
TesMa and CATG: Automated Test Generation
Tools for Models of Enterprise Applications
Haruto Tanno

NTT Laboratories, Japan.
Xiaojing Zhang

NTT Laboratories, Japan.
Takashi Hoshino

NTT Laboratories, Japan.
Koushik Sen

EECS Department
UC Berkeley, CA, USA.

Abstract—We present CATG, an open-source concolic test
generation tool for Java and its integration with TesMa, a
model-based testing tool which automatically generates test
cases from formal design documents. TesMa takes as input
a set of design documents of an application under test. The
design documents are provided in the form of database ta-
ble definitions, process-flow diagrams, and screen definitions.
From these design documents, TesMa creates Java programs
for the feasible execution scenarios of the application. CATG
performs concolic testing on these Java programs to generate
suitable databases and test inputs required to test the appli-
cation under test. A demo video of the tool is available at
https://www.youtube.com/watch?v=9lEvPwR7g-Q.

I. INTRODUCTION

Testing is the only predominant technique used by the
software industry to make software reliable. Study [2] shows
that testing accounts for more than half of the total software
development cost in industry. Model-based testing [5] is an
emerging area of testing that uses models of software systems
for automated test case generation and evaluation. The key
idea behind model-based testing is to check whether a system
implementation conforms to a model of the system.

We present a model-based testing tool, called TESMA, that
we have developed at NTT Laboratories. NTT Group’s test
design tool, which has been applied to test more than 50
enterprise systems internally, uses the core part of TESMA.
TESMA takes as input a design model in the form of screen
definitions, business logic definitions, and database table def-
initions. TESMA transforms an input design model into a
directed graph, where the nodes and edges of the graph are
annotated with database operations and constraints on the data.
From the directed graph, TESMA generates a set of Java
programs, where each Java program encodes the behavior of
a path in the directed graph.

In this paper, we focus on CATG, an automated test data
generation tool that is used by TESMA for test data generation.
CATG is an open-source concolic testing [6], [8], [3], [4] tool
for Java. CATG has builtin models for database tables and SQL
queries. CATG performs concolic testing on the Java programs
generated by TESMA. The test inputs and initial databases
generated by CATG from the Java programs are transformed
into test cases for the application under test. CATG introduces
a novel annotation mechanism that enables a programmer to
prune the search space of concolic testing.

Note that TESMA generates Java programs instead of per-
forming symbolic execution directly on the directed graph.

There are two reasons behind this design decision. First,
we wanted to decouple the automated test data generation
mechanism from TESMA so that the development of the
automated test data generation tool can proceed independently.
Second, in order to describe the behaviors of the model,
we wanted a formal programming language (e.g. Java) for
which automated test generation techniques, such as symbolic
execution [7], [1], are well-understood.

The main contributions of this paper are as follows. First,
we show the integration of a model-based testing tool and
a concolic testing tool to generate test data for enterprise
web applications. In our demonstration, we will apply our
tools to a toy application and an open-source Java pet store
application. Second, we have made CATG publicly avail-
able at https://github.com/ksen007/janala2/ under
the open-source BSD license. The CATG distribution contains
a pure Java model of a subset of SQL queries and several
benchmark programs which can be used to potentially evaluate
other Java symbolic execution engines. CATG uses a novel
annotation mechanism to guide path exploration in concolic
testing.

II. TESMA

TESMA is a model-based test automation tool developed for
testing enterprise web applications. TESMA takes as an input
a formal design model consisting of three components:

1) screen definition which consists of screen elements (e.g.
fields, buttons, links etc.), input constraints (e.g. range
of values that can be entered in a field), and events
describing the user events,

2) business logic definition which consists of flowcharts
(see Figure 2 for an example) describing the behavior
of business logic, and

3) database table definitions.
Screen definitions, database table definitions, and business
logic details are provided as excel spreadsheets. Flowcharts
are described as visio documents. In one of our case studies,
for the open-source Java pet store application, we created a
design model consisting of 3 screens and 5 database tables. In
another case study involving an enterprise system, we had a
design model consisting of 31 screens and 42 database tables.

TESMA generates a set of test cases from an input design
model. A test case consists of an initial database, screen
transitions, input values, and expected results. The test cases
are generated as excel spreadsheets. For the Java pet store

Design Model�

Test Case�

Path�

Inputs�

Initial
database state

Database
definition�

Screen
definition�

Business logic
definition�

TesMa�

Test D
ata

G
eneration

Path Extraction and
Source C

ode
G

eneration

Test Case�

Path�

Java
Program
(Based

on path)

CATG�

Java
Program

Inputs
Initial

database

1

Fig. 1. TESMA workflow

(2)Already+entry?+

(4)A0endance?+

Guard+condi6on�Not+Entry�+
[DBSelectCount==0]�

(1)Start+

(3)Error�+
Already+entry+

Guard+condi6on�Already+Entry+
[DBSelectCount>=1]�DBSelect+

FromTableId+=++Entry+
WhereClauses+=+++
�(Entry.ID+==++
++++UserID)+

(5)Entry+as+Absence+(6)Entry+as+A0endance+DBInsert+
IntoTableId+=++Entry+
(Entry.ID+=+UserID,+
+Entry.Name+=+Name,+
+Entry.A0endance+=+1)+

(9)Show+a0endances+absentees+

(7)Checking+number+of+
A0endances+

Guard+condi6on�A0endance�+
[A0endance==1]�

Guard+condi6on:+Absence+
[A0endance==0]�

DBSelect+
FromTableId+=++Entry+
WhereClauses+=+++
�(Entry.A0endance+==+1)+

(8)Show+message+““Capacity+is+over++soon!+…”+

Guard+Condi6on:+A0endances+are+less+than+10+
[DBSelectCount<10]�

Go+to++
Screen(c)+

Go+to+
Screen(b)++

DBInsert+
IntoTableId+=++Entry+
(Entry.ID+=+UserID,+
+Entry.Name+=+Name,+
+Entry.A0endance+=+0)+

Fig. 2. Business logic definition

design model TESMA generated 97 test cases, whereas for
the enterprise system, TESMA generated 743 test cases.

TESMA uses CATG in the test generation process as follows
(see Figure 1). TESMA transforms and combines the above
three components of a design model into a directed graph
(UML activity diagram). TESMA then extracts all paths from
the directed graph. If the graph contains a cycle, TESMA
extracts two paths: one path where the cycle is taken once
and one path where the cycle is skipped. For each such path,
TESMA generates a Java program encoding the behavior of
the application along that path. Figure 3 shows a Java program
for a path in Figure 2. A successful execution of the program
on suitable inputs and database returns true, and returns false
otherwise. CATG explores the program and generates a set of
test inputs and initial databases for the successful paths of the
program. TESMA takes these test inputs and database tables
and transforms them into test data.

1

//Initial records number for each DB table�
static int ENTRY_TABLE_SIZE=20;

//Function for checking DB schema constraint
//(Primary key and foreign key)
boolean CheckDBConstraints(...){
 …
}

boolean F(){	
�
����//DB table and input variable declaration
 int UserId = ...;
 …
 ArrayList<Entry> EntryList =

 new ArrayList<Entry>(ENTRY_TABLE_SIZE);
 //Check ranges of input variable
 if(!(UserId >= 0)) return false;
 …

 //Check DB schema constraints
 if(!CheckDBConstraints(EntryList))
 return false;

 //(1)Start�
�����
����//(2)Already entry?
 resultList = new ArrayList<Entry>();
 foreach(EntryRecord in EntryList){
 if(EntryRecrod.ID == UserID)
 resultList.add(EntryRecord);
 }
 int dbSelectCount = resultList.count();

 //Guard condition after(2)�Not Entry�
����if(!(dbSelectCount == 0))return false;

 //(4)Attendance?
 if(!(Attemdamce==1))return false;
 …

 //(6)Entry as attendance
 newRecord = new Entry(UserId, Name, 1)
 EntryList.add(newRecord);
 //After updating DB table, check DB schema constraints.�
����if(!CheckDBConstraints(EntryList))
 return false;

 //(7)Checking number of Attendances�
����…

 //Guard condition after(7) :Attendances are over 10 �
����if(!(dbSelectCount >= 10))
 return false;

 //(8)Show message “Capacity is over soon! …”�
�����

����//(9)Show attendances absentees�
�����
����//Appropriate test data can be obtained�
����return true;
}�

Path = “(1) (2) (4) (6) (7) (8) (9)” �

Java$$Code�

Fig. 3. Generated Java program

III. CATG

CATG is the next-generation concolic testing tool for Java
programs. Concolic testing performs symbolic execution dy-
namically, while the program is executed on some concrete
input values. Concolic testing maintains a concrete state and
a symbolic state: the concrete state maps all variables to their
concrete values; the symbolic state only maps variables that
have non-concrete values. Since concolic execution maintains
the entire concrete state of the program along an execution,
it needs initial concrete values for its inputs. Concolic testing
executes a program starting with some given or random input,
gathers symbolic constraints on inputs at conditional state-
ments along the execution, and then uses a constraint solver
to infer variants of the previous inputs in order to steer the
next execution of the program towards an alternative execution
path. This process is repeated systematically or heuristically
until all execution paths are explored, a user-defined coverage
criteria is met, or the time budget expires.

import c a t g .CATG;
p u b l i c c l a s s Testme {

p r i v a t e s t a t i c i n t foo (i n t y) {
re turn 2∗y ;

}
p u b l i c s t a t i c vo id t e s t m e (i n t x , i n t y){

i n t z = foo (y) ;
i f (z==x)

i f (x>y +10)
System . e r r . p r i n t l n (” E r r o r ”) ; / / ERROR

}
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s){

i n t x = CATG. r e a d I n t (2) ;
i n t y = CATG. r e a d I n t (1) ;
t e s t m e (x , y) ;

}
}

Fig. 4. A Simple Java Program Under Test

A. CATG Design

To apply CATG on Java programs, the user needs to specify
the inputs to the program using the following API:
p u b l i c c l a s s CATG {

p u b l i c s t a t i c i n t r e a d S t r i n g (S t r i n g x) ;
p u b l i c s t a t i c i n t r e a d I n t (i n t x) ;
. . . / / i n p u t f u n c t i o n s f o r o t h e r d a t a t y p e s

}

In addition, CATG provides an API to make a database table
symbolic. We describe this API in the next section.

Figure 4 shows a simple Java program containing two inputs
x and y. int x = CATG.readInt(1) in the program
indicates that the variable x is assigned an input and the value
of the input in the first execution defaults to 1. Note that the
argument 1 to CATG.readInt can be replaced with a call to
Random.nextInt() to make the first input to the program
random.

CATG works in two phases. In the first phase, CATG
executes the program under test. At runtime, CATG uses the
java.lang.instrument API to instrument every Java
class file of the program under test, except the CATG runtime
classes. The instrumentation of CATG inserts a method call
before every bytecode instruction. The inserted methods are
implemented by the CATG runtime and they simply log the
name and the arguments of the instruction being executed
to a trace file. If an instruction loads a value from the
memory, CATG also logs the value being loaded in the trace.
These concrete values are used by CATG to simplify complex
symbolic expressions during concolic execution. At the end
of an execution of the program under test, CATG generates
a trace file containing all the instructions being executed. A
snippet of the trace file generated by CATG on the program
in Figure 4 is shown is Figure 5.

In the second phase, CATG re-executes the instructions in
the trace file symbolically and generates a path constraint.
During the symbolic execution, CATG maintains a symbolic
heap and a symbolic call stack. CATG only executes the
instructions that are present in the trace. Therefore, if CATG
skips the instrumentation of certain class files (such as library
classes) in the first phase, the instructions from those classes
won’t be present in the trace and CATG will not symbolically

ICONST 2
INVOKESTATIC owner= c a t g /CATG name= r e a d I n t desc =(I) I
ILOAD v a r =0
GETVALUE int v=2
INVOKESTATIC owner= j a n a l a / Main name= r e a d I n t desc =(I) I
INVOKEMETHOD END
GETVALUE int v=2
ISTORE v a r =1
ILOAD v a r =1
GETVALUE int v=2
. . .
. . .

Fig. 5. A Simple Java Program Under Test

execute those instructions. This could result in stale (incorrect)
values in the symbolic state. CATG uses the values logged in
the trace to get rid of stale values.

A key advantage of running CATG in two phases is that
the symbolic execution of a path is done separately from
the concrete execution of the same path. This ensures that
the concrete execution of the program is not affected by any
bug or side-effect from the symbolic execution. The trace file
generated in the two phase process also helps in deterministic
debugging of symbolic execution—one could repeatedly run
symbolic execution on the trace with the same outcome.
The intermediate trace file also gives us the flexibility to
implement symbolic execution in any language, though we
currently implement symbolic execution in Java. Note that in
existing dynamic symbolic execution systems, both concrete
and symbolic executions are performed side-by-side in the
same execution and they closely interact with each other.

B. SQL Query Support

The Java programs generated by TESMA from design mod-
els extensively use SQL queries. CATG provides a library to
model a large subset of SQL queries. The library includes sup-
port for SELECT, UPDATE, DELETE, INSERT, GROUPBY,
HAVING, AGGREGATE, sub-query, views, composite key
constraints, foreign-key constraints. For example, one can
create a database table Customers with four columns and
ten symbolic rows using the library as follows.
Tab le c u s t o m e r s = T a b l e F a c t o r y . c r e a t e (” Cus tomers ” ,

new S t r i n g []{ ” Id ” , ”Name” , ” PasswordHash ” , ”Age”} ,
new i n t []{ Tab le . INT , Tab le . STRING , Tab le . INT , Tab le . INT} ,
new i n t []{ Tab le . PRIMARY, Tab le .NONE, Tab le .NONE, Tab le .NONE} ,
new Fore ignKey []{ nul l , nul l , nul l , n u l l }) ;

Symbol i cTab le . i n s e r t S y m b o l i c R o w s (cus tomers , 1 0) ;

Similarly, the following SQL query
ResultSet rs = statement.executeQuery(
"select Books.Id, Books.Price " +
"from Books inner join Publishers "+
"on Books.PublisherId = Publishers.Id " +
"where Books.Title= ’" + title + "’ "+
"and Publishers.Name=’"+name+"’");

gets transformed into the following Java code which calls
methods defined in the library.
R e s u l t S e t r s = Books . s e l e c t (new Where () {

p u b l i c boolean where (Row [] rows) {
i f (! rows [0] . g e t (” P u b l i s h e r I d ”) . e q u a l s (rows [1] . g e t (” Id ”)))

re turn f a l s e ;
i f (! t i t l e . e q u a l s (rows [0] . g e t (” T i t l e ”)))

re turn f a l s e ;
i f (! name . e q u a l s (rows [1] . g e t (”Name”)))

re turn f a l s e ;
re turn true ;

}
} , new S t r i n g [] [] { { ” Id ” , ” P r i c e ” } , n u l l } ,

new Tab le [] { P u b l i s h e r s }) . g e t R e s u l t S e t () ;

Once the SQL queries are transformed into Java code, CATG
can perform concolic execution of these queries like any other
Java code.

C. CATG Annotations for Guided Path Exploration

A key limitation of concolic testing is that the number of
feasible execution paths of a Java program grows exponentially
with the length of an execution and could be infinite for large
programs. Therefore, in practice it is not feasible to explore
all feasible paths of real-world Java programs. Numerous
heuristics and reduction techniques have been proposed to
guide path exploration in symbolic execution and concolic
testing. However, these techniques do not work effectively for
all kinds of programs. We believe that the programmer of a
Java program usually has a good understanding of the program
and could help concolic testing to guide path exploration
effectively so that concolic testing can achieve code coverage
quickly.

CATG provides a set of methods that a programmer can
add to the program under test. CATG uses these annotation
functions to guide concolic testing only along the paths
that are of interest to the programmer and prunes out the
other paths. One such simple annotation function provided
by CATG is CATG.assertIfPossible(int pathId,
boolean predicate). To use this annotation function,
the programmer first identifies a set of paths in the program
that she is interested in exploring. She then associates an
arbitrary unique path id to each such path. For each unique
path id, the programmer inserts suitable calls to the function
CATG.assertIfPossible throughout the program. When
CATG is invoked with a given path id, it tries to take a path
such that any call to assertIfPossible along the path
satisfies the following requirement: if the first argument to
the call matches the path id, then the second argument must
evaluate to true. Any path that violates this requirement is
discarded.

CATG provides another set of annotation functions that
enables programmers to abstract a block of code. CATG
provides the following annotation functions.
void CATG. BeginScope ()
void CATG. EndScope ()
i n t CATG. a b s t r a c t I n t (i n t x)
boolean CATG. a b s t r a c t B o o l ()
. . . / / a b s t r a c t f u n c t i o n s f o r o t h e r d a t a t y p e s

Using these annotation function, we can specify that a code
block, say x = foo();, is abstract as follows.
CATG. BeginScope () ;
x = foo () ;
CATG. EndScope () ;
x = CATG. a b s t r a c t I n t (x) ;

Here we surrounded the code block with
CATG.BeginScope() and CATG.EndScope(). Any

variable that is written (or computed) by the code block is
then abstracted by using one of the CATG.abstract*()
functions. An abstract block can be nested within other
abstract blocks.

With the above annotations, concolic testing works as
follows. We explore the program under test using concolic
testing, but avoid exploring any block of code enclosed within
CATG.BeginScope() and CATG.EndScope() (which
we will call an abstract block). Any such path that ignores
abstract blocks is called an abstract path. In an abstract
path any call of the form x = CATG.abstractInt(x)
immediately after an abstract block makes the variable x
symbolic. Given a path π in the abstraction, the path may
not be feasible in the actual program. To check the feasibility
of an abstract path, CATG performs path refinement, that is,
expands the ignored abstract blocks along the path to get a
concretely realizable path whose projection on the program
under test is π. Path refinement performs a backtracking search
over the path π, finds concrete paths through each abstract
code blocks that can be stitched together. Since paths inside
nested abstract code blocks are expanded on demand to get a
concretely realizable path, we only explore relevant parts of
the program path space. This significantly prunes our search
while retaining the relative soundness and completeness of
concolic testing.

A detailed discussion of these annotations is beyond the
scope of this paper. However, we will show some of these
annotations in the formal demonstration.

D. Capabilities and Benchmarks

CATG supports linear integer constraints, theory of
arrays, and string constraints involving concatenation,
length, and regular expression matching. CATG is
available at https://github.com/ksen007/janala2/

under the open-source BSD license. CATG uses the
ASM http://asm.ow2.org/ library for bytecode instru-
mentation and CVC4 http://cvc4.cs.nyu.edu/web/

for constraint solving. A number of benchmark programs,
including several data-structures, JLex, and NanoXML, with
suitable harnesses are also made available with CATG.

REFERENCES

[1] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: a symbolic execution
extension to Java PathFinder. In TACAS’07, 2007.

[2] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[3] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann,
and W. Visser. Symbolic execution for software testing in practice –
preliminary assessment. In ICSE Impact’11, May 2011.

[4] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. Commun. ACM, 56(2):82–90, 2013.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 21st International Conference on Software Engineering,
ICSE ’99, pages 285–294, New York, NY, USA, 1999. ACM.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In PLDI’05, June 2005.

[7] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In TACAS’03, Apr. 2003.

[8] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In ESEC/FSE’05, Sep 2005.

