A Trace Simplification Technique for Effective Debugging
of Concurrent Programs

Nicholas Jalbert
EECS Department, UC Berkeley, CA, USA

jalbert@cs.berkeley.edu

ABSTRACT

Concurrent programs are notoriously difficult to debug. We
see two main reasons for this: 1) concurrency bugs are of-
ten difficult to reproduce, 2) traces of buggy concurrent ex-
ecutions can be complicated by fine-grained thread inter-
leavings. Recently, a number of efficient techniques have
tried to address the former reproducibility problem; how-
ever, there is no effective solution for the latter trace simpli-
fication problem. In this paper, we formalize and prove the
trace simplification problem is NP-hard. We then propose a
heuristic algorithm, Tinertia, that transforms a buggy ex-
ecution trace into an easier-to-understand simplified trace.
Tinertia works by automatically and iteratively increas-
ing the granularity of the thread interleavings in the buggy
trace. Tinertia cannot guarantee optimal simplification;
however, we empirically show that our algorithm often gen-
erates optimally simplified traces. Moreover, we show that
in the simplified trace, the locations of preemptive context
switches point to the cause of the bug. We have implemented
Tinertia in a tool for C/C++ programs using Pthreads and
applied it to 11 benchmarks with up to 37,000 lines of code.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques|: Concurrent Program-
ming

General Terms

Algorithms, Experimentation, Reliability

1. INTRODUCTION

Software is becoming increasingly concurrent to take ad-
vantage of the multicore trend in hardware. Unfortunately,
concurrent programs are notoriously difficult to debug com-
pared to their sequential counterparts. We see two main
reasons for this: 1) Bugs due to concurrency happen under
very specific thread schedules and are often not reproducible
during regular testing. As a result, the cyclic debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FSE-18, November 7-11, 2010, Santa Fe, New Mexico, USA.

Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

Koushik Sen
EECS Department, UC Berkeley, CA, USA

ksen@cs.berkeley.edu

techniques that are effective for sequential programs can-
not be directly applied to concurrency bugs. 2) The traces
generated by concurrent program executions can be com-
plicated and difficult to understand. We believe that fine-
grained thread interleavings are chief among these compli-
cations, especially when concurrency bugs are discovered by
random scheduling based testing techniques [8, 29, 27, 13]
or by recording real-world production executions.

For the reproducibility problem, a number of light-weight
and efficient techniques have been proposed to record and
replay a concurrent execution [22, 26, 6, 25, 34, 21, 16, 23, 1].
A record and replay system dynamically tracks the execution
of a concurrent program, recording the non-deterministic
choices made by the scheduler. A trace is produced which
allows the program to be re-executed, forcing it to take the
same schedule. If captured in a trace, a concurrency bug
can be replayed consistently during debugging.

Despite advances on the reproducibility problem, the sec-
ond problem remains—a trace of a buggy execution can
be complicated by the fine-grained interleaving of various
threads. Fine-grained thread interleavings significantly in-
crease the number of potential thread interactions one must
reason about to understand a trace. Hence, it is often desir-
able to create a simpler execution trace that shows the same
bug but increases the granularity of thread interleavings.

To address this problem, we propose an algorithm,
Tinertia, to automatically transform the trace of a buggy
concurrent execution into a simpler trace with a coarser-
grained thread interleaving that exhibits the same bug. The
simplified trace can then be used in debugging instead of the
more complicated original one, potentially relieving the pro-
grammer of some of the burden associated with reasoning
about fine-grained dependencies among threads.

In this paper, we show that the general problem of simpli-
fying a trace is NP-hard. Tinertia is a heuristic algorithm
that runs in time polynomial in the size of the trace; it com-
putes a locally optimal simplification instead of the globally
optimal simplification. Tinertia simplifies a buggy trace by
greedily performing merges and removals on a trace to gen-
erate simpler intermediate traces. An intermediate trace is
then executed to validate that it is feasible and exhibits the
bug. Thus, the Tinertia algorithm applies a purely experi-
mental approach in the spirit of Delta Debugging [4] to the
problem of trace simplification.

We have implemented Tinertia for C/C++ programs
with Pthreads in a tool called Thrille and applied this tool
to 11 benchmark programs having 250 to over 37,000 lines
of code with known or seeded bugs. Our experiments show

// Thread 1 // Thread 2

flag = 1; while (! flag)

x =1 sleep ()
error (); flag = 0;

Figure 1: Example Program.

(T2, flag = 0)

1 (T2, while (! flag))
2 (T2, sleep())

3 (T1, flag = 1)

4 (T2, while (! flag))
5 (T1, x = 1)

6 (T2, x = 3)

7 (T1, if (x = 3))

8

9

(T1, error())
Figure 2: Example buggy trace.

Thrille produces nearly optimal simplified traces. More-
over, we show that the simplified traces have at most 2-
3 preemptive context switches (excepting one benchmark)
supporting the observation that most concurrency bugs can
be caught with few preemptive context switches [17]. A
manual check of a number of simplified traces confirmed the
cause of the bug could be easily pinpointed by examining
remaining preemptive context switches. Finally, we address
the argument that a debugging tool like Thrille is unneces-
sary because one could use a context bounded model checker
such as CHESS [17] that returns a simplified trace by default
to find concurrency bugs; we empirically show that a com-
bination of race directed random testing and simplification
is more efficient than basic context bounded model checking
for a large fraction of our benchmarks.
The contributions of this paper are as follows:

e We formally model the trace simplification problem
and prove it is NP-hard.

e We propose a heuristic trace simplification algorithm,
Tinertia, which greedily applies two types of simpli-
fying operations to a buggy trace. We describe the
rationale behind each operation and provide empirical
evidence as to their effectiveness.

e We describe an implementation of the Tinertia algo-
rithm for C/C++ programs. We experiment on 11
programs from the PARSEC and Inspect benchmark
suites to show the efficacy of Tinertia empirically.

2. OVERVIEW

In this section, we informally describe the operation of
our trace simplification algorithm, Tinertia, on an exam-
ple. Consider the program in Figure 1. Assume all variables
are initially 0, all statements execute atomically on a se-
quentially consistent memory model, and both threads run
concurrently. Notice there is a data race over setting the
value of variable x. If Thread 2 executes x = 3 after Thread
1 executes x = 1 but before Thread 1 checks the branch
condition, the program will hit an error.

We define an action to be an atomic statement executed
by a particular thread. For example, Thread 1 executing the
statement flag = 1 is an action. A trace of a program exe-
cution is a list of actions. Figure 2 is an example of a trace
that exhibits a bug. A trace can be viewed as a descrip-
tion of a serialized execution of a multithreaded program

that captures a thread interleaving. We call two consecu-
tive actions in a trace a context switch if the actions belong
to different threads. The trace in Figure 2 has seven con-
text switches. A mon-preemptive context switch is a context
switch where the descheduled thread is disabled by the se-
mantics of the program. A preemptive context switch or pre-
emption is a context switch where the descheduled thread
could have continued execution. All context switches in the
trace in Figure 2 are preemptive context switches except for
the context switch occurring between action 8 and action 9.
This is a non-preemptive context switch because Thread 2
terminates and cannot legally execute any instruction.

Using terminology from [30], we refer to a maximal set of
consecutive actions by the same thread as a thread execution
interval (TEL). The first two actions of the trace in Figure 2
where Thread 2 executes an iteration of the spin loop is an
example of a TEI of Thread 2. Every trace is composed of
one or more TEIs, and the number of context switches in a
trace is one less than the number of TEIs.

The input to Tinertia is a trace of a buggy multithreaded
execution and the output is a simpler trace which exhibits
the same bug. We describe the output trace as a variant-
trace of the original input trace. A bug can be any distin-
guishable behavior of a program; typical bugs include dead-
locks, segmentation faults, and assertion failures.

Our metric for trace simplicity (and interleaving granu-
larity) is the number of context switches in a trace: a trace
with fewer context switches is simpler than a trace with more
context switches. Given a buggy trace 7, we would like to
generate the simplest variant-trace of 7. That is, we would
like to generate the variant-trace with the minimal number
of context switches of all variant-traces. In Section 3, we
show this trace simplification problem is NP-hard.

Tinertia is a heuristic algorithm that iteratively applies a
simplifying operation to a trace to generate a simpler inter-
mediate trace. An intermediate trace is validated by execut-
ing it. If the intermediate trace describes a feasible program
execution and exhibits the bug, i.e. it is a variant-trace,
Tinertia keeps the intermediate trace and continues to ap-
ply simplifying operations to it. If the intermediate trace is
invalid or does not exhibit the bug, the simplifying opera-
tion is undone and a different simplifying operation is tried.
Tinertia terminates when no simplifying operation can be
applied to produce a valid variant-trace.

The core simplifying operations performed by Tinertia
are the removal of the last TEI of a thread and the merging
of two TEIs. We further subdivide the merging operation
into two different forms— Two-Stage Consolidate Up and
Consolidate Down. We now describe the simplifying opera-
tions that Tinertia performs on a trace:

e Remove Last: This operation is applied to a specific
thread ¢ in the trace and generates a simpler trace
by removing the last TEI of thread ¢. This operation
can remove extraneous threads and TEIs which do not
contribute to the bug. If this operation is successful,
at least one context switch is removed.

e Two-Stage Consolidate Up: This operation is ap-
plied to a specific action a in the trace and only has
an effect if a is the last action of a TEI. Let thread ¢
be the thread that executes action a. This operation
is two-stage in the sense that it first operates at the
TEI granularity and then at the action granularity. In
the first stage, the operation finds the next TEI after a

1 (T2, while (! flag))
2 (T2, sleep())

3 (T1, flag = 1)

4 (T2, while (! flag))
5 (T1, x = 1)

6 (T2, x = 3)

7 (T1, if (x = 3))

8

(T1, error())

Figure 3: The variant-trace generated by the Re-
move Last simplifying operation.

which is executed by thread ¢ in the trace. This opera-
tion then generates a new trace by removing that TEI
and inserting it directly after a. If this move produces
a valid variant-trace, the operation terminates.

If the first stage is not successful, the second stage is
executed. The moved TEI is returned to its original
trace position. Then the maximal (potentially empty)
prefix of actions of that TEI is removed and inserted
after a such that a valid variant-trace is produced.

If successful, the first stage of the operation removes
at least one context switch; this can eliminate con-
text switches unrelated to the bug that resulted from
scheduling nondeterminism. The second stage removes
no context switches overall, but can eliminate preemp-
tive context switches by extending a TEI until the ex-
ecuting thread becomes disabled.

e Consolidate Down: This operation is symmetric to
the first stage of Consolidate Up. It is applied to a
specific action a in the trace and only has an effect if a
is the first action in a TEI. Let thread ¢ be the thread
that executes action a. This operation finds the most
recent TEI of thread ¢ which was executed previous to
a, and then generates a new trace by removing that
TEI and inserting it directly before a. Each successful
application of this operation eliminates at least one
context switch. This operation can remove spin loops
in traces where thread t; is waiting for thread t2 to
act; in this case, moving t1’s TEI to the point after to
performs its action causes t; to no longer wait.

Tinertia first applies the Remove Last operation to each
thread until no progress can be made. Then a forward pass
is made over the trace, and the Two-Stage Consolidate Up
operation is applied to each action in the trace. Follow-
ing that, Tinertia applies the Consolidate Down operation
to each action in a reverse pass. Once this is completed,
Tinertia starts again with Remove Last operation, and con-
tinues through the phases until no progress can be made.

We now describe the application of the Tinertia algo-
rithm to the buggy trace in Figure 2. Tinertia first applies
the Remove Last operation to each thread in the trace un-
til no progress can be made. Figure 3 shows the resulting
variant-trace. The algorithm was able to successfully remove
the action corresponding to Thread 2 resetting the flag (ac-
tion 8 in Figure 2) because this action is extraneous and
does not affect Thread 1 hitting error(). This operation
removes two context switches.

Next, Tinertia takes the variant-trace that resulted from
applying the Remove Last operation and attempts to apply
the Two-Stage Consolidate Up operation to each action in
turn, going from the first action in the trace to the last ac-
tion. The result of this pass is the variant-trace in Figure 4.

1 (T2, while (! flag))
2 (T2, sleep())

3 (T1, flag = 1)

4 (T1, x = 1)

5 (T2, while (! flag))
6 (T2, x = 3)

7 (T1, if (x = 3))

8 (T1, error())

Figure 4: The variant-trace generated by the Two-
Stage Consolidate Up simplifying operation.

(T1, flag = 1)

(T1, x = 1)
(T2, while (! flag))
(T2, x = 3)

(T1, if (x = 3))

(T1, error())

UL W N

Figure 5: The variant-trace generated by the Con-
solidate Down simplifying operation. This will be
the simplified trace returned by Tinertia.

When applied to the second action in Figure 3, the first
stage of the Two-Stage Consolidate Up operation fails to
produce a valid variant-trace. In this case, it attempts to
move the TEI consisting of action 4 and place it directly
after action 2. This, however, is an invalid trace because
the flag has not been set yet. Thread 2 will execute the
spin loop again, and will not execute the statement x = 3
at the appropriate point. The second stage of Two-Stage
Consolidate Up also does not make progress, as the only
non-empty prefix of the moved TEI is the entire TEI.

However, a valid variant-trace is generated when the Two-
Stage Consolidate Up operation is applied to action 3 of the
trace of Figure 3. In this case, the operation moves the TEI
consisting of action 5 to directly after action 3. Thread 1
setting x (action 5) and Thread 2 checking the flag (action
4) are independent and thus commute. This variant-trace
has two fewer context switches and is the only progress that
the Two-Stage Consolidate Up operation makes in this pass.

Tinertia then takes the trace that resulted from the Two-
Stage Consolidate Up pass in Figure 4 and attempts to apply
the Consolidate Down operation to each action in the trace,
starting at the last action and working toward the beginning.
The result of this pass can be seen in Figure 5.

Consolidate Down is able to eliminate Thread 2’s initial
iteration of the spin loop. When the operation is applied to
action 5 in the trace in Figure 4, it moves Thread 2’s TEI
corresponding to the execution of the spin loop past the
setting of flag. This eliminates the need for Thread 2 to
spin at all. Notice the actual trace generated by Consolidate
Down has Thread 2 spinning once after the flag is set, while
Thread 2 will not spin at all when the trace is validated by
execution. We discuss how we implement this variant-trace
validity approximation in Section 4.2.1. The result of this
pass is that one context switch is removed.

Tinertia now attempts to again apply each operation to
the trace in Figure 5. No operation will be able generate
a valid variant-trace, so Tinertia terminates and returns
the variant-trace in Figure 5 as the simplified trace. In this
example, the Tinertia algorithm returns the variant-trace
that is minimal in the number of context switches (with five
fewer context switches than the original trace).

Delta Debugging is an automated search strategy for
simplifying inputs which cause failure [36]. The Delta

Debugging-based algorithm proposed by Choi et al. in [4]
is related to Tinertia; however, the goals of the two al-
gorithms are orthogonal. Their algorithm takes as input
a passing trace p and failing trace f and generates a new
passing trace p’ and new failing trace f’ such that every
difference between p’ and f’ is necessary to cause the bug.
The insight in that work is the differences between p’ and
f will illuminate the cause of the bug. However, there are
no facilities in their algorithm to try to produce a simpler
trace; the simplicity of the resulting p’ and f’ depend heav-
ily on the input traces. Indeed, one can imagine fruitfully
combining the two algorithms by first simplifying the fail-
ing trace and then using the simplified trace as input to the
Delta Debugging algorithm.

The Execution Reduction system described in [30] by Tal-
lam et al. has a similar goal to Tinertia, i.e. to simplify a
buggy trace. Their work targets event-driven systems and
does a thorough tracking of dynamic dependencies between
threads to identify and remove irrelevant threads and TEIs.
Tinertia, on the other hand, takes a purely experimental
approach, which could result in better simplification in cases
where dynamic dependencies semantically commute. Their
primary metric of simplification is the length of a trace. We
argue that the number of context switches, i.e. the granular-
ity of the thread interleavings, is an important metric of the
simplicity of a trace, and describe three operations which
can be applied to a trace to reduce the number of context
switches. One could usefully combine the Execution Reduc-
tion system with Tinertia-first run Execution Reduction
on a buggy trace to remove unnecessary threads and TEIs
and then run Tinertia on the resulting trace to increase the
granularity of the thread interleavings.

3. ALGORITHM

Now that we have informally examined the operation of
the Tinertia algorithm on a small example, in this section
we formally model the problem of trace simplification, and
situate the Tinertia algorithm within our formal model.

3.1 Background Definitions

Consider a multithreaded program execution. Let T be
the set of threads that are in the execution and let S be the
set of instructions executed by the threads in the execution.
We call the execution of an instruction s € S by a thread
t € T an action and denote it by the pair (¢, s). We use t(a)
and s(a) to denote the thread and instruction of the action
a, respectively. A multithreaded program execution can be
seen as a sequence of actions. We call such a sequence a
trace and denote it by 7. We will use 7[i] to denote the ‘"
action in the trace 7 and 7[j : k] to denote the subsequence
T[j]T[j+1] ... 7[k]. In the rest of the discussion, assume that
we are given a trace 7 = a1az2 ... an.

We refer to a maximal set of consecutive actions by the
same thread in a trace as a thread execution interval (TEI).
A TEI is a subsequence 7[j : k] of trace 7, defined as follows:

o j=1lort(r]j—1]) #t[j]),
e k=mnort(r[k+1]) # t(r[k]), and
o VI €[4, K], t(r[5]) = t(7[1))

We say a trace of a multithreaded execution exhibits a
bug if at the end of the execution the program state satisfies
a predicate, say ¢, that denotes the bug. For the rest of this

discussion, assume trace 7 exhibits a bug by satisfying ¢ at
the end of its execution. The goal of Tinertia is to compute
a “simplified” trace Tmn such that the state of the program
after executing 7., satisfies ¢. We next define the notion
of simplification formally.

We say that two actions a; and a; are related by the
program-order relation, denoted by a; —p a;, iff ¢ < j and
t(a;) = t(a;j). Let us call a trace 7’ a variant-trace of T if
the following conditions hold:

e 7’ is a permutation of a subset of the actions of T,

e 7’ denotes the prefix of a trace of a feasible multi-
threaded program execution,

e the program state after executing 7’ satisfies ¢, and

e 7’ conforms to the program-order relation, i.e. if a; —,
a; in 7 and a; is present in 7/, then a; appears before
a; in 7'

We can also associate a cost function with a trace—the
cost of a trace is equal to the number of context switches in
the trace. Note that cost(7) is equal to the number of TEIs
in 7 minus one.

3.2 Problem Definition

As described earlier, we are given a trace 7 = a1az2...an
of a multithreaded execution that satisfies the bug predicate
¢ at the end of the execution. We want to find a variant-
trace Tmin such that cost(Tmn) is the minimum of the cost
of all variant-traces of 7. Formally, let T = {7 | 7
is a variant-trace of 7 and for all variant-traces 7" of T,
cost(1") < cost(1")}. The goal of our algorithm is to return
an element of 7,.;,. Such a trace minimizes the number
of context switches in the multithreaded execution. In our
view, such a trace is simpler than the original buggy trace.

Unfortunately, the problem of finding an element of 7,
is NP-hard. We next prove this claim.

THEOREM 3.1. The problem of finding an element of Trin
is NP-hard.

Proof. (Sketch) Consider a pair (A4, <) where A is a set of
actions and = is a partial-order relation on A. We require
that < minimally relates all pairs of actions a;,a; € A such
that a; and a; are from the same thread. Inter-thread de-
pendencies may also appear in <. An observed buggy trace
is a linear-order on A such that the trace conforms to =,
i.e., if a; appears before a; in 7 then it must not be the
case that a; < a;. Assume that the bug is exhibited by any
trace which is a linear-order on A and conforms to <. Then
a trace simplification problem (A, <) is to come up with a
linear-order on A that conforms to < and has the minimum
number of TEIs. Note that we use < to represent the error
predicate ¢. In a real program, we can assume that < repre-
sents the reflexive transitive closure of the union of the data
dependency and program-order relations. Given (A, <), it is
easy to construct a program with an execution that satisfies
¢ iff the execution of the program has all actions in A and
conforms to <.

In the vertex cover problem, we are given an undirected
graph with vertices V and edges E. The task is to select the
minimum set of vertices W C V such that every edge in the
graph is adjacent to one of the vertices in W. The vertex
cover problem is well known to be NP-complete.

We now reduce vertex cover to the trace simplification
problem. We assume we are given an arbitrary graph G =

(V, E) on which we must find the minimum vertex cover. We
now construct a trace simplification problem (A, <) whose
solution would correspond to the minimum vertex cover. For
each vertex in v € V| we create a unique thread ¢,. For each
vertex v we then generate two actions: (ty,41) and (tv,i2)
in A. Since in our problem setting, we need a total-order
over all the actions from a given thread, we add the relation
((tw,41), (tv,i2)) to < for each vertex v. For each edge uv in
E, we add ((tu,?1), (tv,42)) and ((tv, 1), (tu,i2)) to <.

Let 7 be a linear-order on A that conforms to < and min-
imizes the number of TEIs. Let T be the set of threads such
that for each ¢t € T', 7 has two TEIs from the thread ¢. Let
W be the set of the vertices that correspond to the threads
in T. Then W is the minimum vertex cover for G because,
by construction, each thread must have at least one TEI in
7. If there is an edge between two vertices in G, at least one
of the threads corresponding to the two vertices defining the
edge must have two TEIs in 7 by the way we constructed
the relation <. Thus, the set of vertices whose correspond-
ing threads have more than one TEI in 7 is a vertex cover,
and it is minimal because 7 has a minimal number of TEIs.
This shows that trace simplification problem is NP-hard. O

3.3 Tinertia Algorithm

Given the problem of trace simplification is NP-hard, we
do not expect to find an efficient algorithm for it. Therefore,
we propose Tinertia, a heuristic algorithm.

Let us define three primitive operations on a trace:

e remove(T,1) is the trace obtained by removing 7[¢] from
7. For example, if 7 = a1...ai-10;0i+1...a,, then
remove(T,1) = a1 ...0i—1Git1 - . . Gn.

e insert(T,i,a) is the trace obtained by inserting the ac-
tion a immediately after the action 7[i]. For exam-
ple, if 7 = a1...a;ai41...an, then insert(r,i,a) =
a...a;ai41 ...0n.

e move(T,i,7) is the trace insert(remove(r,j), 1, 7[4])

Note that the operations remove and move could be ap-
plied repeatedly to obtain any trace that is a permutation
of a subset of the actions of the original trace.

We next define four composite operations that we will use
to describe our algorithm.

1. Operation move-up-tei(r,7) moves the next TEI after
the action 7[i] of thread t(7[¢]) immediately after the
action. Formally, move-up-tei(r,i) is valid iff 7[i] is
the last action of a TEI in 7 and 7[j : k] is the next
TEI of the thread ¢(7[i]) after the action 7[i]. Then
let 7j-1 = 7 and 71 = move(r—1,%i + | — j,1). Then
move-up-tei(r,1) = 7. Note that if move-up-tei(r,1i)
is valid and a variant-trace of 7, then cost(r) >
cost(move-up-tei(T,i)) + 1.

2. Operation move-up-actions(r,i, m) moves the prefix
T[j : m] of the next TEI after the action 7[i] of
thread t¢(7[¢]) immediately after the action. For-
mally, move-up-actions(r,i,7) is valid iff 7[¢] is the
last action of a TEI and 7[j : m] is a prefix of
the next TEI of the thread ¢(r[¢]) after the action
7[i]. Then let 7,1 = 7 and 7; = move(r—1,i + 1 —
j,1). Then move-up-actions(r,i) = Tm. Note that if
move-up-actions(t,1) is valid and a variant-trace of 7,
then cost(r) = cost(move-up-actions(t,i,m)).

Algorithm 1 Greedy Simplification Algorithm

1: Input: a trace 7 and a bug predicate ¢

20 Teur — T

3: repeat

4: Told < Tcur

5: for i = |Tcur| to 1 do

6: if remove-last-tei(Teur, i) is a variant-trace of 7 then

7: Teur — remove-last-tei(Teur, i)

8: end if

9: i < minimum of (¢ — 1) and |7cur|

10: end for

11: for i =1 to |7cur| do

12: if move-up-tei(Teur,) is a variant-trace of 7 then

13: Teur “— move-up-tei(Teur, 1)

14: else if move-up-actions(tcur,t, m) is a variant-trace of
7 for some maximal m then

15: Teur “— move-up-actions(Teur, t, M)

16: end if

17: end for

18: for i = |Tcur| to 1 do

19: if move-down-tei(Tcur,) is a variant-trace of 7 then

20: Teur — move-down-tei(Teur, 1)

21: end if

22: end for

23: until cost(7y14) < cost(Teur)
24: return Teyur

3. Operation move-down-tei(t,i) could be defined sym-
metrically. It moves the previous TEI before the ac-
tion 7[i] of thread ¢(7[i]) immediately before the ac-
tion. Formally, move-down-tei(r,4) is valid iff 7[q]
is the first action of a TEI and 7[j k] is the
previous TEI of the thread t(r[i]) before the action
7[é). Then let 7h4+1 = 7 and 74 = move(Ti41,7 —
2,7). Then move-down-tei(r,i) = 7;. Note that if
move-down-tei(t,1) is valid and a variant-trace of 7,
then cost(r) > cost(move-down-tei(r,4)) + 1.

4. Operation remove-last-tei(r,) removes the last TEI of
thread t(7[i]) if 7[¢] is the first action of the last TEI
of the thread t(7[i]). Formally, remove-last-tei(r,1) is
valid iff 7[i : j] is a TEI for some j and 7[i : 7] is the last
TELI of the thread ¢(7[¢]). Then let 7511 =7 and 7 =
remove(Ti+1,0). Then define remove-last-tei(r,i) = 7.
Note that if remove-last-tei(r,4) is valid and a variant-
trace of 7, cost(r) > cost(remove-last-tei(r,i)) + 1.

Algorithm 1 is a formal description of the Tinertia algo-
rithm. Tinertia takes as input a trace 7 and a bug predicate
¢ which is satisfied by the state of the program after the ex-
ecution of 7. All simplifying operations are applied to Tcyr,
and whenever the application of an operation produces a
valid variant-trace 7/, that trace is stored into 7cur.

Tinertia begins by initializing 7c. to the input trace 7.
The algorithm then enters the main loop. In lines 5-10, the
algorithm does a reverse pass over trace 7Tcur, applying the
remove-last-tei operation to to each index of the trace. This
is equivalent to the reverse pass of the Remove Last simpli-
fying operation described in Section 2. If the application of
remove-last-tei(Teur,) produces a valid variant-trace of Tcur
for some index i, it is unnecessary to execute the last TEI
of thread t(7cur[i]) to produce the bug.

In lines 11-17, Tinertia does a forward pass over the
variant-trace generated by the previous pass. This is a pass
of the Two-Stage Consolidate Up simplifying operation de-
scribed in Section 2. For each action in the trace Ty,
the algorithm first performs the move-up-tei operation. If

move-up-tei(Teur, 1) produces a valid variant-trace, two TEI
were successfully merged, and the simplified variant-trace is
saved. If the application of move-up-tei fails, the algorithm
then performs move-up-actions(7eur, i, m) for some maximal
m. That is, the maximal (potentially empty) prefix of the
TEI following Tcur[i] is merged with the TEI of 7¢y.[¢]. This
operation can remove a preemptive context switch and re-
place it with a non-preemptive context switch.

The final pass of the main loop is performed in lines 18-22.
This is a reverse pass of the Consolidate Down simplifying
operation over the variant-trace generated by the previous
two passes. The operation move-down-tei is applied to each
action in the trace. If the application of move-down-tei cre-
ates a valid variant-trace, two TEI were successfully merged.

Tinertia executes the main loop until no composite op-
eration applied to any action of the trace 7., can produce
a valid variant-trace. Tinertia then terminates and returns
Teur as the simplified trace.

THEOREM 3.2. The worst-case time complexity of Algo-
rithm 1 is O(|7]?).

Proof. (Sketch) Each of the for loops at line 5, 11, and
18 has an upper bound of |7| iterations. cost(7) decrements
by at least one in each iteration of the outer loop at line 3;
so, the outer loop can run for a maximum of |7]| iterations.
Therefore, O(|7|?) is an upper bound on the number of sim-
plifying operations and variant trace validity checks, which
cost O(|7]). Therefore the entire algorithm is O(|7|*). O

THEOREM 3.3. The trace Teur returned by Algorithm 1
is a local minimum in the following sense. There exists
no i such that remove(Teur,i) is a variant-trace of T and
cost(remove(Teur, 1)) < cost(Teur). And, there exists no i
and j such that move(T,1i,7) is valid and a variant-trace of
7 and cost(move(Teur,,7)) < cost(Teur).

4. IMPLEMENTATION

We have implemented the Tinertia algorithm in a tool
called Thrille for C/C++ programs that use Pthreads. Our
implementation is divided into two components: trace trans-
formation and trace validation. The trace transformation
component iteratively generates simplified traces; the trace
validation component determines if a generated trace is a
valid variant-trace.

Thrille takes as input a program and a replayable buggy
trace. In general, deterministic replay requires controlling
all sources of non-determinism in the program. For our
benchmarks, it is sufficient to fix inputs, control the sched-
uler, and deterministically seed random number generators.

Thrille controls scheduler non-determinism by serializing
program execution and selectively allowing threads to exe-
cute. Dynamic library interposition is used to intercept the
synchronization events in a program. When a synchroniza-
tion call is made, Thrille takes over execution and decides
which thread to schedule next.

In programs with data races, bugs may manifest under
finer-grained interleavings than is possible to achieve while
scheduling only at synchronization events. To capture and
reproduce these bugs, we compile the target program (or
program module) using the LLVM tool chain [14]. During
compilation, we execute a pass which instruments all load
and store instructions with a call into Thrille. For each

of our benchmarks, we run race detection to identify poten-
tially racing memory accesses and then during simplification
Thrille makes scheduling decisions at these accesses.

4.1 Trace Transformation

The trace transformation component repeatedly applies
the Remove Last, Two-Stage Consolidate Up, and Consoli-
date Down simplifying operations to generate simpler inter-
mediate traces.

If merging two TEIs fails in the first stage of Two-Stage
Consolidate Up, we then must find the maximal prefix of the
second TEI that can be merged with the first TEI in stage
two. For efficiency, we approximate this by automatically
examining the trace of the failing execution and generating
a new trace that merges all actions that were executed from
the second TEI in the failing trace.

4.2 Trace Validation

The trace validation component executes a trace 7’ to
determine if 7’ is a valid variant-trace of the original buggy
trace 7. Minimally, this component must be able to replay
a trace and detect any program errors.

In Thrille, a trace is simply a listing of which thread to
execute at each synchronization or racing memory opera-
tion (and not, say, a record of all memory reads and writes).
Our implementation models Pthread semantics to determine
what executions are legal. A trace is executed until an er-
ror is detected or the program terminates normally. The
trace validation component detects errors including dead-
locks, segmentation faults, and assertion failures. We note
assertions allow for arbitrarily precise descriptions of bugs.

4.2.1 Approximating Variant-Trace Validity

In our initial experiments, we observed that a strict
variant-trace validity check unnecessarily discards many in-
termediate simplified traces. This is because reordering
TEIls can reorder memory dependencies and change the con-
trol flow within a TEIL. Such reordering can result in a sim-
plified trace which still exhibits the bug, but is not neces-
sarily a variant-trace of the original trace, i.e. the modified
trace is not a strict linear order of a subset of actions of
the original trace. Thrille implements an approximation of
the variant-trace validity check which is designed to toler-
ate variations between a trace and the execution induced by
the trace. During execution, Thrille attempts to execute
each TEI in the order in which it appears in the trace. The
following inconsistencies can occur:

e Control Flow Changes: A thread may deviate from
its expected execution path. If this occurs, the thread
is executed until its execution rejoins the expected
path, in which case the remaining actions of the TEI
are completed. The thread may also block or enter
livelock without rejoining the TEI, in which case the
next TEI in the trace is executed.

e Disabled Threads: A thread may block before exe-
cuting its whole TEI. If this occurs, the next TEI in
the trace is executed.

e Condition Variables: A previously missed signal
may no longer be missed, in which case a waiting
thread is randomly chosen to signal.

e No Bug: At the end of a trace, if the program has
not terminated but also does not exhibit the desired

bug, we continue execution in a non-preemptive fair
way [18] until a bug is found or execution terminates.

When execution terminates, Thrille performs an approx-
imation of the variant-trace validity check. Let 7., be the
trace of the actual execution induced by the trace 7 after
all inconsistencies are accounted for. If 7..,,. exhibits the
bug and cost(7h,1ua) < cost(t’), then 7’ is considered a valid
variant-trace and simplification continues on 7.0 If Thetual
does not satisfy both of these properties, 7’ is considered an
invalid variant-trace. Note this approximation guarantees
termination of the algorithm and that any returned simpli-
fied trace will exhibit the same bug as the original trace.

S. EXPERIMENTAL EVALUATION

We evaluated Thrille on 11 C and C++ multithreaded
benchmarks. Our set of benchmarks consists of programs
from the PARSEC benchmark suite [3] and the Inspect
benchmark suite [35]. The following programs came from
PARSEC: blackscholes is an option pricing simulation, can-
neal implements a simulated annealing algorithm to mini-
mize the routing cost of a chip design, dedup is a data stream
compression program, streamcluster is an online clustering
kernel, and x26/ is a threaded video compression library.

The following programs came from the Inspect benchmark
suite: bbuf is a toy implementation of a shared buffer, bzip2
and pbzip2 are both multithreaded compression programs,
ctrace is a multithreaded tracing library, pfscan is a parallel
file scanner, and swarm is a parallel sort implementation.

To generate the initial buggy traces, we implemented a
variant of race directed random testing [28], where we con-
sidered both data races and lock contentions. The bench-
marks pbzip2 and swarm had bugs which we could repro-
duce in our trace generation step. For the other programs,
we seeded bugs by modifying synchronization operations.
We chose this approach because we do not propose a novel
way to discover bugs, and thus the exact nature of the bug
is less important. We ensured that all seeded bugs were
concurrency-related, i.e. all programs with seeded bugs suc-
cessfully ran under normal circumstances and the bugs man-
ifested non-deterministically under rare schedules.

All experiments were performed on a dual socket quad-
core Xeon server with 8GB of RAM. All results are averaged
over 30 runs. Each run consisted of generating a new buggy
trace with our race directed random testing implementation
and then applying Thrille to the trace.

The goal of these experiments was to evaluate the follow-
ing four hypotheses:

1. The locally optimal simplified traces generated by the
Tinertia algorithm are close to the global optimal in
terms of number of context switches.

2. Each simplifying operation performed by the Tinertia
algorithm contributes to the overall simplification.

3. Remaining preemptions in simplified traces are useful
for pinpointing concurrency bugs in the program.

4. A debugging tool like Thrille can be useful even

though context bounded model checking finds simpli-
fied buggy traces by default.

5.1 Optimality of Simplification
Table 1 shows the results of the experiments. The second
column shows the size of each benchmark in lines of C and

Histogram of the Context Switch Optimality of Simplified
Traces

Obzip2

XXX

B dedup

XX

O pbzip2

M pfscan

Experimental Runs
=
wv

]
1
DX

I:u:|§DIZIDDz.
1 2 3

Context Switches > Optimal Number of Context Switches

Optimal 4

Figure 6: Optimality of simplified traces.

C++ code. Columns 3-7 show the average characteristics
of the start traces. Size is the number of synchronization
and memory operations at which Thrille made a schedul-
ing choice. Thr is the number of threads which execute at
least one action in a trace, and Ctxt is the number of con-
text switches in a trace. The Non and Pre columns further
break down the number of context switches. Non reports the
number of non-preemptive context switches in the trace; Pre
reports the number of preemptive context switches.

Columns 8-12 report the averages of these characteris-
tics for the simplified traces. Note that due to the variant-
trace validity approximations described in Section 4.2.1, cer-
tain characteristics (e.g. Size) of a trace can actually in-
crease. For all benchmarks except for ctrace, Thrille gener-
ated simplified traces which averaged 2-3 preemptive context
switches. Because a program should behave correctly irre-
spective of whether a preemptive context switch is made,
we expect that any remaining preemptions in a simplified
trace are necessary to cause the concurrency bug. There-
fore, a simplified trace with few preemptive context switches
will significantly reduce the debugging effort by reducing the
number of places in the trace where we need to look for the
cause of the bug.

Columns 13-15 report the average percent reduction of
the different types of context switches due to simplification.
For all benchmarks, Thrille was able to generate simpli-
fied traces with 92% or more of the preemptions removed
(column 15).

The percent reduction in overall number of context
switches varies more widely (column 13); the maximum pos-
sible reduction is dependent on both the design of the bench-
mark program and how the bug manifests. To validate our
hypothesis that Tinertia generates nearly optimal traces
with respect to number of context switches, we manually
generated buggy traces with an optimal number of context
switches for five of our benchmarks. Note that we did not do
this for all benchmarks because creating the optimal trace
for each benchmark is a tedious and time-consuming pro-
cess. For each simplified trace generated in our experiments
from the examined benchmarks, we binned the difference be-
tween the number of context switches in the simplified trace
and the number of context switches in the optimal traces.
Figure 6 shows a histogram of the results of this study.

For all the examined benchmarks, over 90% of the sim-
plified traces were within 2 context switches of optimal.
Moreover, the Tinertia algorithm does nontrivial work in
all cases. Average percentage reduction in context switches
ranges from 31% for blackscholes to over 90% for all other
examined benchmarks (column 13 in Table 1). These re-

O blackscholes

Program LOC Start Trace Simplified Trace % Reduction

Name Size | Thr Ctxt Non Pre Size | Thr | Ctxt Non | Pre | Ctxt | Non Pre
bbuf 255 199.6 | 11.0 168.4 57.1 | 111.3 | 175.7 | 11.0 21.5 19.8 1.8 87.2 | 65.4 98.4
blackscholes 919 23.0 9.0 20.6 14.0 6.6 23.0 9.0 14.0 14.0 | 0.0 | 32.1 0.0 | 100.0
bzip2 4294 74.5 6.0 60.3 9.3 51.0 48.9 3.4 4.7 1.9 2.9 92.2 | 79.9 94.4
canneal 2822 111.0 | 13.0 52.4 22.0 30.4 | 111.0 | 13.0 24.0 22.0 2.0 54.2 0.0 93.3
ctrace 763 296.6 2.0 160.2 11.9 | 148.3 | 324.5 2.0 9.1 23| 6.7 | 94.3 | 80.4 95.5
dedup 2571 78.1 | 124 56.2 14.2 42.0 46.5 3.4 3.4 0.2 3.2 94.0 | 98.6 92.5
pbzip2 1489 457.5 7.0 128.6 14.6 | 114.0 70.9 3.6 3.8 22| 1.6 | 97.0 | 84.9 98.6
pfscan 750 116.3 9.0 99.4 7.0 92.4 56.6 3.3 3.3 0.8 | 25| 96.6 | 88.0 97.3
streamcluster 1250 | 1505.3 9.0 | 1284.2 | 1012.8 | 271.4 | 961.1 9.0 | 627.0 | 627.0 | 0.0 | 51.2 | 38.1 [100.0
swarm 1636 827.6 5.0 613.4 106.3 | 507.1 | 805.1 5.0 | 107.1 | 105.1 2.0 82.5 1.1 99.6
%264 37739 659.1 | 10.1 148.5 18.6 | 129.9 | 582.3 | 10.1 18.2 16.0 2.2 87.8 | 13.8 98.3

Table 1: Experimental results. Data is averaged over 30 runs for each benchmark.

pbzip2.cpp:
void *consumer (void xq) {
// initialization

887: for (;;)

888:

889: pthread_mutex_lock (fifo —>mut);
// check if compression is done

933: pthread_mutex_unlock (fifo —>mut);
// do compression work

976: }}

void queueDelete (queue xq) {

1041: if (q == NULL)

1042: return;

1044: if (g—>mut != NULL) {

1046: pthread_mutex_destroy (g—>mut);
1047 delete g—>mut;

1048 q—>mut = NULL; }}

Figure 7: Real Segmentation Fault in pbzip2.

sults suggest that the locally optimal traces calculated by
the Tinertia algorithm are nearly optimal in a global sense,
validating our first hypothesis. Traces with a coarser thread
interleaving granularity significantly reduce the number of
potential thread interactions one must reason about when
diagnosing a bug, hence we believe these optimality results
argue strongly for the Tinertia algorithm.

5.2 Contribution of Simplifying Operations

During each run of Thrille, we recorded the contribution
to simplification (in terms of context switches removed) at-
tributable to each simplifying operation. This data showed
that Two-Stage Consolidate Up was a major contributor to
simplification in most of the benchmarks, but both the Re-
move Last and Consolidate Down operations were respon-
sible for greater than 40% of the simplification of at least
one benchmark. We conclude that each of the simplifying
operations performed in Tinertia contributes to the overall
calculation of the simplified trace.

5.3 Pinpointing Bugs with Simplified Traces

Our third hypothesis is that the preemptions in a simpli-
fied trace are useful for pinpointing the concurrency bug. To
validate this hypothesis, we examined the results of several
of our experimental runs. We found that preemptions often
pointed directly to the cause of the bug. We illustrate this
observation for one of our benchmarks.

Figure 7 shows the real bug in the pbzip2 benchmark. Im-
proper synchronization can allow the main thread to execute
clean up code before all worker threads have terminated. If
a worker thread attempts to grab a mutex that has been
destroyed and set to NULL by the main thread, the program
will crash with a segmentation fault.

In the run we examined, the initial trace of the segmenta-
tion fault consisted of 79 context switches, 77 of which were
preemptive and 2 of which were non-preemptive. Given this
trace, Thrille generated a simplified trace which had 4 con-
text switches, 1 of which was preemptive and 3 of which were
non-preemptive. In the simplified trace, the main thread
calls the queueDelete clean up method, passing fifo as the
argument. The preemption occurs directly after the main
thread sets q->mut to NULL in line 1048. A worker thread
is then scheduled and attempts to lock the NULL mutex on
line 889. This results in a segmentation fault on our test
server. We note the preemptive context switch in the sim-
plified trace occurs exactly in the buggy code.

5.4 Performance

Table 2 reports the runtime characteristics of the Thrille
tool. All numbers are averaged over the 30 runs for each
benchmark. Bug Type (column 2) is a description of how
each bug manifests. Iters (column 3) reports the average
number of iterations taken through the main loop of the
Tinertia algorithm. Execs (column 4) reports the number
of times Thrille re-executes the program validating an in-
termediate trace. Time (sec) is the average time it takes in
seconds to simplify a trace. For all benchmarks, average sim-
plification time took less than 30 minutes (often much less).
The Thrille implementation is unoptimized, but given the
average time spent debugging, we believe that even in its
current form the benefits of debugging with a simplified trace
outweigh the time costs of simplification. We also note that
similar running times have been reported by other effective
debugging tools in the literature [24].

Further, as traces grow longer, the Tinertia algorithm
can be modified to operate on a fixed size suffix of the
trace. This would place an upper bound on the number
of re-executions while still allowing the programmer to reap
most of the benefits of debugging with a simplified trace.

5.5 Comparison with Context Bounded
Model Checking

One could argue there is no need for a debugging tool like
Thrille because one could use a context bounded model
checker such as CHESS [17] to find concurrency bugs. When
these model checkers find a bug, they return a simplified
trace by default. We now evaluate our hypothesis that the
Thrille tool can still be useful by comparing the efficiency
of the combination of directed random testing and simplifi-
cation with basic context bounded model checking.

To compare Thrille with context bounded model check-
ing, we implemented the basic CHESS algorithm described

Program Bug Type | Iters | Execs Time
Name (sec)
bbuf deadlock 2.7 298 19.4
blackscholes deadlock 2.0 54 9.6
bzip2 segfault 2.9 64 162.5
canneal deadlock 2.2 138 29.9
ctrace deadlock 2.1 250 21.4
dedup segfault 2.0 49 90.8
pbzip2 segfault 2.5 78 41.1
pfscan segfault 2.7 109 12.2
streamcluster | segfault 2.7 2586 769.3
swarm assert fail 2.5 1300 | 1651.2
x264 deadlock 2.1 187 | 1107.9

Table 2: Thrille Runtime Statistics

in [17]. We ran our CHESS implementation with a pre-
emption bound of 2 on all of our benchmarks until a bug
was found or we had explored 10,000 interleavings. The ba-
sic CHESS algorithm is incomplete in programs with data
races, therefore we adopted a strategy similar to [19] and
allowed CHESS to schedule at the same potential data races
at which our race directed random testing implementation
could schedule. This ensured our CHESS implementation
could expose the same bugs as our race directed random
testing implementation. We also used a fair scheduling im-
plementation to prevent divergence on our benchmarks [18].

Table 3 shows the results from the comparison. Column
2 shows the average number of program executions to both
find a bug using race directed random testing and then sim-
plify the bug using Thrille. Column 3 shows the average
time in seconds to find a bug and then simplify it. Column 4
shows the number of program executions before our CHESS
implementation found a bug or hit the 10,000 execution cut-
off. Column 5 shows the total time of the CHESS search,
and column 6 reports whether our CHESS implementation
found a bug before the execution cut-off.

In 2 of our benchmarks (pbzip2 and streamcluster), the
basic CHESS algorithm was clearly the more efficient choice
for finding simplified buggy traces. On the ctrace bench-
mark, Thrille and CHESS were roughly tied. In the other 8
benchmarks, our CHESS implementation was either unable
to discover a bug within 10,000 program executions, or was
not competitive with the combination of race directed ran-
dom testing and simplification. We feel these results argue
that, for certain types of programs and bugs, randomized
testing with simplification can be more efficient than sys-
tematic approaches like context bounded model checking.

6. OTHER RELATED WORK

Refer to the end of Section 2 for discussions of the two
work most closely related to ours.

Tzoref et al. use machine learning techniques to automat-
ically discover potentially buggy program locations in mul-
tithreaded programs [32]. Other work show that perturbing
the thread scheduler in a concurrent program can increase
test coverage and find bugs [8, 29, 27, 13].

Model checking is a promising technique to find concur-
rency bugs in programs before they manifest in the wild;
however, the cause of the bug can be difficult to pinpoint in
an error trace returned by a model checker. A number of
research have tried to minimize an error trace and extract
useful counterexamples when a bug is found [2, 11, 10].

Statistical sampling techniques can find bugs in the se-
quential setting [15], and extensions have been proposed to

Program Avg. Avg. || CHESS CHESS | Bug?
Name Execs Time Execs Time

bbuf 300 19.5 2081 183.1 yes
blackscholes 85 12.8 10000 1250.8 no
bzip2 66 166.2 10000 25025.5 no
canneal 464 79.0 10000 1789.4 no
ctrace 252 21.5 165 22.0 yes
dedup 51 92.5 10000 14447.4 no
pbzip2 83 41.9 21 3.9 yes
pfscan 110 12.3 10000 2135.2 no
streamcluster 2591 769.9 7 4.8 yes
swarm 1334 | 1659.8 10000 3392.2 no
x264 193 | 1177.0 10000 | 137484.6 no

Table 3: Comparison between Thrille and CHESS

discover concurrency bugs [31]. Program slicing [33, 37] is
a popular debugging approach that determines which parts
of a program are relevant to a particular statement (e.g. a
bug). Precise slicing for concurrent programs is undecidable
in general but a number of work have investigated efficient
approximate approaches for debugging [12, 20, 9].

Different trace simplification (“shrinking”) techniques
have been shown useful in debugging functional concurrent
languages like Erlang [5].

A large body of research exists on record and replay sys-
tems for parallel software [22, 26, 6, 25]. Some of these sys-
tems make use of the specialized hardware to make record
more efficient [34, 21, 16, 7]. Other systems lower record
costs by probabilistically reproducing failures or recording a
subset of information required to reproduce a multithreaded
execution and doing offline work [23, 1].

7. CONCLUSION

Debugging a concurrent program is a time consum-
ing and frustrating process. We believe that useful de-
bugging techniques can be developed through the ap-
plication of model checking and program analysis tech-
niques. Our work is a small, effective step towards this
goal. Thrille is open source, and can be downloaded at
http://www.github.com/nicholasjalbert/Thrille.

8. ACKNOWLEDGMENTS

We would like to thank Shaon Barman, Sarah Bird, An-
drew Waterman, and our anonymous reviewers for their
valuable comments. We would also like to thank Chang-
Seo Park and Christos Stergiou for contributions to the
early implementation of Thrille. This work supported
in part by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Dis-
covery (Award #DIG07-10227), and by NSF Grants CNS-
0720906 and CCF-0747390.

9. REFERENCES

(1] G. Altekar and I. Stoica. ODR: output-deterministic replay
for multicore debugging. In ACM SIGOPS 22nd
symposium on Operating systems principles (SOSP), pages
193-206. ACM, 2009.
T. Ball, M. Naik, and S. K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. In 30th
SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), pages 97-105. ACM,
2003.
[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural

2

(4]

(5]

[6]

[7]

(8]

[9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

Implications. In 17th International Conference on Parallel
Architectures and Compilation Techniques, 2008.

J.-D. Choi and A. Zeller. Isolating failure-inducing thread
schedules. In ACM SIGSOFT international symposium on
Software testing and analysis (ISSTA), pages 210-220.
ACM, 2002.

K. Claessen, M. Palka, N. Smallbone, J. Hughes,

H. Svensson, T. Arts, and U. Wiger. Finding race
conditions in Erlang with QuickCheck and PULSE. In 14th
ACM SIGPLAN international conference on Functional
programming (ICFP), pages 149-160. ACM, 2009.

J. deok Choi and H. Srinivasan. Deterministic Replay of
Java Multithreaded Applications. In In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed
Tools, pages 48—59, 1998.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In 14th
international conference on Architectural support for
programming languages and operating systems (ASPLOS),
pages 85-96. ACM, 2009.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java program test generation. In
ACM-ISCOPE conference on Java Grande, page 181.
ACM, 2001.

D. Giffhorn and C. Hammer. Precise slicing of concurrent
programs. Automated Software Engg., 16(2):197-234, 2009.
A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error
explanation with distance metrics. Int. J. Softw. Tools
Technol. Transf., 8(3):229-247, 2006.

A. Groce and W. Visser. What Went Wrong: Explaining
Counterexamples. In 10th International SPIN Workshop
on Model Checking of Software, pages 121-135, 2003.

J. Krinke. Context-sensitive slicing of concurrent programs.
In 9th European software engineering conference/11th
ACM SIGSOFT international symposium on Foundations
of software engineering (ESEC/FSE), pages 178-187.
ACM, 2003.

Z. Lai, S. C. Cheung, and W. K. Chan. Detecting
Atomic-Set Serializability Violations in Mulithreaded
Programs through Active Randomized Testing. In 32nd
International Conference on Software Engineering (ICSE).
ACM/IEEE, 2010.

C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
International Symposium on Code generation and
optimization (CGO), page 75. IEEE, 2004.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. 1.
Jordan. Scalable statistical bug isolation. In ACM
SIGPLAN conference on Programming language design
and implementation (PLDI), pages 15-26. ACM, 2005.

P. Montesinos, L. Ceze, and J. Torrellas. DeLorean:
Recording and Deterministically Replaying Shared-Memory
Multiprocessor Execution Efficiently. In 35th International
Symposium on Computer Architecture (ISCA), pages
289-300. IEEE, 2008.

M. Musuvathi and S. Qadeer. Iterative context bounding
for systematic testing of multithreaded programs. In ACM
SIGPLAN conference on Programming language design
and implementation (PLDI), pages 446-455. ACM, 2007.
M. Musuvathi and S. Qadeer. Fair stateless model checking.
In SIGPLAN conference on Programming language design
and implementation (PLDI), pages 362-371. ACM, 2008.
M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. In 8th USENIX Symposium on
Operating System Design and Implementation (OSDI),
pages 267—-280. USENIX Association, 2008.

M. G. Nanda and S. Ramesh. Interprocedural slicing of
multithreaded programs with applications to Java. ACM
Trans. Program. Lang. Syst., 28(6):1088-1144, 2006.

S. Narayanasamy, G. Pokam, and B. Calder. BugNet:

(22]

23]

[24]

[25]

(26]

27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Continuously Recording Program Execution for
Deterministic Replay Debugging. In 32nd annual
international symposium on Computer Architecture
(ISCA), pages 284-295. IEEE, 2005.

R. H. B. Netzer. Optimal tracing and replay for debugging
shared-memory parallel programs. In ACM/ONR workshop
on Parallel and distributed debugging (PADD), pages 1-11.
ACM, 1993.

S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. PRES: probabilistic replay with execution
sketching on multiprocessors. In 22nd symposium on
Operating systems principles (SOSP), pages 177-192.
ACM, 2009.

D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
Darwin: an approach for debugging evolving programs. In
7th joint meeting of the European software engineering
conference/ACM SIGSOFT symposium on The
foundations of software engineering (ESEC/FSE), pages
33-42. ACM, 2009.

M. Ronsse and K. De Bosschere. RecPlay: a fully
integrated practical record/replay system. ACM Trans.
Comput. Syst., 17(2):133-152, 1999.

M. Russinovich and B. Cogswell. Replay for concurrent
non-deterministic shared-memory applications. In ACM
SIGPLAN conference on Programming language design
and implementation (PLDI), pages 258-266. ACM, 1996.
K. Sen. Effective random testing of concurrent programs. In
The 22nd IEEE/ACM international conference on
Automated software engineering (ASE), pages 323-332.
ACM, 2007.

K. Sen. Race directed random testing of concurrent
programs. In ACM SIGPLAN conference on Programming
language design and implementation (PLDI), pages 11-21.
ACM, 2008.

S. D. Stoller. Testing Concurrent Java Programs using
Randomized Scheduling. FElectronic Notes in Theoretical
Computer Science, 70(4):142 — 157, 2002. RV’02, Runtime
Verification 2002 (FLoC Satellite Event).

S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling
tracing Of long-running multithreaded programs via
dynamic execution reduction. In International Symposium
on Software testing and analysis (ISSTA), pages 207-218.
ACM, 2007.

A. Thakur, R. Sen, B. Liblit, and S. Lu. Cooperative Crug
Isolation. In 7th International Workshop on Dynamic
Analysis (WODA), pages 35—41, 2009.

R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting where it
hurts: an automatic concurrent debugging technique. In
International Symposium on Software testing and analysis
(ISSTA), pages 27-38. ACM, 2007.

M. Weiser. Program Slicing. IEFE Trans. Software Eng.,
10(4):352-357, 1984.

M. Xu, R. Bodik, and M. D. Hill. A "flight data recorder”
for enabling full-system multiprocessor deterministic replay.
In 80th annual international symposium on Computer
architecture (ISCA), pages 122-135. ACM, 2003.

Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
Runtime Model Checker For Mulithreaded C Programs.
Technical Report UUCS-08-004, University of Utah, 2008.
A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. IEEE Trans. Softw. Eng.,
28(2):183-200, 2002.

X. Zhang, R. Gupta, and Y. Zhang. Efficient Forward
Computation of Dynamic Slices Using Reduced Ordered
Binary Decision Diagrams. In 26th International
Conference on Software Engineering (ICSE), pages
502-511. IEEE, 2004.

