, can be ddtedhby making a “query”
to the existential theory of reals. Thus, the PCTL model kimerproblem for UMCs
is in PSPACE. In practice, however, this algorithm may notleemost efficient. The
constraints we obtain during model checking all take a gppdarm: the polynomials
arebilinear 1. Therefore, it might be more efficient to instead use albari for solv-
ing bilinear matrix inequalitiegBMIs) [10, 9] or tools developed for this purpose [16].
Checking feasibility of BMIs is known to be NP-hard [24], bk exact complexity,
which is lower than PSPACE, is unknown. On the other handhéncase of IMDPs,
we show that the model checking problem can be reduced tolrobdeking an MDP
of exponential size. We then use known results for MDPs tavathat IMDPs can be
model checked in PSPACE. We also present an iterative mbaekang algorithm for
IMDPs which may prove to be more efficient in practice.

In addition to demonstrating the decidability of the modeécking problem, we
also prove lower bounds on the complexity of the model chreckiroblem. We show
that the model checking problem for UMCs is NP-hard and cekdRl; thus, for UMCs
the problem is unlikely to be in P. A straightforward corojlaf our results is that
solving BMs is also co-NP-hard. For IMDPs, we can only showaPdness; in fact,
even this is a consequence of the P-hardness of (classitMYXmodel checking.

! The highest power of any variable in the polynomial is 1, and any term igribeuct of at
most two variables.



The rest of the paper is organized as follows. We briefly disgalated work next.
In Section 2 we formally define IDTMC and give its semanticd&4C and IMDP.
PCTL and the model checking problem is introduced in Se@idWe then revisit the
model checking algorithm for DTMC (Section 4) and presentoalified version of the
classical algorithm. The ideas in the section play a keyiroteir UMC model checking
algorithm. Section 5 (UMC) and Section 6 (IMDP) contain owimresults about the
model checking problem, providing both upper and lower lisurfrinally we present
our conclusions in Section 7. Due to lack of space, we do reseprt any proofs here;
all proofs including motivating examples of UMCs and IMDRs&\de found in [23].

Related Work.The model of IDTMCs has been introduced independently bys-Jon
son and Larsen [12] and Kozine and Utkin [14] under the naimtesval specification
systemsandinterval-valued finite Markov chainsespectively. However, they consider
different semantic interpretations. Jonsson and Larsesider the UMC interpreta-
tion and study bisimulation and simulation preorders fahsan interpretation. Kozine
and Utkin, on the other hand, take the IMDP interpretatiod present algorithms to
compute the probability distribution on the states aftsteps. Neither of these papers
investigate the PCTL model checking problem which is theugoof this paper. We
introduce new names to emphasize the subtle semanticatifferin the two interpreta-
tions. A more general model callgéneralized Markov processts describing infinite
families of Markov Chains was introduced in [1]. In that pgpleey showed that model
checking such models with respect to PCTla more general logic than PCTL) is de-
cidable and has elementary complexity. PCTL model chedkinglassical DTMC and
MDP models has been considered in [8, 4, 3, 19, 7].

2 Formal Models

Definition 1. A discrete-time Markov chai(DTMC) is a 4-tupleM = (S, s;, P, L),
where

1. S'is afinite set ofstates

2. sy € Sis theinitial state,

3. P: Sx .8 — [0, 1] is atransition probability matrixsuch thad __,_ o P(s,s’) =1,
and

4. L: S — 2P is alabelingfunction that maps states to sets of atomic propositions
from a setAP.

A non-empty sequence = sps18s - - - is called apathof M, if eachs; € S and
P(s;,si+1) > 0 foralli > 0. We denote thé'® state in a pathr by 7[i] = s;. We let
Path(s) be the set of paths starting at staté\ probability measure on paths is induced
by the matrixP as follows.

Letsg, s1,-..,8, € Swith P(s;,s;,41) > 0forall0 <i < k. ThenC(spsq - .- sk)
denotes aylinder setconsisting of all pathsr € Path(sy) such thatr[i] = s; (for
0 < i < k). LetB be the smallest-algebra orPath(sy) which contains all the cylinders
C(sps1 .- . sk). The measurg on cylinder sets can be defined as follows

1 if k=0
MC (051 5)) = {P(so,s1) - P(sk_1,s,) otherwise
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Theprobability measuren 15 is then defined as the unique measure that agrees with
1 (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov cha(tDTMC) is a 5-tuple
T=(S,s;,P,P, L), where

1. Sis afinite set ofstates

2. sy € S'is theinitial state,

3. P: S x S — [0,1] is atransition probability matrixwhere eacP (s, s’) gives the
lower boundof the transition probability from the stateto the states’,

4. P: S x S — [0,1] is atransition probability matrixwhere eactP (s, s') gives the
upper bounaf the transition probability from the stateto the states’,

5. L: S — 22F is alabelingfunction that maps states to sets of atomic propositions
from a setAP.

We consider two semantics interpretations of an IDTMC moaeinely Uncertain
Markov Chains (UMC) and Interval Markov Decision Proceg$BtDP).

Uncertain Markov Chains An IDTMC Z may represent an infinite set of DTMCs,
denoted byZ], where for each DTMQS, s;, P, L) € |Z] the following is true,

— P(s,s') < P(s,s') < P(s,s') for all pairs of states ands’ in S

In the Uncertain Markov Chains semantics, or simply, in thé@$, we assume that the
external environment non-deterministically picks a DTM®@nf the sefZ] at the be-
ginning and then all the transitions take place accordinbeahosen DTMC. Note that
in this semantics, the external environment makes only @medeterministic choice.
Henceforth, we will use the term UMC to denote an IDTMC intetpd according to
the Uncertain Markov Chains semantics.

Interval Markov Decision Processesin the Interval Markov Decision Processes se-
mantics, or simply, in the IMDPs, we assume that before etransition the external
environment non-deterministically picks a DTMC from thé g8 and then takes a one-
step transition according to the probability distributmfithe chosen DTMC. Note that
in this semantics, the external environment makes a nagrdetistic choice before ev-
ery transition. Henceforth, we will use the term IMDP to denan IDTMC interpreted
according to the Interval Markov Decision Processes sdngawe now formally de-
fine this semantics.

Let Stepss) be the set of probability density functions ovedefined as follows:

Stepgs) = {u: S = R="| Y pu(s') = 1andP(s,s") < u(s') < P(s,s') forall s’ € 5}
s’eS

In an IMDP, at every state € S, a probability density functiop is chosen non-
deterministically from the setep$s). A successor staté is then chosen according to
the probability distribution: over.S.



A pathr inan IMDPZ = (S, si, PP, L) is a non-empty sequence of the form
so B s B8 ..., wheres; € S, piy1 € Stepss;), and;1(sir1) > 0forall i > 0.
A path can be either finite or infinite. We usg,, to denote a finite path. Léast(rg,)
be the last state in the finite path,. As in DTMC, we denote thé'" state in a path
7 by 7[i] = s;. We letPath(s) andPathy, (s) be the set of all infinite and finite paths,
respectively, starting at state To associate a probability measure with the paths, we

resolve the non-deterministic choices byaatversary which is defined as follows:

Definition 3. AnadversaryA of an IMDPZ is a function mapping every finite path,,
of Z onto an element of the set Stdpst(7s, ) ). Let. Az denote the set of all possible ad-
versaries of the IMDEL. Let Path(s) denote the subset of P4t which corresponds
to A.

The behavior of an IMDH = (S, s, P, P, L) under a given adversary is purely
deterministic. The behavior of a IMDPfrom a states can be described by an infinite-
state DTMCM# = (S4, 54, P4, L4) where

-84 = Pathin (s),

— sf =3, and
. . A(mgin)
— P (i, mhy) = A(mn)(s) if 4, is of the formmay g
0 otherwise

There is a one-to-one correspondence between the paJ.‘Ws“aindPathA(s) of 7.
Therefore, we can define a probability measHvebg1 over the set of path@athA(s)
using the probability measure of the DTMX .

3 Probabilistic Computation Tree Logic (PCTL)

In this paper we consider a sub-logic of PCTL that excludesthady-state probabilis-
tic operators. The formal syntax and semantics of this legés follows.

PCTL Syntax

pu=true|a|=¢| PN | Pup(¥)

Yu=oU¢|Xe
wherea € AP is an atomic propositionss € {<,<,>, >}, p € [0,1], andk € N.
Here¢ represents atateformula andy represents pathformula.

PCTL Semantics for DTMC

The notion that a state (or a pathr) satisfiesa formulag in a DTMC M is denoted
bysEm ¢ (%w =i ¢), and is defined inductively as follows:
S =M true

sEMa iff a € L(s)

s M iff s Ea @

S'ZM b1 N ¢2 iﬁS'ZM b1 ands ':M b2

s Em Poap(y) iff Prob{m € Path(s) | m Eam ¥} <1 p

T X6 it r1] Fa 6

7'('):/\/1 o1 U ¢ iff 3220(71’[1] )IM ¢2ande<i.7T[j] ):M (]51)



s = true

skEa iff a € AP(s)

sE-o  ffsle

8):¢1/\¢2 iﬁs':¢18nd5|:¢2

s = Poap() iff Prob?({m € Path’*(s) | 7 = ¢}) xap
forallAe A

0= P, ,(Xa) V P_g ,(Xb) TEXe iffnll] ¢

U g iff Ji > 0 (xli] = g2 and¥j < i. 7j
Fig. 1. Example IDTMC and PCTL for." 4 ¢2 1131 2 0 (rlil = 62 andvj <. wlj] (= 61)

mula ¢. The UMC interpretation of the Fig. 2. PCTL semantics for IMDP
IDTMC satisfiesp, whereas the IMDP in-
terpretation of the IDTMC violateg

It can shown that for any path formulaand any stata, the set{m € Path(s) |
7 =m0} is measurable [25]. A formul®.,(v) is satisfied by a stateif Prob[path
starting ats satisfiesi)] >t p. The path formulaX¢ holds over a path i holds at the
second state on the path. The formala/ ¢ is true over a path if ¢» holds in some
state alongr, and¢ holds along all prior states along

Given a DTMCM and a PCTL state formulg, M = ¢ iff s = 9.

PCTL Semantics for UMC

Given a UMCZ and a PCTL state formula, we sayZ = ¢ iff, for all M € [Z],
M = ¢. Note thatZ [~ ¢ does not imply thaf = —¢. This because i }~ ¢, there
may existM, M’ € [Z] such thatM = ¢ and M’ = —¢.

PCTL Semantics for IMDP

The interpretation of a state formula and a path formula of Pfor IMDPs is same as
for DTMCs except for the state formulas of the fof,, ().

The notion that a state(or a pathr) satisfiesa formulag in a IMDP Z is denoted
by s | ¢ (or 7 = ¢), and is defined inductively in Figure 2.

The model checking of IDTMC with respect to the two semartans give different
results. For example, consider the IDTMC in Figure 1 and t6&Pformula ¢. The
UMC semantics of this IDTMC satisfies while the IMDP semantics violates

4 Revisiting DTMC Model-Checking

In this section we outline the basic model checking algarifor (classical) DTMCs.
The algorithm that we outline here for DTMCs is not the mofitigit (like the one
presented in [8]); however the main ideas presented helrfowil the crux of our model
checking algorithm for UMCs.

The algorithm for model checking DTMCs will reduce the peghlto checking the
feasibility of simultaneously satisfying a finite set of pobmial inequalities. This fea-
sibility test can be done by checking if a first-order formwith existential quantifiers
about the real numbers is true. More precisely, we need tokctie formula of the
form 3z, ..., 2, P(x1,...,z,) is valid over the reals, wherB is a boolean function



of atomic predicates of the forrfy(z1, ..., 2z,) > 0, wheref; is a multivariate poly-
nomial andxe {=, #, <, >, <,>}. Itis well-known that this problem can be decided
in PSPACE [18, 6F.

The model checking algorithm for DTMC takes a DTMQ = (S, s;, P, L) and a
PCTL formula¢ as input. The output is the set &gt = {s € S | s Em ¢}, i.e., the
set of all states of the model that satigfyWWe sayM |= ¢ iff s; € Sat(¢).

The algorithm works by recursively computing the set &3tfor each sub-formula
¢’ of ¢ as follows.

Sat(true) = S Sat(a) = {s|a € L(S)}
Sat(—¢) = S\ Sat(¢) Sat(¢1 A ¢2) = Sat(¢1) N Sat(2)
Sat(Pep(¥)) = {s € S| ps(¢) pap}

where p;(¢)) = Prob{m € Path(s) | @ Eam v}. The computation of the set
Sat(Peqp (1)) requires the computation of () at every state € S.

If ) = X¢, thenpg () = Zs’éSat(d)) P(s,s").

To computep; (1 U ¢2), we first split the set of state$into three disjoint subsets,
Snogves and S” where S™° = Sat(—¢y A o), S¥ = Sat(¢s), and S =
S\ (S U S¥es). Moreover, letS™ be the set{s | ps(¢1 U ¢2) = 0} \ S™° and
S>0 be the set{s | ps(¢1 U ¢2) > 0}. Note thatS = S>° u §7m° U S™°. By [8],
{zs = ps(1 U ¢2) | s € S} is a solution of the following linear equation system.

0 if s € S™°
s =1¢ 1 if s € 5V 1)
YoesP(s, 8wy ifse S’

Note that the equation system (1) can have infinite numbeolafisns. For exam-
ple, consider the formul&ue U a, wherea is an atomic proposition and the DTMC
M = ({s},s,P, L), whereP(s,s) = 1 andL(s) = (). Note thats € S™°. The linear
equation system (1) that is instantiated for compugin@rue U a) for M is z; = .
The system has infinite number of solutions.

We can ensure thdtes, = ps(é1 U ¢2) | s € S} is a unique solution of a system
of equations as follows. Fix & such that) < v < 1. Consider the following linear

equation system.
0 if s € S™°
=41 if s € 5V 2)
YoesP(s, szl if seS7
Lemmal. 2/, > 0iff s € S>°.

Lemma 2. The system of linear equations(2) has a unique solution.

Lemma 3. 2/, = 0 iff s € S U S™°.

2 If one takes the computational model to be Turing machines, then thi hetds when the
coefficients of the polynomials are rationals. One the other hand, if am&d=ys a model of
computation that is appropriate for real number computation, like the mp®ged by Blum,
Shub, and Smale [5], then the algorithm can handle even real coeffficien



Consider the following system of constraints.

2, =0iff z;, =0foralls € S (3)
wherex’, are variables of (2) and, are variables of (1).

Lemma 4. The system of linear equations (h) and (2) has a unique solution given
that the constraints if3) hold. Moreover, for this unique solutiary, = ps(¢1 U @2),
forall s € S.

Note that the set of constraints (1), (2), and (3) can beawitbmpactly as follows.

0 if s € S™° 0 if s € S™°
zs =41 if s € 8% zy =141 if s € S¥  (4)
YvesPls,s)zy ifse S? YoesVP(s, 8l ifse S?

6s >0 Ts = 6sm;
where for eachs € S, we introduce the variablé,, such that we can impose the
constraint that:; = 0 iff 2/, = 0. The satisfiability of the set of constraints (4) can be
easily reduced to checking if a formula with existential fiféers belongs to the theory
of reals. The constructed formula is linear in the size ofidMC.

5 Model Checking UMC

In this section, we reduce the problem of model-checking adidchecking the feasi-
bility of a bilinear matrix inequality. (More details abobilinear matrix inequality can
found in [23].) In the non-trivial reduction, we introduc@amber of auxiliary variables
to achieve the goal. Note that a simpler PSPACE algorithnigindvoids the extra aux-
iliary variables by guessing their values non-determiicadly, is possible and is easy
to come up from our reduction. However, we believe that tHeveng reduction is
important from the perspective of implementation in preestising algorithms to solve
bilinear matrix inequalities (BMIs).

Given a UMCZ and a PCTL state formula, our goal is to check whethér =
¢. In other words, for every\t € [Z], M = ¢. Thus, to check whethef = ¢,
we check if there exists som&t € [Z] such thatM = —¢. If such anM does
not exist, we conclude th&t = ¢. We will view the problem of discovering whether
aM € [Z] satisfies—¢ as problem of checking the feasibility of a set of bilinear
inequality constraints as follows. Each transition praliglof the DTMC M that we
are searching for, will be a variable taking a value withia bounds. We will also have
variables denoting the satisfaction (or non-satisfagideach subformula at each state,
and variables denoting the probability of a path subfornbelag satisfied at each state.
Inequality constraints on these variables will ensuretiay all have consistent values.
We now describe this construction formally.

Let us fix an UMCZ = (S, sI,P,P,L) and a PCTL formulap. Let M =
(S, s1, P, L) be an arbitrary Markov chain ifT].

For every pair of states, s’ € S, let the variablev,,, denote the transition proba-
bility from s to s’ in M, i.e.,pss denotesP (s, s’). SinceM is an arbitrary DTMC in
[Z], by the definition of UMC, the following constraints hold: fFevery states € S,
> o egPss = 1 and for every pair of states s’ € S, P(s,5") < pss < f’(s, s')



Given any PCTL formulap, let us define the setubfS¢) (of state sub-formulas)
recursively as follows:

subf$a) = {a} subf§—¢) = {—¢} U subf§¢)
SUbfS1 A é2) = {1 A d2} USUDIS1) U'SUDISg2) SIS Pocy (1)) = {Pocy (1)} U SUbfSeh)
subfSo1 U ¢2) = subfSp1 A —¢2) subf§X¢) = subffe)

Given a state € S and any formulay’ € subf3¢), eithers = ¢’ or s = &'
For eachs € S and eachy’ € subf$¢), let the variablet?” be such that? = 1
iff s =u ¢; and,t? = 0iff s £ ¢. Following the definition of the various
logical operators in PCTL, we can set up a set of constraimsng these variables
such that for anyM € [Z], the values taken by these variables is consistent with thei
intended semantic interpretation. We introduce the fdihgwadditional variables to
aid in setting up these constraints. For every state S and¢’ € subf§¢), let the
auxiliary variablesf?’, andu¢” be suchthat? =1 «— (¢ =0 < uf =1
andt? =0 < f¢ =1 < uf = —1Clearly,t?’, f¢, andu?’ are related by
the following set of constraints:

=0 =1 2wt =u? 1

For every formulay’ € subf¢) of the formP., (1) and for every state € .S, let
p? be the variable such that’ denotesProb{r € Path(s) | 7 Eaq ¢} in M.

For each state € S and for eachy’ € subf$¢) exactly one of the following
constraints hold depending on the formggf

t? =1 if ' =ac L(s) t? =0 if ¢’ =a ¢ L(s)
t =1 if ¢/ = —¢1 110 =12 if ¢ = 61 A g2
ul p? >l p+ 618 i ¢ = Psp(v) ul'p? > ul'p+ 5t if ¢ = Pop(v)
ul p? + 612 <ul'pif ¢ = P<p(v) ul'p? + 6t <ul'pif ¢ = Pp(®)

whered is slack variable that is required to be strictly greatentta

Note that the above constraints do not reflect the fact thragdoh¢’ € subf3¢)
of the form P, (¢), p¥ denotesProb{r € Path(s) | 7 = }. To set up such
constraints, we introduce the sethfR ¢) (of path sub-formulas) as follows:

subfRa) =0 subfR—¢) = subfR¢)
subfR¢1 A ¢2) = subfR¢1) U subfR¢2) SUbfR Poap (¥)) = {9} U subfR)
subfR¢1 U ¢2) = subfR¢1) U subfR¢2) subfRX¢) = subfR¢)

Thus for all sub-formula o of the formP., (1), SUbfR¢) containsy.
For anyy € subfR¢) of the formX¢; and for eacts € .S the following constraint

holds:
p;/J = Z pss’tfll

s'es
For eachy € subf¢) of the form¢, U ¢2 ands € S the following constraints
hold.
pY =122 + 9 Y w! = parp?
s'eS

As in simple DTMC, if we consider the above constraints otllgn we may not have
unique solution for certaip?. Therefore, we fix a such that) < v < 1. Then, as in



simple DTMC model-checking, for eagh e subfR¢) of the form¢, U ¢, ands € S,
we introduce the variables? andw.?, such that the following constraints hold.

’ . A ’ , ,
p’ =t 9 Y w’ =7 pearps’
s'es

We wantp? = 0 if p¥ = 0. To ensure this, for each € subfR¢) of the form
#1U ¢2 ands € S, we introduce the auxiliary variab®’ and ensure that the following
constraint hold.

s>0  pl=6lpt

Let V(Z,¢) = {0} U Us,s/es{pss’} U Uses,@esubf&j)){tf ) s¢ ,uf }u
UsespesubfRe) P4 w?p, w67} denote the set of variables over which the
above constraints are described andléf, ¢) denote the above set of constraints.

Lemma 5. For every solutiory: V(Z,¢) — R of C(Z, ¢), there exists a DTMQU =
(S, s1,P, L) € [Z] such that the following holds:

1. I(pss) = P(s,8') foranys,s’ € S

2.t f¢ €{0,1} andu? € {—1,1} foranys € S and¢’ € subf$¢)

3.t =1Af =0Aud =1iff s =r ¢/ foranys € S and¢’ € subf$o)
4.1 =0A P =1Au? = —1iff s Epq ¢/ foranys € Sand¢’ € subf$o)
5. p¥ = Prob{r € Path(s) | m = ¢} for anys € subfR¢)

The proof follows from the observations made while settipghe constraints. An
immediate consequence of the Lemma 5 is the following thmore

Theorem 1. If there exists a solutiod of C(Z, ¢) such that/(t¢ ) = 1, then there
exists anM € [Z] such thatM = ¢.

In order to check iff = ¢, the model checking algorithm sets up the constraints
C(Z,—¢) and checks its feasibility. Clearly, checking the feagipidf C(Z,—¢) is
equivalent to checking if a sentence with existential qifiens is valid for the reals;
the size of the sentence is polynomial in the size of the UM@uwéler, the constraints
C(Z,—¢) are bilinear constraints, and we need to satisfy the cotipmof all these
constraints (not an arbitrary boolean function). The failisi of such constraints can
be more efficiently checked viewing them biéinear matrix inequalities(BMIs) for
which algorithms [10, 9] and tools [16] have been develofbtbre details can seen
in [23].) We also observe that to prove that the model cherkioblem can be solved
in PSPACE, we could have constructed a simpler set of canttiay first guessing the
values of the variablet’, u?', and f¢' for the subformulagy’, and then solving the
constraints resulting from those guesses; since NPSPACERAGE, we can obtain
a deterministic algorithm from this. However, we believattin practice solving this
single BMI presented here will be more efficient than solving exponentially many
simpler BMIs that this alternative approach would yield.
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5.1 Complexity of Model-checking UMC

We showed that the model-checking problem for UMC can beaedto checking the
validity of a formula in the existential theory of the realtierefore, the model-checking
problem of UMC is in PSPACE.

The model checking problem for UMCs is however intractaie can reduce both
the satisfiability and validity of propositional boolearrfaulas to the model checking
problem (details in [23]).

Theorem 2. The model checking problem for UMC with respect to PCTL ishdR}
and co-NP-hard.

6 Model-checking IMDP

We consider the problem of model checking IMDPs in this sectiVe will solve the
problem by showing that we can reduce IMDP model checking ¢alehchecking
(classical) a Markov Decision Process (MDP) [4, 20]. Beforesenting this reduction
we recall some basic properties of the feasible solutiors lafear program and the
definition of an MDP.

6.1 Linear Programming

Consider an IMDFL = (S, s;, P, P, L). For a givens € S, letIE(s) be the following
set of inequalities over the variablés,, | s’ € S}:

Z Pesr = 1 P(s,s') < psw < P(s,s') forall s’ € §

s'eS
Definition 4. A map6®: S — [0,1] is called abasic feasible solutio(BFS) to the
above set of inequalities (E) iff {p.s = 6°(s') | s € S} is a solution of IEs)
and there exists a sef’ C S such that|S’'| > |S| — 1 and for all s € S’ either
05(s") = P(s,s') or 05(s') = P(s, s').

Let©° be the set of all BFS dE(s). The set of BFS of linear program have the spe-

cial property that every other feasible solution can be esged as a linear combination
of basic feasible solutions. This is the content of the neappsition.

Proposition 1. Let{p,s = pss' | s € S} be some solution of IE). There there are
0 < aps < 1forall §° € ©°, such that

Pss’ = D gsco: Q0:-0°(s') forall s € S and D oseg s =1
Lemma 6. The number of basic feasible solutions of JEin the worst case can be

o(|S|21s1-1).

6.2 Markov Decision Processes (MDP)

A Markov decision process (MDP) is a Markov chain that has-deterministic tran-
sitions, in addition to the probabilistic ones. In this s@ttwe formally introduce this
model along with some well-known observations about them.
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Definition 5. If S is the set of states of a systemnext-state probability distribution
is a functiony : S — [0, 1] such that) ©__ u(s) = 1. For s € S, p(s) represents the
probability of making a direct transition te from the current state.

Definition 6. A Markov decision Process (MDP) is a 4-tudle= (S, s;, 7, L), where

1. S'is a finite set of states,

2. s; € Sis the initial state,

3. L: S — 22F is a labeling function that maps states to sets of atomic @sijpns
from a setAP,

4. 7is afunction which associates to eacke S afinite setr(s) = {uf, ..., uj_} of
next-state probability distributiorfer transitions froms. ‘

M1

A pathz in an MDPD = (S, s, 7, L) is a non-empty sequence of the fosgn—
s1 23 ..., wheres; € S, tit1 € 7(s;), andu;41(s;4+1) > 0foralli > 0. A path can be
either finite or infinite. We useg,, to denote a finite path. Léast(7y,, ) be the last state
in the finite pathrg,. As in DTMC, we denote thé'" state in a pathr by 7[i] = s;.
We let Path(s) and Paths,, (s) be the set of all infinite and finite paths, respectively,
starting at state. To associate a probability measure with the paths, we vegsbke

non-deterministic choices by a randomizatlersary which is defined as follows:

Definition 7. A randomizedadversaryA of an MDP D is a function mapping every
finite path7g, of D and an element of the seflast(r,,)) to [0, 1], such that for a
given finite pathrg, of D, ZueT(last(min)) A(7n, ) = 1. Let Ap denote the set of

all possible randomized adversaries of the MDPLet Path'(s) denote the subset of
Path(s) which corresponds to an adversasy

The behavior of an MDP under a given randomized adversamnyridyprobabilis-
tic. If an MDP has evolved to the stateafter starting from the state and following
the finite pathrg,, then it chooses the next-state distributione 7(s) with probability
A(man, 1®). Then it chooses the next statewith probability *(s’). Thus the proba-
bility that a direct transition te’ takes place i$ .., ) A(7an, 1*)p* (s"). Thus as for
IMDPs, one can define DTM®@ that captures the probabilistic behavior of MDP
under adversaryl and also associate a probability measure on execution. gaien
a MDP D and a PCTL formula, we can define whe® = ¢ in a way analogous to
the IMDPs (see Figure 2).

6.3 The Reduction

We are now ready to describe the model checking algorithniM@Ps. Consider an
IMDP 7 = (S,s;,P, P, L). Recall from Section 6.1, we can describe the transition
probability distributions from state that satisfy the range constraints as the feasible
solutions of the linear prograi (s). Furthermore, we denote lfy° is the set of all
BFS of IE(s). Define the following MDPD = (S, s}, 7, L") whereS’ = S, s} = sy,
L’ = L,andforalls € S, 7(s) = ©*. Observe thaD is exponentially sized iff, since
7(s) is exponential (see Lemma 6).

The main observation behind the reduction is that the MDRcaptures” all the
possible behaviors of the IMDP. This is the formal content of the next proposition.
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Proposition 2. For any adversaryA for Z, we can define a randomized adversaty

such thatProb™” = ProbP" for everys, whereProb™ " is measure on paths from
defined by machin& under A. Similarly for every adversaryi for D, we can find an
adversaryA’ for 7 that defines the same probability measure on paths.

Proof. Consider an adversaryl for Z. For a pathng, let A(ma,) = p© €
Stepslast(msy,)). We know from Proposition 1, that there agg- for #° € ©° such
that

p(s') =3 pecg: a90°(s') forall s’ € S and Y oecs s =1

We now defined’ (mgn, 0°) = ag-. Itis straightforward to see tharob” " = Prob”" .
The converse direction also can be proved similarly. O

An important consequence of the above observation is th@fivlg main theorem.
Theorem 3. For any PCTL formulap, Z |= ¢ iff D |= .

Thus, in order to model check IMDP, we can model check the MDP for which
algorithms are known [4, 20]. The algorithms for MDP run im¢i (and space) which is
polynomial in the size of the MDP. Thus, if we directly modieeckD we get an EXP-
TIME model checking algorithm fdf. However, we can improve this to get a PSPACE
algorithm. The reason for this is that it is known that as famedel checking MDPs is
concerned, we can restrict our attentiord&terministic, memorylesslversaries, i.e.,
adversaries that always pick the same single non-detestigichoice whenever a state
is visited.

Proposition 3 ([4, 20]).Let A4.; be the set of deterministic, memoryless adversaries
for MDP D, i.e., for all A € Aget, A(s, ) = 1 for exactly oneu € 7(s). Consider a
PCTL formulay = Py, (1) such that the truth or falsity of every subformulayofn
every state oD is already determined. The = o iff DA |= pforall A € Ages.

For every subformula of the for®., (), our model checking algorithm, will
model check each of the DTMCB“, where A is a deterministic, memoryless ad-
versary. This will give us the desired PSPACE algorithm.

Theorem 4. The model-checking algorithm for IMDP is in PSPACE.

Proof. From Lemma 6, we know that the total number of BFS@{$52/°1-1). Hence
the total number of DTMC®4 for A € Aqe is O(]S|151215"~151). By reusing space
for every subformulaP,,(¢), all of these model checking problems can be solved in
PSPACE. O

6.4 lterative Algorithm

The above PSPACE algorithm is computationally expensivdaige IMDPs. There-
fore, we propose an alternative iterative algorithm magdaby a similar algorithm
in [2].
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The iterative model checking algorithm for PCTL over IMDPsrits exactly as
for DTMCs with the exception of handling %, (). For these, we need to check if
pA) = Prob?({r € Path(s) | = |= }) satisfies the bounsk p for all adver-
sariesA € Az. Let pm%(¢)) andp™it(v)) be theminimumor maximumprobability,

S S

respectively, for all adversaries € Az, i.e.,
P () = supaca, 08 ()], P (W) E infacag bl ()],
Then ifxe {<, <},
Sa(Poep(¥)) = {s € S| p"™(¢) > p}

and ifeae {>, >},
SalPocp () = {s € S | P2 () > p}

We next describe how to compute the valp8*(¢) andp™i®(¢)) for ¢» = X¢ and
¥ = ¢1U ¢2. Recall thatd® is the set of all BFS offE(s). It can be shown following [2]

thatpex = limy, _oop™ ™™ where:
1 if s € 5v
0 if s € §7°
prax) — ] 0 if se S7andn =0

_ max(n—1
max{ﬁssl\s’es}ees {Zslespss'-ps/d ( )
if s€S”andn >0

andp™™ = lim,, _...p™"™ where:
1 if s € 5v¢°
0 if s € S™°
p;nin(n) _ 0 if s e S? andn =0

ming_|ses}eos {Es/esﬁss“PTDWI)
if s€.S”andn >0
Note that although the size 6#* can beO(|S|2/°I-1) (by Lemma 6), the compu-
tation of the expressions

_ max(n—1 . _ min(n—1
max{pss/S/ES}E@S{Zpssl'psl (n )} Oorf mingp ,|s'cSieos {Zpss"ps/ (n )}

s'esS s'eS
®)

can be done ii©(|S]) time as follows:
We consider the orderingsi, ss,...,ss) of the states ofS such that

max(n=l) pmaxtn=l) 1 p@" Y is in descending order. Then the following result
holds.

Lemma?7.

a) There exists an < i < |S| such that{P(s,s;),...,P(s,s:_1), ¢ P(s,5:11),

.., P(s,;s5)} is a BFS of Iks), whereq = 1 — 37, ., 1) P(s;s;) —
2irny<j<is) P(8:85)-
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b) and for thati

maxX(s_,|s'cS}eos {Z Dos/ P max(n 1)} :ptsr:ax(n 1) q

s'eS

Y TR+ Y PG
1<5<(-1) (+1)<5<|S|

Proof.
a) Let iy be defined as follows: s

o_mln{z|ZPssJ+Z (s,s5) > 1}

Jj=i+1
Observe that such afy must exist if the IMDP is well-defined. Consider the

solution {P(slsl), o P(sy5i,-1), Pgs, Sig+1)s-- - P(s,55)} whereqg = 1 —
Pi<i<tio—1) P(8:55) = Yoo +1)<j<|s) P (8, 5;). This solution is a BFS o (s).

b) Let {Pss,,---,Pss5 } D€ @ny solution (it may be BFS or not) tE(s). Then by
simple algebraic simplification it can be shown that

Z prsr;ax(n—l).lf;.(s7 Sj)+p:ax(n—1).q+ Z p;r;ax(n—l).P S SJ Z Pl max(n 1)
1<j<(i—1) (i+1)<j<|S| s'€eS

given the fact thap™®*(" 1) > pmax(n=1) 5 5 pmax(n=1) anqP (s, s') < poy <

S|s|

P(s,s') forall s’ € S. O

Similarly, if we consider the ordering, s, . . ., 5|/ of the states of5' such that
min(n—1) ,min(n—1) min(n=1) i in ascending order, then the above Lemma

S1 ) 182 )t PSS

holds with max replaced by min.
The expressions (5) can be computedifiS|) time by finding ani as in Lemma 7.

6.5 Lower Bound for IMDP model-checking

We can show that the model checking problem for IMDPs is REHEe result follows
from observing that the problem of determining the truthueabf propositional logic
formula under an assignment (which is known to be P-compbete be reduced to the
PCTL model checking problem of DTMCs; since DTMCs are sébl®Ps, the result
follows. The details can be found in [23].

7 Conclusion

We have investigated the PCTL model checking problem forsamantic interpreta-
tions of IDTMCs, namely UMC and IMDP. We proved the upper bdgiand the lower
bounds on the complexity of the model checking problem feséhmodels. Our bounds
however are not tight. Finding tight lower and upper bourmatstiese model-checking
problems is an interesting open problem.
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