1 Soundness of the Algorithm in [1]

Let us consider a coin toss experiment with P(H) = po and P(T) = 1 — py,
where pg is unknown. We want to test whether pg > p or pg < p. There are two
ways to set up the experiment as follows:

Type 1 Assume that pg & [p — d1,p + 02]. Let Hp:po < p and H,:po > p. We

accept H, if # > p ! and accept Hy otherwise, where n is the sam-
ple size and z;s are our observations. Then the sample size for the exper-
iments must be set such that both Pr[we accept H, | Hy is correct] <
and Pr[we accept Hy | H, is correct] < 8 hold. This is how we set up the
experiments in [2], and to our understanding this is how experiment is set
up in [3]. Note that this experiment is not correct if pg & [p — d1,p + o).
This is a shortcoming of this approach. We have to choose very small §;
and dy to make sure that pg & [p — d1,p + 2]

Type 2 Let py be any value between 0 and 1; in particular, we do not assume
that po & [p — 01,p + d2]. Let Ho:po < p and Hy:pg > p. We accept

. Z4 X Z4
H, if X:le% > p+ 8 and accept Hy if X:‘E% < p — &1, where n
is the sample size and z;s are our observations. We say “don’t know” if

Zie[l,n i

p—>56 < o Il < p + 62. Then the sample size for the experiments
must be set such that both Pr[we accept H, | Hy is correct] < « and
Pr[we accept Hy | H, is correct] < 8 hold. This removes the shortcoming
of the previous approach that we have to assume that py & [p— d1,p+ d2].
However, in this case we can have “don’t know” answers. Note that in this
case we can choose any §; and d5 without the fear that our experiment
may go wrong. However, bigger d; and d2 will result in more “don’t know”
answers.

Henceforth, we will only consider Type 2 experiments. A Type 2 experiment
for the coin toss is specified by the 4-tuple («, 3, §1, d2); given these parameters
we know how many samples we need to draw in a Type 2 experiment, and
we know what decision to take once we are given a sample of sufficiently large
size. Let us denote by sample(a, 3,01,02) to be the (minimum) sample size
required ensure that the type I and type II errors are bounded by « and (3,
when conducting an experiment as above. Let E be the set of all experiments
of Type 2 such that 1 > a=02>0, p>d6; >0, and (1 —p) > J > 0.

Consider a sample 2 = 21, 29, ... 2, of n coin tosses. Define EY*(2) C E to
be the set of experiments (with type I and type II error bounds being equal) such
that the sample Z will cause such a Type 2 experiment to accept the alternate
hypothesis. More formally, e = («,3,d1,02) € EY*(%), when the following
holds:

IThe threshold can of course be modified to account for the fact that the median in the
binomial distribution is not the same as the mean.




1. sample(a, 3,01, 02) < n, i.e, 2 is sufficiently large to ensure the type I and
type II errors to be bounded by « and

Dy
2. Tl > p+ 0.

Similarly, we can define E*°(2) C E to be the set of experiments that will
result in the null hypothesis being accepted. In other words, e = (a, 3, d1,02) €
E™° (%), when

1. sample(a, 8,01,02) < n

2. 721;1 = <p-— (51.

Consider the following algorithm A. Given a sample % (drawn by n coin
tosses), the algorithm does one of two things: Finds an experiment (o, 3,01, d2) €
EY*5(2) and outputs “yes” and number «; or finds an experiment («, 3, d1,02) €
E"°(2) and outputs “no” and number 8. Let us assume A is a deterministic
algorithm (once it is given the sample 2). Observe that

where the probability is being taken over the fact that Z is a random sample of
size n.

Our algorithm, presented in [1], can be viewed as doing the same thing
as what algorithm A was doing in the context of coin tosses. It is trying to
find an “experiment” that will allow it to consistently label the samples. In
the case of model checking the “experiment” and sample have more structure.
The sample is now a tree. A consistent “experiment” is a labelling of each
node in the tree (along with the satisfaction or non-satisfaction of subformulas)
with bounds, «, 3,01 and ds that will correspond to right labelling, i.e., the
number of samples needed to guarantee a particular error bound is less than
that in the given sample from that particular state, and the “yes” and “no”
labelling is consistent with what an actual run of an algorithm like [3] might
require. And just like in the case of the coin toss, the label « of the root (with
respect to the property being tested for) gives a bound on the p-value of such an
algorithm. Once again, the algorithm is deterministic: given a sample (or tree)
the algorithm will label the internal nodes with « etc. in a determined manner.
The probability is taken over the fact that the sample is drawn randomly from
the given system.

References

[1] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-
box probabilistic systems. In 16th conference on Computer Aided Verifica-
tion (CAV’04), volume 3114 of LNCS, pages 202-215. Springer, July 2004.



[2] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of
probabilistic systems. In 17th conference on Computer Aided Verification
(CAV’05), LNCS (To Appear). Springer, July 2005.

[3] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In Proc. of Computer Aided Ver-
ification (CAV’02), volume 2404 of LNCS, pages 223-235, 2002.



