Efficient Decentralized Monitoring of Safety in Distributed Systems

Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Rosu
Department of Computer Science
University of Illinois at Urbana Champaign
{ksen, vardhan, agha, grosu}@cs.uiuc.edu

Abstract

We describe an efficient decentralized monitoring algo-
rithm that monitors a distributed program’s execution to
check for violations of safety properties. The monitoring
is based on formulae written in PT-DTL, a variant of past
time linear temporal logic that we define. PT-DTL is suit-
able for expressing temporal properties of distributed sys-
tems. Specifically, the formulae of PT-DTL are relative to
a particular process and are interpreted over a projection
of the trace of global states that represents what that pro-
cess is aware of. A formula relative to one process may refer
to other processes’ local states through remote expressions
and remote formulae. In order to correctly evaluate remote
expressions, we introduce the notion of KNOWLEDGEVEC-
TOR and provide an algorithm which keeps a process aware
of other processes’ local states that can affect the validity of
a monitored PT-DTL formula. Both the logic and the moni-
toring algorithm are illustrated through a number of exam-
ples. Finally, we describe our implementation of the algo-
rithm in a tool called DIANA.

1. Introduction

Software errors from a number of different problems
such as incorrect or incomplete specifications, coding er-
rors, and faults and failures in the hardware, operating sys-
tem or network. Model checking is an important technology
which is finding increasing use as a means of reducing soft-
ware errors. Unfortunately, despite impressive recent ad-
vances, the size of systems for which model checking is
feasible remains rather limited. This weakness is particu-
larly critical in the context of distributed systems: concur-
rency and asynchrony results in inherent non-determinism
that significantly increases the number of states to be ana-
lyzed. As a result, most system builders must continue to
use testing to identify bugs in their implementations.

There are two problems with software testing. First, test-
ing is generally done in an ad hoc manner: the software de-
veloper must hand translate the requirements into specific
dynamic checks on the program state. Second, test coverage

is often rather limited, covering only some execution paths.
To mitigate the first problem, software often includes dy-
namic checks on a system’s state in order to identify prob-
lems at run-time. Recently, there has been some interest in
run-time monitoring techniques which provide a little more
rigor in testing. In this approach, monitors are automati-
cally synthesized from a formal specification. These moni-
tors may then be deployed off-line for debugging or on-line
for dynamically checking that safety properties are not be-
ing violated during system execution.

In this paper, we argue that distributed systems may
be effectively monitored at runtime against formally speci-
fied safety requirements. By effective monitoring, we mean
not only linear efficiency, but also decentralized monitor-
ing where few or no additional messages need to be passed
for monitoring purposes. We introduce an epistemic tem-
poral logic for distributed knowledge. We illustrate the ex-
pressiveness of this logic by means of some simple ex-
amples. We then show how efficient distributed monitors
may be synthesized from the specified requirements. Fi-
nally, we describe a distributed systems application devel-
opment framework, called DIANA. To use DIANA, a user
must provide an application together with the formal safety
properties that she wants monitored. DIANA automatically
synthesizes code for monitoring the specified requirements
and weaves appropriate instrumentation code into the given
application. The architecture of DTANA is illustrated in Fig-
ure 1.

The work presented in this paper was stimulated by the
observation that in many distributed systems, such as wire-
less sensor networks, it is quite impractical to monitor re-
quirements expressed in classical temporal logics. For ex-
ample, consider a system of mobile nodes in which one mo-
bile node may request a certain value from another mobile
node. On receiving the request, the second node computes
the value and returns it. An important requirement in such
a system is that no node receives a reply from a node to
which it has not previously issued a request. It is easy to
see that Linear Temporal Logic (LTL) would not be a prac-
tical specification language for any reasonably sized collec-

Distributed
Programin

Specification Instrumentation
y

Instrument
or

Bytecode

Monitoring
i | Instrumented ! i Module
MonitorImpl /
Execute - “""""“'"':::::::::::.:::::::: 3
Monitor
40‘—0—>
Program Execution

Figure 1. The Architecture of DIANA

tion of nodes. To use LTL, we would need to collect consis-
tent snapshots of the global system; a monitor would then
check the snapshots for possible violations of the property
by considering all possible interleavings of events that are
allowed by the distributed computation. In a system of thou-
sands of nodes, collecting such a global snapshot would be
prohibitive. Moreover, the number of possible interleavings
to be considered would be large even if powerful techniques
such as partial order reduction are used.

To address the above difficulty, we define past-time dis-
tributed temporal logic (PT-DTL). Using PT-DTL, one can
check a property such as the one above by having a local
monitor on each node. For example, node a monitors “if a
has received a value then it must be the case that previously
in the past at b the following held: b has computed the value
and at a a request was made for that value in the past”. This
is precisely and concisely expressed by the PT-DTL for-
mula:

receivedV alue —
@y (O (computedV alue A Q,(QrequestedV alue)))

Note that we read @ as “at”, Q,F is the value of F in
the most recent local state of b that the current process is
aware of, and ¢ denotes the formula was true sometime in
the past. Monitoring the above formula involves sending no
additional messages — it involves inserting only a few bits
of information which are piggybacked on the messages that
are already being passed in the computation. This efficiency
provides a substantial improvement over what is required to
monitor formulas written in classical LTL.

We introduce remote expressions in PT-DTL to repre-
sent values which are functions depending on the state of
a remote process. For example, a process may monitor the
property: “if my alarm has been set then it must be the case
that the difference between my temperature and the temper-
ature at process b exceeded the allowed value”. This is ex-
pressed as:

alarm — Q((myTemp — QyotherTemp) > allowed)

Here QuotherTemp is a remote expression that is sub-
tracted from the local value of myT emp.

An example of a safety property that may be useful in the
context of an airplane software is: “if my airplane is land-
ing then the runway allocated by the airport matches the one
that I am planning to use”. This property may be expressed
in PT-DTL as follows:

landing — (runway = (QgrportallocRunway))

Many researchers have proposed temporal logics to rea-
son about distributed systems. Most of these logics are in-
spired by the classic work of Aumann [5] and Halpern ez al.
[7] on knowledge in distributed systems. Meenakshi et al.
define a knowledge temporal logic interpreted over a mes-
sage sequence charts in a distributed system [16] and de-
velop methods for model checking formulae in this logic.
Our communication primitive was in part inspired by this
work, but we allow arbitrary expressions and atomic propo-
sitions over expressions in their logic.

Another closely related work is that of Penczek [17,
18] which defines a temporal logic of causal knowledge.
Knowledge operators are provided to reason about the local
history of a process, as well as about the knowledge it ac-
quires from other processes. However, in order to keep the
complexity of model checking tractable, Penczek does not
allow the nesting of causal knowledge operators. Interest-
ingly, the nesting of causal knowledge operators does not
add any complexity to our algorithm for monitoring.

Leucker investigates linear temporal logic interpreted
over restricted labeled partial orders called Mazurkiewicz
traces [12]. An overview of distributed linear time tempo-
ral logics based on Mazurkiewicz traces is given by Thia-
garanjan et al. in [22]. Alur et al. [4] introduce a tempo-
ral logic of causality (TLC) which is interpreted over causal
structures corresponding to partial order executions of a dis-
tributed system. They use both past and future time opera-
tors and give a model checking algorithm for the logic.

In recent years, there has been considerable interest in
runtime verification [1]. Havelund et al. [10] give algo-
rithms for synthesizing efficient monitors for safety prop-
erties. Sen et al. [20] develop techniques for runtime safety
analysis for multithreaded programs and introduce the tool
JMPAX. Some other runtime verification systems include
JPaX from NASA Ames [9] and UPENN’s Mac [11].

We can think of at least three major contributions of the
work presented in this paper. First, we define a simple but
expressive logic to specify safety properties in distributed
systems. Second, we provide an algorithm to synthesize de-
centralized monitors for safety properties that are expressed
in the logic. Finally, we describe the implementation of a
tool (DIANA) that is based on this technique. The tool is
publicly available for download.

The rest of the paper is organized as follows. Section 2
and Section 3 give the preliminaries. Section 4 introduces
PT-DTL. In Section 5 we describe the algorithm that under-
lies our implementation. Section 6 briefly describes the im-
plementation along with initial experimentation.

2. Distributed Systems

A distributed system is a collection of n processes or ac-
tors (p1,.-.,pn), each with its own local state. The local
state of a process is given by the values bound to its vari-
ables. Note that there are no global or shared variables. Pro-
cesses communicate with other using asynchronous mes-
sages whose order of arrival is indeterminate. The computa-
tion of each process is abstractly modeled by a set of events,
and a distributed computation is specified by a partial order
< on the events. There are three types of events:

1. internal events change the local state of a process;
2. send events cause a process to send a message; and

3. receive events occur when a message is received by a
process.

Let E; denote the set of events of process p; and let E de-
note Ul F;.Now, < C FE x FE is defined as follows:

1. e < €' if e and €’ are events of the same process and ¢
happens immediately before ¢,

2. e < ¢ if e is the send event of a message at some pro-
cess and €’ is the corresponding receive event of the
message at the recipient process.

The partial order < is the transitive closure of the relation
<. This partial order captures the causality relation between
events. The structure described by C = (E, <) is called
a distributed computation and we assume an arbitrary but
given distributed computation C. Further, < is the reflexive
and transitive closure of <. In Fig. 2, 11 < es3, €12 < ea3,
and ey < es3. However, e1o)éegg.

For e € E, we define |e def {¢ | ¢ X e}, thatis, |e
is the set of events that causally precede e. For e € FE;, we
can think of | e as the local state of p; when the event e has
just occurred. This state contains the history of events of all
processes that causally precede e.

We extend the definition of <, < and < to local states
such that |e < |e'iffe < ¢/, e < e/ iff e < ¢/, and |e <
le’ iff e % ¢’. We denote the set of local states of a process

e3l e32 €33
p3 -
m3
ml m2
p2 >
e22 e23
m4
p1 -
ell el2

Figure 2. Sample Distributed Computation

piby LS; & {le | e € E;} and let LS %' | J, LS;. We

use the symbols s, s}, s/, . . . to represent the local states of
process p;. We also assume that the local state s; of each
process p; associates values to some local variables V;, and
that s;(v) denotes the value of a variable v € V; in the local
state s; at process p;.

We use the notation causal;(s;) to refer to the latest state
of process p; that the process p; knows while in state s;.
Formally, if causal;(s;) = s; thens; € LS; and s; < s;
and for all s} € LS;if s X s; then s} < s;. For exam-
ple, in Figure 2 causali(leas) = |e1o. Note that if i = j
then causal;(s;) = s;.

3. Past Time Linear Temporal Logic (PT-LTL)

Past-time Linear Temporal Logic (PT-LTL) [13, 14] has
been used in [10, 11, 20] to express, monitor and predict vi-
olations of safety properties of software systems. The syn-
tax of PT-LTL is as follows:

F := true|false |a€ A|—-F | FopF propositional
| OF |QF |OF |FSF temporal

where op are standard binary operators, A, V, —, and <.
OF should be read as “previously”, ¢ F' as “eventually in
the past”, C1F' as “always in the past”, F1SF; as “F} since
.

The logic is interpreted on a finite sequence of states or

arun.If p = s182...5s, is a run then we let p; denote the
prefix run s;ss ... s; for each 1 < ¢ < n. The semantics of
the different operators is given in Table 1.
For example, the formula H((action A ®-action) —
(—stop S start)) states that whenever action starts to be
true, it is the case that start was true at some point in the
past and since then stop was never true: in other words, the
action is taken only while the system is active.

Notice that the semantics of “previously” is given as if
the trace is unbounded in the past and stationary in the first
event. In runtime monitoring, we start the process of moni-
toring from the point that the first event is generated and we
continue monitoring for as long as events are generated.

iff p = Fy and/or/implies/iff p |= F», whenopis A/ V /| — | <,
iff o' E F, where p' = p,_1ifn>landp’ = pifn =1,

p | true for all p,

p £ false for all p,

pEa iff @ holds in the state s,,,
pE-F iff p = F,

p E FyopFy

pEOF

pEOF iff p; = F for some 1 <14 <mn,
p ELF iff p, = Fforalll <i <n,
P ': Fl S F2

iff p; = Fy forsome 1 < j <nandp; |= F; forall j < i <mn,

Table 1. Semantics of pT-LTL

Although PT-LTL is interpreted over a linear execution
trace, in distributed systems a computation is a partial or-
der which may have several possible linearizations. There-
fore, monitoring a distributed computation requires moni-
toring all possible linear traces that may be obtained from a
partial order. Unfortunately, the number of linearizations of
a partial order may be exponential in the length of the com-
putation and thus monitoring PT-LTL formula may be in-
tractable. A major contribution of this paper is to extend PT-
LTL so that we can reason about a distributed property us-
ing only local monitoring. We describe this extension next.

4. Past Time Distributed Temporal Logic

Although PT-LTL works well for a single process, once
we have more processes interacting with each other we need
to reason about the state of remote processes. Since prac-
tical distributed systems are usually asynchronous and the
absolute global state of the system is not available to pro-
cesses, the best thing that each process can do it to reason
about the global state that it is is aware of.

We define Past-Time Distributed Temporal Logic (PT-
DTL) by extending PT-LTL to express safety properties of
distributed message passing systems. Specifically, we add
a pair of epistemic operators as in [19], written @, whose
role is to evaluate an expression or a formula in the last
known state of a remote process. We call such an expres-
sion or a formula remote. A remote expression or formula
may contain nested epistemic operators and refer to vari-
ables that are local to a remote process. By using remote
expressions, in addition to remote formulae, a larger class
of desirable properties of distributed systems may be speci-
fied without sacrificing the efficiency of monitoring.

For example, consider the simple local property at a pro-
cess p; that if v is true in the current local state of p; then 3
must be true at the latest state of process p; of which p; is
aware of, This property will be written formally in PT-DTL
as a — Q;3. Howeyver, referring to remote formulae only is
not sufficient to express a broad range of useful global prop-
erties such as “at process p;, the value of = in the current

state is greater than the value of y at process p; in the lat-
est causally preceding state.” The reason we introduce the
novel epistemic operators on expressions is that it is cru-
cial to be able to also refer to values of expressions in re-
mote local states. For example, the property above can be
formally specified as the PT-DTL formula z > Q,y at pro-
cess p; where @,y is the value of y at process p; that p; is
aware of.

The intuition underlying PT-DTL is that each process is
associated with local temporal formulae which may refer to
the global state of the distributed system. These formulae
are required to be valid at the respective processes during
a distributed computation. A distributed computation satis-
fies the specification when all the local formulae are shown
to satisfy the computation.

4.1. Syntax

From now on, we will use PT-DTL formula only in the
context of a particular process, say p;. We call such formu-
lae i-formulae and denote them as F;, F, Moreover, we
introduce ¢-expressions, expressions that are local to a pro-
cess p;, and denoted them by &;, &, Informally, an -
expression is an expression over the global state of the sys-
tem that process p; is currently aware of. Local predicates
on i-expressions form the atomic propositions on which the
temporal ¢-formulae are built.

We add the epistemic operators Q; that take j-
expressions or j-formulae and convert them into expres-
sions or formulae local to process p;. Informally, Q; yields
an expression or a formula on process p; over the projec-
tion of the global state that the current process is aware of.
The following gives the formal syntax of PT-DTL with re-
spect to a process p;, where ¢ and j are any process indices
(not necessarily distinct):

Fy == true| false | P(&) | =F; | F; op F; propositional

| OF; | OF; |QF; | F; S F; temporal

| Q;F; epistemic
&= clv| f(&) functional

| @;¢; epistemic

é::: (57,7751)

The infix operator op may be a binary propositional oper-
ator such as A, V, — or =. The term ¢; stands for a tuple of
expressions on process Di- The term P(&) is a (computable)
predicate over the tuple 51 and f (fz) is a (computable) func-
tion over the tuple. For example, P may be <, <, >, > =
and f may be +, —, /, *. Variables v; belongs to the set V;
which contains all the local state variables of process p;.
Constants such as 0, 1, 3.4 are represented by ¢, ¢/, ¢y,

The expression Q;&; is an i-expression representing the
remote expression §;. Similarly, @; F; is an i-formula re-
ferring to the local knowledge about the remote validity of
j-formula F}. In other words, @; converts a j-expression
or a j-formula to an i-expression or an ¢-formula, respec-
tively.

4.2. Semantics

The semantics of PT-DTL is a natural extension
of PT-LTL with the expected behavior for the epis-
temic operators. The atomic propositions of PT-LTL are
replaced by predicates over tuples of expressions. Ta-
ble 2 formally gives the semantics of each operator
of P-DTL. (C,s;)[Q;¢;] is the value of the expres-
sion &; in the state s; = causal(s;) which is the latest
state of process p; of which process p; is aware of. We as-
sume that expressions are properly typed. Typically, these
types could be: integer, real, strings. We as-
sume that s;, s;,s/,... € LS; and sj,sj,sj,... € LS;.
Notice that, as in PT-LTL, the meaning of the “previ-
ously” operator on the initial state of each process re-
flects the intuition that the execution trace is unbounded in
the past and stationary. We consider this as the most rea-
sonable assumption that one can make about the past.

4.3. Examples

To illustrate our logic, we consider a few relatively stan-
dard examples in the distributed systems literature (see, e.g.,
[21]). The first example is leader election for a network of
processes. The key requirement for leader election is that
there is at-most one leader. Assume the number of processes
is n, and state is a variable in each process that can have
values leader, loser, candidate, sleep. We can formu-
late the key leader election property at every process as: “if a
leader is elected then if the current process is a leader then,
to its knowledge, none of the other processes is a leader”
written as the PT-DTL i-local formula:

leaderElected — (state = leader —

N;ji(@j(state # leader))

Given an implementation of the leader election problem,
one can monitor this formula at each process. If the prop-

erty is violated, then clearly the leader election implemen-
tation is incorrect.

The second example is majority vote. The desired prop-
erty, “if the resolution is accepted then more than half of the
processes say yes”, can be stated as:

accepted — (@q(vote) + @Qy(vote)+

.+ @, (vote)) > n/2

where, a process stores 1 in a local variable vote if it is in
favor of the resolution, and 0 otherwise.

A third example is a safety property that a server must
satisfy in case it reboots itself: “the server accepts the com-
mand to reboot only after knowing that each client is in-
active and aware of the warning about pending reboot.”
The property is expressed as the server-local formula be-
low which contains nested epistemic operators:

rebootAccepted —
Actient (Qciient (inactive A QgeryerrebootWarning))

5. Monitoring Algorithm for pT-DTL

We describe an automated technique to synthesize effi-
cient distributed monitors for safety properties in distributed
systems expressed in PT-DTL. We assume that one or more
processes are associated with PT-DTL formulae that must
be satisfied by the distributed computation. The synthesized
monitor is distributed, in the sense that it consists of sepa-
rate, local monitors running on each process. A local mon-
itor may attach additional information to an outgoing mes-
sage from the corresponding process. This information can
subsequently be extracted by the monitor on the receiving
side without changing the underlying semantics of the dis-
tributed program. The key guiding principles in the design
of this technique are:

e A local monitor should be fast, so that monitoring can
be done online;

e A local monitors should have little memory overhead,
in particular, it should not need to store the entire his-
tory of events on a process; and

e The number of messages that need to be sent between
processes for the purpose of monitoring should be min-
imal.

In this section, when we refer to a remote expression or
formulae we mean an expression which occurs in any of the
monitored PT-DTL formulae.

5.1. Knowledge Vectors

Consider the problem of evaluating a remote j-
expression @;&; at process p;. A naive solution is that pro-
cess p; simply piggybacks the value of £; evaluated at p;,

C,s; = true for all s;

C,s; = false for all s;

C, S; ': P({l, . ,f{) 1ffP((C, 31)[[51]], ey (C, 51)[[5{]]) = true

C,Si ': —\Fi lffC,Sl b& E

C,si = F;opF! iffC,s; = FyopC,s; = F!

C,s; ’: OF; lfflfﬂsg . S; < s; thenC, S; ': F;elseC, s; ': F;
C,si|= OF; iff 3s, . s} < s; and C, s}, = F;

C,Si ': DFi lffC,Si ': Fl for all Sé #Si

C,sil= F;SF)] if3s, . s} g s;and C, s} = F! andVs) . s, < s X s; implies C, s/ = F;
C,s; = Q,F} iff C,s; = Fj where s; = causal(s;)

(C, si)[vi] = s;(v;), thatis, the value of v; in s;

(€, si)[ci] =

(€, s)f (&, .-, &D] = f(C,s)[&], -, (C,s)[€])

(€, s)[Q;81 = (C, 55)[&;] where s; = causal;(si)

Table 2. Semantics of pT-DTL

with every message that it sends out. The recipient pro-
cess p; can extract this value and use it as the value of @Q;¢;.
However, this approach is problematic: recall that mes-
sages from p; could reach p; in an arbitrary order: be-
cause the arrival order of two messages, even from the same
sender, is indeterminate, more recent values may be over-
written by older ones. To keep track of the causal his-
tory, or in other words the most recent knowledge, we add
an event number corresponding to the local history se-
quence at p; at the time expressions were sent out in
messages. Stale information in a reordered message se-
quence is then simply discarded.

Causal ordering can be effectively accomplished by us-
ing an array called KNOWLEDGEVECTOR with an entry for
any process p; for which there is an occurrence of @; in
any PT-DTL formula at any process. Note that knowledge
vectors are motivated and inspired by vector clocks [8, 15].
The size of KNOWLEDGEVECTOR is not dependent on the
number of processes but on the number of remote expres-
sions and formulae. Let K'V[j] denote the entry for process
p; on a vector K'V. KV[j] contains the following fields:

o The sequence number of the last event seen at p;, de-
noted by KV[j].seq;

e A set of values KV[j].values storing the values j-
expressions and j-formulae.

Each process p; keeps alocal KNOWLEDGEVECTOR de-
noted by K'V;. The monitor of process p; attaches a copy
of K'V; with every outgoing message m. We denote the
copy by KV,,. The algorithm for the update of KNOWL-
EDGEVECTOR KV at process p; is as follows:

1. [internal]: update KV;[¢]. Evaluate eval(;,s;)
and eval(F;,s;) (see Subsection 5.2) for each Q;¢;

and @;F;, respectively, and store them in the set
KV;[i].values;

2. [send m]: KV;[i].seq «— KV;[i].seq + 1. Send KV;
with m as KV,,;

3. [receive m]: for all j, if KV,,[j].seq > KV;[j].seq
then KV;[j] «— KV,,[j], thatis,
KV;[j].seq — KVp,[j].seq, and
KV;[j].values < KV,,[j].values.

We call this the KNOWLEDGEVECTOR algorithm. Infor-
mally, K'V;[j].values contains the latest values that p; has
for j-expressions or j-formulae. Therefore, for the value of
a remote expression or formula of the form @;¢{; or @, F},
process p; can just use the entry corresponding to &; or F} in
the set K V;[j].values. Note that the sequence number needs
to be incremented only when sending messages. The cor-
rectness of the algorithm is relatively straightforward and
we skip its formal proof.

Proposition 1 For any process p; and any j, the entry for
& or Fj in KV;[j].values contains the value of Q;&; or
Q; Fj, respectively.

The above algorithm tries to minimize the local work
when sending a message. However, observe that the val-
ues calculated at step 1 are needed only when an outgoing
message is generated at step 2, so one could have just eval-
uated all the expressions &; and F; at step 2, right before the
message is sent out. This would reduce the runtime over-
head at step 1 but it would increase it at step 2. For different
applications, different alternates may be more efficient.

The initial values for all the variables in a distributed pro-
gram can may be found either by a static analysis of the pro-
gram or by a distributed broadcast at the beginning of the

computation. Thus, it is assumed that each process p; has
the complete knowledge of the initial values of remote ex-
pressions for all processes. These values are used to initial-
ize the entries K'V;[j].values in the KNOWLEDGEVECTOR
of p; forall j.

5.2. Monitoring a Local pT-DTL Formula

The monitoring algorithm for a PT-DTL formula is sim-
ilar in spirit to that for an ordinary PT-LTL formula de-
scribed in [20]. The key difference is that we allow remote
expressions and remote formulae whose values and valid-
ity, respectively, need to be transferred from the remote pro-
cess to the current process. Once the KNOWLEDGEVEC-
TOR is properly updated, the local monitor can compute
the boolean value of the formula to be monitored, by recur-
sively evaluating the boolean value of each of its subformu-
lae in the current state. To do so, it may also use the boolean
values of subformulae evaluated in the previous state and
the values of remote expressions and remote formulae.

A function eval is defined next. eval takes advantage of
the recursive nature of the temporal operators (see Table 3)
to calculate the boolean value of a formula in the current
state in terms of (a) its boolean value in the previous state
and (b) the boolean value of its subformulae in the cur-
rent state. The function op(F;) returns the operator of the
formula F;, binary(op(F;)) returns true if op(F;) is binary,
unary(op(F;)) returns true if op(F;) is unary, left(F;) returns
the left subformula of F;, right(F;) returns the right subfor-
mula of F; when op(F;) is binary, and subformula(F;) re-
turns the subformula of F} otherwise. The variable index
represents the index of a subformula.

array now; array pre; int index;

boolean eval(Formula F;,State s;){
if binary(op(F;)) then{
lval «— eval(left(F;), s:);
rval — eval(right(F;), s:); }
else if unary(op(F;)) then
val — eval(subformula(F;), s;);
index «— 0;
case(op(F;)) of {
true : return true; false : return false;
P(&) : return P(eval(&s, 81),. .., eval(&l, s:)));
op : return rval op lval; —: return not val;
S : nowlindex] < (pre[index] and lval) or rval;
return now|index++];
O : now(index] « prelindex] and val;
return nowlindex++];
® : now(index] < pre[indez] or val;
return now|index++];
© : now[index] « val; return prelindex++];
@; F; : return value of F; from KV;[j].values;

where, the global array pre contains the boolean values of
all subformulae in the previous state that will be required in
the current state, while the global array now, after the eval-
uation of eval, will contain the boolean values of all subfor-
mulae in the current state that may be required in the next
state. Note that the now array’s value is set in the function
eval. The function eval on expressions is defined next:

value eval(Expression ¢;, State s;){
case(&;) of{
v;: return s; (v;); ¢! return ¢;;
&, ... &) return f(eval(E},si),. .., eval(€F,s:));
@;¢&’: return value of & from K'V;[j].values;
}
}

Note that the function eval cannot be used to evaluate the
boolean value of a formula at the first event, as the recur-
sion handles the case n = 1 in a different way. We define
the function init to handle this special case as implied by the
semantics of PT-DTL in Tables 2 and 3 on one event traces:
boolean init(Formula F;, State s;){

if binary(op(F;)) then{
lval — init(left(Fi, s:));
rval «— init(right(F;, s;)); }

else if unary(op(F;)) then
val «— init(subformula(F;, s;));

index «— 0;

case(op(F;)) of{
true : return true; false : return false;
P(&) : return P(eval(&s, i), ..., eval(€l, s:)));
op : return rval op lval; = : return not val;
S : nowlindez]| «— rval; return now[indez++|;
0,9, ® : nowlindez] « val; return nowlindez++];

}

}

As mentioned earlier, in order to properly update the set
KV;[i].values, we can either use the function eval after ev-
ery internal event, or use it immediately before sending any
message. If a monitored PT-DTL formula F; is specified for
a process p;, we call p; as the owner of that formula. At the
owner process, we evaluate F; using the eval function after
every internal and receive event and assign now to pre. This
is done after the KNOWLEDGEVECTOR is updated, corre-
spondingly after the event. If the evaluation of F; is false
then we report a warning that the formula F; has been vi-
olated. The time and space complexity of this algorithm at
every event is ©(m), where m is the size of the original lo-
cal formula.

5.3. Example

Consider three processes, p1, p2 and ps. p; has a local
variable x whose initial value is 5, ps has a local variable

Ca Sq ’: <>-F1 =
C, S; ’: E]Fl
C, S ': FZSE/

C,s; = Flor

C,s; = Fyor(3s;.s, <s;andC, s = OF)
C,s; = F; and (3s; . s} < s; implies C, s; = LIF;)

(C,s; E Fyand 3s; . s, < s, and C, s} = F;SF])

Table 3. Recursive Semantics of pT-DTL

y with initial value 7 and p» monitors the formula H(y >
@;). An example computation is shown in Figure 3.

-t[olo]

E_l
=
w @
=3
@
el

y

4

9]
bl g
@ e €2 fi‘-zsg
y:
E (violation)
X ‘E H €12 X=6 14

()

10

€
8‘11 6‘15
ol & o]
“— KV[1].seq
<— KV[1].values

Figure 3. Monitoring of Cl(y > @, z) at p,

There is only one formula to monitor with a single occur-
rence of an @ operator, namely @, z. Hence, the KNOWL-
EDGEVECTOR has a single entry which corresponds to pj.
Moreover, since the only remote expression to be tracked
is z, KV[1].values simply stores the value of z. In the fig-
ure, next to each event, we show K V[1] at that instant for
that process. K V[1] is graphically displayed by a stack of
two numbers, the top number showing KV[1].seq and the
bottom number showing the value for x.

The computation starts off with the initial values of
x = 5 and y = 7. All processes know the initial value
of z, hence the K V[1].values for each process has value 5.
It is easy to see that the monitored formula H(y > @Q;x)
holds initially at p,. Subsequently, at p; there is an internal
event e1; which sets z = 9 and updates K'V; [1].values cor-
respondingly. Process p; then sends a message to ps with a
copy of its current K'V. Another internal event e;3 causes x
to be set to 6. Process p; again sends a message, this time
to ps3, with the updated K'V. Process ps updates its KV and
sends this on the message it sends to p,.

At process p2, the message sent by ps happens to arrive
earlier than the message from p;. Therefore, at event ey,

on receiving the message from ps, process ps is able to up-
date its K'V to the one sent at event e14. The monitor at po
again evaluates the property and finds that it still holds. The
message sent by p; finally arrives at ea2 but the KV pig-
gybacked on is ignored as it has a smaller K'V[1].seq than
KV5[1].seq. The monitor correctly continues to declare the
property valid. However, another internal event at py causes
the value of y to drop to 3, at which point the monitor de-
tects a property violation,

6. The DIANA Tool

We have implemented the above technique as a tool,
called DIANA (Distributed ANAlysis) (see Figure 1). DI-
ANA is publicly available and can be downloaded from:
http://fsl.cs.uiuc.edu/diana/. Both DIANA and
the framework under which it operates are written in Java.

6.1. Actors

A number of formalisms can be used to reason about dis-
tributed systems, the most natural one being Actors [2, 3].
Actors are a model of distributed reactive objects and have
a built-in notion of encapsulation and interaction, making
them well suited to represent evolution and coordination
between interacting components in distributed applications.
Conceptually, an actor encapsulates a state, a thread of con-
trol, and a set of procedures which manipulate the state.
Actors coordinate by asynchronously sending messages to
each another. In the actor framework, a distributed system
consists of different actors communicating through mes-
sages. Thus, there is an actor for each process in the sys-
tem.

In the implementation, each type of actor (or process) is
denoted by a Java class that extends a base class Actor.
This base class implements a message queue and provides
the method send for asynchronous message sending. Each
actor object executes in a separate thread. The state of an ac-
tor is represented by the fields of the Java class. Each Java
class also contains a set of public methods that can be in-
voked in response to messages received from other actors.
A system level actor called ActorManager takes a message
and transfers it to the message queue of the target actor. The
target actor takes an available message from the message
queue and invokes the method mentioned in the message.

While processing a message, an actor may send messages to
other actors. Message sending, being asynchronous, never
blocks an actor. However, an actor blocks if there is no mes-
sage in its message queue. The system is initialized by the
ActorManager object that creates all the actors in the sys-
tem and starts the execution of the system.

6.2. Distributed Monitors in DIANA

The user of DTANA specifies the local PT-DTL formulae
to be monitored on each actor in a special file. Each actor
has a unique name, which is the name of the corresponding
process. The name is passed as a string at the time creation
of an actor.

As Figure 1 shows, the core of DIANA consists of
two modules: an instrumentation module and a monitor-
ing module. The instrumentation module takes the specifi-
cation file and the distributed program written in the above
framework and creates a Java class MonitorImpl that
implements a local monitor for each actor (or process). It
also automatically instruments the distributed program at
the bytecode level (after compilation), so that the distributed
program invokes its local monitor whenever it modifies a
field variable (internal event), sends a message, or invokes
a method (receive event).

One may alternately choose to evaluate the epistemic
expressions and formulae immediately before sending an
event (Subsection 5.1). In this case the local monitor is not
invoked when field variables are modified. While runtime
overhead was not the major concern for us in implementing
our prototype, delaying such evaluation generally reduces
the runtime overhead.

6.3. Test Cases

We implemented the following voting algorithm: a
Chair process asks for vote on a resolution from N vot-
ers named Voter;, Voters, ..., Votery, where
N is initialized to an arbitrary but fixed positive num-
ber. We assume that the processes are connected in a
tree kind of network with the Chair at the root of the
tree and the voters at different nodes. Each voter ran-
domly decides if it wants to vote for or against the
resolution, and correspondingly stores 1 or O in a lo-
cal state variable called vote. The voter then sends its
decision to its immediate parent in the tree. The par-
ent collects the votes and sends the sum of its vote and its
progenies’ votes to its immediate parent. The Chair pro-
cess collects all the votes and rejects the resolution only if
half or more voters have rejected. We monitor the follow-
ing safety property at Chair:

reject — ((Xe(1..n) Qvoter, (Vote)) < N/2)

The property was found to be violated in several runs: at
some voter nodes, the voter sent the sum of its progenies’
votes without adding its own vote. This resulted in the re-
jection of the resolution when it should have been accepted.

We have also tested a vector clock [8, 15] algorithm im-
plemented in the framework presented in this section. The
algorithm was implemented as part of global snapshot and
garbage collection algorithm. In this algorithm, each pro-
cess is assumed to have a local vector clock V' that it up-
dates according to the standard vector clock algorithm [8]
whenever there is an internal event, a send event or a re-
ceive event. The safety property that the algorithm must sat-
isfy is that, at every process p;: “all entries of the local vec-
tor clock must be greater than or equal to the local vector
clock in a causally latest preceding state of any other pro-
cess,” expressed as the following i-formula:

B A\ V=)
JE[L..n]

where V' > V' when every entry in V is greater than or
equal to the corresponding entry in V’. Another safety prop-
erty states that “at every process p; the i-th entry in its local
vector clock must be strictly greater than the ¢-th entry of
the local vector clock of any other process”. This can be ex-
pressed as the following i-formula:

o A\ VI > Vi)

JE€l..n]

The second property was found to be violated in some com-
putations due to a bug caused by failure to increment the
i-th entry of the local vector clock of process p; when re-
ceiving events.

These simple examples illustrate the practical utility and
power of PT-DTL and the monitoring tool DIANA based on
it.

7. Conclusion and Future Work

This work represents the first step in effective distributed
monitoring. The work presented here suggests a number of
problems that require further research. The logic itself could
be made more expressive so that it expresses not only safety,
but also liveness properties. One difficulty is that software
developers are reluctant to use formal notations. A partial
solution may be to merge the present work with a more
expressive and programmer friendly monitoring temporal
logic such as EAGLE [6]. A complementary approach is
to develop visual notations and synthesizing temporal logic
formulas from such notations. There may also be the possi-
bility of learning formulas based on representative scenar-
ios.

An interesting avenue of future investigation that
our work suggests is what we call Knowledge-based

Aspect-Oriented Programming. Knowledge-based Aspect-
Oriented Programming is a meta-programming discipline
that is suitable for distributed applications. In this pro-
gramming paradigm, appropriate actions are associated
with each safety formula; these actions are taken when-
ever the formula is violated to guide the program and avoid
catastrophic failures.

Acknowledgements

The first three authors are supported in part by the De-
fense Advanced Research Projects Agency (the DARPA
IPTO TASK Program, contract F30602-00-2-0586, the
DARPA IXO NEST Program, contract F33615-01-C-
1907), the ONR Grant N00014-02-1-0715, and the Mo-
torola Grant MOTOROLA RPS #23 ANT. The last au-
thor is supported in part by the joint NSF/NASA grant
CCR-0234524.

References

[11 Ist, 2nd and 3rd CAV Workshops on Runtime Verification
(RV’01 - RV’03), volume 55(2), 70(4), 89(2) of Electronic
Notes in Theoretical Computer Science. Elsevier Science:
2001, 2002, 2003.

[2] G. Agha. Actors: A Model of Concurrent Computation. MIT
Press, 1986.

[3] G. Agha,I. A. Mason, S. F. Smith, and C. L. Talcott. A foun-
dation for actor computation. Journal of Functional Pro-
gramming, 7:1-72, 1997.

[4] R. Alur, D. Peled, and W. Penczek. Model checking of
causality properties. In Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science (LICS’95), pages
90-100, San Diego, California, 1995.

[5]1 R. Aumann. Agreeing to disagree. Annals of Statistics,
4(6):1236-1239, 1976.

[6] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In Proceedings of 5th Interna-
tional Conference on Verification, Model Checking and Ab-
stract Interpretation (VMCAI’04), volume 2937 of Lecture
Notes in Computer Science, pages 44-57, Venice, Italy, Jan-
uary 2004. Springer-Verlag.

[7]1 R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[8] C. J. Fidge. Partial orders for parallel debugging. In Pro-
ceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop
on Parallel and Distributed Debugging (WPDD’88), pages
183-194. ACM, 1988.

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Havelund and G. Rogu. Java pathexplorer — A runtime
verification tool. In The 6th International Symposium on Ar-
tificial Intelligence, Robotics and Automation in Space: A
New Space Odyssey, Montreal, Canada, June 18 - 21, 2001.
K. Havelund and G. Rogu. Synthesizing monitors for
safety properties. In Tools and Algorithms for Construction
and Analysis of Systems (TACAS’02), volume 2280 of Lec-
ture Notes in Computer Science, pages 342-356. Springer-
Verlag, 2002.

M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: a
run-time assurance tool for java. In Proceedings of Runtime
Verification (RV’01), volume 55 of Electronic Notes in The-
oretical Computer Science. Elsevier Science, 2001.

M. Leucker. Logics for mazurkiewicz traces. Technical Re-
port AIB-2002-10, RWTH, Aachen, Germany, April 2002.
Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag, New York, 1992.
Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, New York, 1995.

F. Mattern. Virtual time and global states of distributed
systems. In M. C. et. al., editor, Proceedings of the Inter-
national Workshop on Parallel and Distributed Algorithms,
pages 215-226. Elsevier Science, 1989.

B. Meenakshi and R. Ramanujam. Reasoning about mes-
sage passing in finite state environments. In International
Colloquium on Automata, Languages and Programming
(ICALP’00), volume 1853 of Lecture Notes in Computer Sci-
ence, pages 487—498. Springer-Verlag, 2000.

W. Penczek. A temporal approach to causal knowledge.
Logic Journal of the IGPL, 8(1):87-99, 2000.

W. Penczek and S. Ambroszkiewicz. Model checking of
causal knowledge formulas. In Workshop on Distributed Sys-
tems (WDS’99), volume 28 of Electronic Notes in Theoreti-
cal Computer Science. Elsevier Science, 1999.

R. Ramanujam. Local knowledge assertions in a changing
world. In Theoretical Aspects of Rationality and Knowledge
(TARK’96), pages 1-14. Morgan Kaufmann, 1996.

K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of
multithreaded programs. In ACM SIGSOFT Conference on
the Foundations of Software Engineering / European Soft-
ware Engineering Conference (FSE / ESEC’03), Helsinki,
Finland, 2003.

G. Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 2nd edition, September 2000.

P. S. Thiagarajan and I. Walukiewicz. An expressively com-
plete linear time temporal logic for Mazurkiewicz traces. In
Twelth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’97), pages 183-194, Warsaw, Poland, 1997.

