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Abstract
As hardware failures are no longer rare in the era of cloud
computing, cloud software systems must “prevail” against
multiple, diverse failures that are likely to occur. Testing soft-
ware against multiple failures poses the problem of combi-
natorial explosion of multiple failures. To address this prob-
lem, we present PreFail, a programmable failure-injection
tool that enables testers to write a wide range of policies to
prune down the large space of multiple failures. We integrate
PreFail to three cloud software systems (HDFS, Cassandra,
and ZooKeeper), show a wide variety of useful pruning poli-
cies that we can write for them, and evaluate the speed-ups
in testing time that we obtain by using the policies. In our
experiments, our testing approach with appropriate policies
found all the bugs that one can find using exhaustive testing
while spending 10X–200X less time than exhaustive testing.

General Terms Reliability, Verification

Keywords fault injection, distributed systems, testing

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability; D.2.5 [Software Engineering]: Testing
and Debugging

1. Introduction
With the arrival of the cloud computing era, large-scale
distributed systems are increasingly in use. These systems
are built out of hundreds or thousands of commodity ma-
chines that are not fully reliable and can exhibit frequent fail-
ures [17, 24, 38, 41, 45]. Due to this reason, today’s “cloud
software” (i.e., software that runs on large-scale deploy-
ments) does not assume perfect hardware reliability. Cloud
software has a great responsibility to correctly recover from
diverse hardware failures such as machine crashes, disk er-
rors, and network failures.
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Even if existing cloud software systems are built with re-
liability and failure tolerance as primary goals [14, 17, 20],
their recovery protocols are often buggy. For example, the
developers of Hadoop File System [42] have dealt with 91
recovery issues over its four years of development [22].
There are two main reasons for this. Sometimes developers
fail to anticipate the kind of failures that a system can face
in a real setting (e.g., only anticipate fail-stop failures like
crashes, but forget to deal with data corruption), or they in-
correctly design/implement the failure recovery code. There
have been many serious consequences (e.g., data loss, un-
availability) of the presence of recovery bugs in real cloud
systems [9, 11, 12, 22].

To test recovery, there has been some work that has pro-
posed novel failure-injection tools and frameworks, but they
primarily address single failures during program execution.
However, cloud software systems face frequent, multiple,
and diverse failures. In this regard, there is a need to advance
the state-of-the-art of failure testing – multiple failures need
to be systematically explored in program execution. Unfor-
tunately, exercising multiple failures is not straight-forward.
The challenge to deal with is the combinatorial explosion of
multiple failures that can be exercised.

From our personal experience and our conversation with
some developers of cloud software systems, we found that
a tester can employ many different heuristics to prune the
large combinations of multiple failures. For example, a tester
might only want to fail a representative subset of the compo-
nents of a system, or inject only a subset of all possible fail-
ure types, or reduce the number of failure-injection points
with some optimizations, or explore failure-injection points
that satisfy some code-coverage objectives, or fail proba-
bilistically. Furthermore, the tester might want to use mul-
tiple heuristics together.

To enable testers to express many different pruning
heuristics or policies, we design, implement, and evalu-
ate PREFAIL, a programmable failure-injection tool for
multiple-failure injection. More specifically, we make the
following contributions in this paper.

1. We build a programmable failure-injection tool that al-
lows testers to write policies to express the set of
multiple-failure combinations (or sequences) that they
want to explore. This way, we alleviate the need to ex-



plore all possible multiple-failure combinations, which
can be too huge to test with reasonable resources and
time. To enable programmability, we decouple PREFAIL
into two pieces: the failure-injection engine which is ca-
pable of interposing different execution points of the sys-
tem under test and is responsible for performing failure
injection at those points, and the failure-injection driver
where testers can write pruning policies that “drive” the
engine (i.e., make decisions about which failures to in-
ject). PREFAIL provides suitable abstractions of failures
and the execution points where the failures can be in-
jected, and also profiles of executions where failures are
injected. These abstractions can be used by testers to eas-
ily write a wide variety of pruning policies.

2. We present a number of pruning policies that we have
written for distributed systems. If a tester has a good
knowledge about the system being tested, then she can
easily write appropriate policies to explore the failures
that meet her testing objectives. But, even if the tester
does not know much about the system, we show that
she can still use generic coverage based policies (e.g.,
code-coverage and recovery-coverage based policies) to
systematically test the system. In our experiments, we
found all bugs in a system with appropriate policies in
time that is much lesser than the time to exhaustively test
all possible failure sequences (e.g., 20 hours vs. 1/2 hour).

3. We have integrated PREFAIL to three popular cloud sys-
tems: Hadoop File System (HDFS) [42], ZooKeeper [27],
and Cassandra [33]. We provide a thorough evaluation of
the speed-ups in the testing process that we obtain by us-
ing the pruning policies that we wrote. In terms of bug
finding, so far we have focused more on HDFS. We found
all of the 16 new bugs in HDFS that we had found in pre-
vious work [22], and also found 6 newer bugs.

We have made PREFAIL publicly available for download
from http://sourceforge.net/projects/prefail/.
We have, in fact, already worked with engineers from Cloud-
era Inc. to test their version of Hadoop software. More real-
world adoption of PREFAIL is in progress.

In our previous work [22], we had begun the quest of find-
ing techniques to prune down multiple-failure sequences. In
this prior work, we only presented two rigid pruning policies
which are hard-coded in the failure-injection tool that we
built. Based on more experience and conversation with some
developers of cloud software systems, we found that there
were many more pruning policies that a tester would like
to use. This led us to re-think and re-structure our failure-
injection tool so that it can let testers easily and rapidly write
various kinds of policies.

In the rest of the paper, we present an extended motivation
for having a programmable failure-injection tool (§2), the
design and implementation of PREFAIL (§3), examples of
a wide range of pruning heuristics that we can write in

Node A Node B

A1. write(B, msg); B1. write(A, msg);

A2. read(B, header); B2. read(A, header);

A3. read(B, body); B3. read(A, body);

A4. write(B, msg); B4. write(A, msg);

A5. write(Disk, buf); B5. read(Disk, buf);

Figure 1. Example code.

PREFAIL (§4), evaluation of PREFAIL (§5), limitations (§6),
related work (§7), and finally conclusion (§8) .

2. Extended Motivation
In this section, we present an extended motivation for having
a programmable tool for multiple-failure injection.

2.1 The Combinatorial Explosion of Multiple Failures
Testing systems against multiple failures is unfortunately not
straight-forward – the challenge to deal with is the combi-
natorial explosion of multiple failures. This explosion is at-
tributed to the complex characteristics of failures that can
arise: different types of failures (e.g., crashes, disk failures,
rack failures, network partitioning), different parts of the
hardware (e.g., two among four nodes fail), and different
timings (e.g., failures happen at different stages of the pro-
tocol). Exhaustively exploring all possible failure sequences
can take a lot of computing resources and time.

Let’s consider the code segment in Figure 1 that runs on
a distributed system with two nodes, A and B. This program
executes reads and writes (to the network and the disk) in
each node. Given this program, hardware failures such as
transient I/O failures, crashes, data corruptions, and network
failures, can happen around the I/O operations. Thus, we
would like to test the tolerance of this code against different
kinds of failures by injecting those failures during its exe-
cution. For example, we can inject a transient I/O failure at
the write call on line A1 by executing code that throws an
IOException instead of executing the write call.

Let us suppose that a tester wants to test against crashes
before read and write calls, and that she wants to inject two
crashes in an execution. One possible combination is to crash
before the write at A4 and then to crash before the write at
B5. Overall, since there are 5 possible points to inject a crash
on every node, there are 52∗N(N−1) possible ways to inject
two crashes, where N is the number of participating nodes (N
= 2 in the above example). Again, considering many other
factors such as different failure types and more failures that
can be injected during recovery, the number of all possible
failure sequences can be too many to explore with reasonable
computing resources and time.

2.2 The Need For Programmable Failure-Injection
To address the aforementioned challenge, we believe that
there are many different ways in which a tester could reduce
the number of failures to inject. Below, we present some ex-
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amples based on our personal experience and our conversa-
tion with some developers of cloud software systems. Our
goal is to allow testers to express failure space pruning poli-
cies of different complexities so that they can choose a suit-
able policy based on testing budget and requirement.

Failing a component subset: Let’s suppose a tester wants
to test a distributed write protocol that writes four replicas
to four machines, and let’s suppose that the tester wants to
inject two crashes in all possible ways in this execution to
show that the protocol could survive and continue writing
to the two surviving machines. A brute-force technique will
inject failures on all possible combinations of two nodes
(i.e.,

(
4
2

)
). However, to do this quickly, the tester might wish

to specify a policy that just injects failures in any two nodes.

Failing a subset of failure types: Another way to prune
down a large failure space is to focus on a subset of the
possible failure types. For example, let’s imagine a testing
process that, at every disk I/O, can inject a machine crash or
a disk I/O failure. Furthemore, let’s say the tester knows that
the system is designed as a crash-only software [10], that is,
all I/O failures are supposed to translate to system crash (fol-
lowed by a reboot) in order to simplify the recovery mecha-
nism. In this environment, the tester might want to just inject
I/O failures but not crashes because it is useless to inject ad-
ditional crashes as I/O failures will lead to crashes anyway.
Another good example is the rack-aware data placement pro-
tocol common in many cloud systems to ensure high avail-
ability [18, 42]. The protocol should ensure that file replicas
should be placed on multiple racks such that if one rack goes
down, the file can be accessed from other racks. In this sce-
nario, if the tester wants to test the rack-awareness property
of the protocol, only rack failures need to be injected (e.g.,
vs. individual node or disk failures).

Coverage-based policies: A tester might want to speed up
the testing process with some coverage-based policies. For
example, let’s imagine two different I/Os (A and B) that if
failed could initiate the same recovery path that performs
another two I/Os (M and N). To ensure correct recovery,
a tester should inject more failures in the recovery path. A
brute-force method will perform 4 experiments by injecting
two failures at AM, AN, BM, and BN (M and N cannot be
exercised by themselves unless A or B has been failed). But
a tester might wish to finish the testing process when she
has satisfied some code coverage policy, for example, by
stopping after all I/O failures in the recovery path (at M and
N) have been exercised. With this policy, she only needs to
run 2 experiments with failures at AM and AN.

Domain-specific optimization: In some cases, system-
specific knowledge can be used to reduce the number of
failures. For example, consider 10 consecutive Java read
I/Os that read from the same input file (e.g., f.readInt(),
f.readLong(), ...). In this scenario, disk failure can start

Failure-
Injection
Driver

Target 
System
(system 
under test)

Failure-
Injection
Engine

Policy #1

Policy #2

Policy #3

...

FI Task +
Information
Abstractions

Figure 2. PREFAIL Architecture. The figure shows the sep-
aration of failure-injection engine (mechanism) and driver (policy).
The pruning policies written in the driver make failure decisions
that drive the engine.

to happen at any of these 10 calls. In a brute-force man-
ner, a tester would run ten experiments where disk failure
begins at 10 different calls. However, with some operating
system knowledge, the tester might inject disk failure only
on the first read. The reasoning behind this is that a file is
typically already buffered by the operating system after the
first call. Thus, it is unlikely (although possible) to have ear-
lier reads succeed and the subsequent reads fail. In our ex-
perience, by reducing these individual failures, we greatly
reduce the combinations of multiple failures.

Failing probabilistically: Multiple failures can also be re-
duced by only injecting them if the likelihood of their oc-
currence is greater than a predefined threshold [40, 44]. This
technique is useful especially if the tester is interested in cor-
related failures. For example, two machines put within the
same rack are more likely to fail together compared to those
put across in different racks [18]. A tester can use real-world
statistical data to implement policies that employ some fail-
ure probability distributions.

In summary, there are many different ways in which a
tester can reduce the number of failures and their combina-
tions to be injected. Thus, we believe that there is a need for
a programmable failure-injection tool that enables testers to
express different pruning policies. In the following section,
we describe our approach in detail.

3. Programmable Failure Injection
In this section we present the design of PREFAIL. To enable
programmability, we borrow the classic principle of sepa-
ration of mechanism and policy [6, 34, 43]. With this prin-
ciple, we decouple our failure-injection framework into two
pieces: the FI engine and the FI driver as depicted in Figure 2
(FI stands for failure-injection). The FI engine is the compo-
nent that injects failures in the system under test, and the FI
driver is the component that takes tester-specified policies to
decide where to inject failures. The FI engine exposes fail-
ure related abstractions to the FI driver that can be used by
the testers in their policies. In the following sections, we first
illustrate the test workflow in PREFAIL (§3.1), and then we
explain the FI engine (§3.2), the abstraction interface (§3.3),
the FI driver and policies (§3.4), and finally the detailed al-
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Figure 3. PREFAIL Test Workflow. An alphabetical symbol
represents a failure-injection point or task. A box represents a fail-
ure sequence (a sequence of failure-injection tasks) to be exercised.
A letter in a circle represents a failure-injection point observed in
an experiment. For ease of reading, a letter in a box represents a
crash failure-injection task (e.g., A in a box should be read as A c).

gorithm of the test workflow (§3.5). We give some examples
of policies in Section 3.4.3, but for more examples and de-
tails, readers can refer to Section 4.

3.1 Test Workflow
Figure 3 shows an example scenario of the testing process in
PREFAIL. The tester specifies three failures as the maximum
number of failures to inject in an execution of the system
under test. The FI engine first runs the system with zero
failure during execution (i.e. without injecting any failure
during execution). During this execution, it obtains the set
of all execution points where failures can be injected (i.e.,
failure-injection points as described in Section 3.3): A, B,
and C. Let us assume that we are interested only in crashes,
and let Ac, Bc, and Cc denote the injection of crashes (i.e.,
failure-injection tasks as described in Section 3.3) at the
failure-injection points A, B, and C, respectively (for ease of
reading, a failure-injection task Xc is represented as X in a
box in Figure 3). Using the tester-specified policies, suppose
PREFAIL prunes down the set of failure-injection tasks to Ac
and Bc, and then exercises each failure-injection task in the
pruned down set.

After exercising a failure-injection task, the FI en-
gine records all failure-injection points seen where further
crashes can be injected. For example, after exercising Ac
(that is, injecting a crash at A), the FI engine observes
the failure-injection points D and E. From this information,
the FI engine creates the set of sequences of two failure-
injection tasks AcDc and AcEc that can be exercised while in-
jecting two crashes in an execution. Similarly, it creates BcEc
after observing the failure-injection point E in the execution
that exercises Bc.

As mentioned before, the number of all sequences of
failure-injection tasks that can be exercised tends to be large.
Thus, PREFAIL again uses the tester-specified policies to
reduce this number. For example, a tester might want to test
just one sequence of two crashes that exercises Ec as the

fip B5

Key Value
func read()
loc Read.java

(line L5)
node B
target file f
stack 〈stack trace〉
... ...

Possible
Failures
at fip B5 fit

Crash (crash, B5) / B5c
Corruption (corruption, B5) / B5cr
Disk failure (disk failure, B5) / B5d

Table 1. Failure-Injection Point (fip) and Failure-
Injection Task (fit). The left table illustrates a fip with label
B5 . More context can be added by adding more key-value map-
pings. The right-hand side table shows different fit s that can be
formed for the fip .

second crash. Thus, PREFAIL would automatically exercise
just one of AcEc and BcEc to satisfy this policy instead of
exercising both of them. The step from injecting two failures
to three failures per execution is similar.

3.2 FI Engine
The failure-injection tasks described above are created by
the FI engine. The FI engine interposes different execu-
tion points in the system under test and injects failures at
those points. The target failure-injection points and the range
of failures that can be injected all depend on the objec-
tive of the tester. For example, interposition can be done
at Java/C library calls [22, 35], TCP-level I/Os [16], disk-
level I/Os [39], POSIX system calls [32], OS-driver inter-
faces [28], and at many other points. Depending on the tar-
get failure-injection points, the range of failures that can be
injected varies.

In our work, we use a failure-injection tool that we had
built in prior work [22] as the FI engine. This particular
FI engine interposes all I/O related to calls to Java libraries
and emulates hardware failures by supporting diverse failure
types such as crashes, disk failures, and network partitioning
at node and rack levels.

The FI driver tells the FI engine to run a set of experi-
ments that satisfy the written policies. An experiment is an
execution of the system under test with a particular failure
scenario (could be one or multiple failures). For example,
using the example in Figure 1, the FI driver could tell the FI
engine to run one experiment with one specific failure (e.g.,
a crash before the write at A4) or two concurrent failures
(e.g., the same crash plus a crash before the write at B4).

3.3 Abstractions
In this section, we provide the abstractions that bridge the
FI engine and the FI driver. The FI engine provides the
following abstractions of failures and execution points where
failures can be injected, and of failure-injection experiments.
These abstractions can be used by testers in their pruning
policies.



1. Failure-Injection Point (fip). A failure-injection point
(fip) is a map from a set of keysK to a set of values V . It
is a static abstraction of an execution point where a failure
can be injected. A key k inK represents a part of the static
or dynamic context associated with the execution point.
For example, k could be ‘func’ to represent the function
call being executed. It would be mapped to the name of
the function in the fip. Other examples for k are: ‘loc’
for the location of the function call in the source code,
‘node’ for the node ID on which the execution occurs,
‘target’ for the target of the I/O executed by the function
call (e.g., the name of the file being written to in case of
a disk write I/O), and ‘stack’ for the stack trace. Table 1
shows the fip corresponding to the execution point at the
read call at line L5 in node B in Figure 1. We denote the
set of all failure-injection points by P .

2. Failure-Injection Task (fit). A failure-injection task
(fit) is a pair of a failure type (e.g., crash, disk failure)
and a failure-injection point. Thus, a fit f ∈ F × P ,
where F denotes the set of all failure types. Given a
failure-injection point, there are different types of fail-
ures that can be injected at that point. For example, Ta-
ble 1 shows different fits that can be formed for the fip
illustrated in the same table for three different types of
failures (crash, data corruption, and disk failure). Exer-
cising a fit f = (ft, fp) means injecting the failure type
ft at the fip fp.
Since we are interested in injecting multiple failures dur-
ing execution in addition to single failures, we also con-
sider sequences of failure-injection tasks. We denote the
set of all sequences of failure-injection tasks by Q. We
call a sequence of failure-injection tasks as a failure se-
quence in short.

3. Per-experiment profile. To allow powerful policies (a
variety of policies) to be written, the FI driver profiles the
execution of the system in every experiment, and makes
the profiling information available to testers. Testers can
use the profiles of already executed experiments to decide
in their policies which failure sequences to exercise in
future experiments. Our strategy in profiling an execution
is by recording the set of failure-injection points observed
during the execution. The reasoning behind this is that
failure-injection points are typically built out of I/O calls,
library calls, or system calls, and these calls can be used
to approximately represent an execution of the system
under test. Thus, an execution profile exp ∈ 2P .
Let allFips:Q → 2P and postInjectionFips:Q →
2P be the functions that return execution profiles of
failure-injection experiments. Given a failure sequence
fs, allFips(fs) returns the execution profile consisting
of all fips observed during the experiment in which fs
is injected, and postInjectionFips(fs) returns the set
of all fips observed after fs has been injected. For the

Algorithm 1 fpGen

1: Inputs: A filter predicate flt and a set of

failure sequences FS
2: Output: A set of failure sequences FSP

3: FSP = {}
4: for fs in FS do
5: if flt(fs) then
6: FSP = FSP ∪ {fs}
7: end if
8: end for
9: return FSP

Algorithm 2 cpGen

1: Inputs: A cluster predicate cls and a set of

failure sequences FS
2: Output: A set of failure sequences FSP

3: FSP = {}
4: E = FS/Rcls

5: for e in E do
6: fs = select an element from e randomly

7: FSP = FSP ∪ {fs}
8: end for
9: return FSP

empty sequence (), allFips and postInjectionFips

both return the set of all fips seen in the execution in
which no failure is injected.

3.4 FI Driver
Based on the abstractions above, the FI driver provides sup-
port for writing predicates that it uses to generate policies
that express how to prune the failure space. For convenience
and brevity, whenever we say that a tester writes a policy,
we mean that the tester writes the predicate that is later used
by the FI driver to generate the policy. A policy is a func-
tion p : 2Q → 2Q. It takes a set of failure sequences, and
returns a subset of the sequences to be explored by the FI
engine. Testers can use the failure and execution point ab-
stractions, and execution profiles provided by the FI engine
in their predicates. There are two different kinds of predi-
cates that can be written to generate two different kinds of
policies: filter and cluster policies. PREFAIL can also com-
pose the policies generated from different predicates to ob-
tain more complex policies.

3.4.1 Filter Policy
A filter policy uses a tester-written predicate flt: Q →
Boolean. The predicate takes a failure sequence fs as an ar-
gument and implements a condition that decides whether to
exercise fs or not. Algorithm 1 explains how a filter policy
works. Given a predicate flt, the function fpGen : (Q →
Boolean)→ (2Q → 2Q) (implemented in PREFAIL) gener-
ates a filter policy out of it. The policy takes a set of failure
sequences FS, applies the flt predicate on each sequence



λ fs. (
let ((ft1, fp1), ..., (ftn, fpn)) = fs in
let isCrash(ft) = (ft == crash) in
let inSetup(fp) = fp[‘stack’] has ‘setup’ in∧

i∈{1,...,n}
isCrash(fti) ∧ inSetup(fpi)

)

Figure 4. Setup-stage filter. Return true if all fit s (ft1, fp1),
. . . , (ftn, fpn) in fs correspond to a crash within the setup function.

fs, and retains fs in its result set FSP if the predicate holds
for it.

3.4.2 Cluster Policy
A cluster policy uses a tester-implemented predicate cls:
Q × Q → Boolean. The predicate takes two failure se-
quences as arguments, and returns true if the tester consid-
ers them to be similar (e.g., exercising either of them would
result in the same test coverage), and false otherwise. The
predicate implicitly implements an equivalence relation Rcls

= {(fs1, fs2) | cls(fs1, fs2)}. Algorithm 2 shows how a clus-
ter policy works. Given a cls predicate, the function cpGen

: (Q × Q → Boolean) → (2Q → 2Q) (implemented in
PREFAIL) generates a cluster policy out of it. The policy
uses the predicate to partition its argument set of failure se-
quences FS into disjoint subsets FS/Rcls. It then randomly
selects one failure sequence fs from each equivalence class.
Thus, the tester implements her notion of equivalence of fail-
ure sequences, and the policy uses the equivalence relation
to select failure sequences such that all equivalence classes
in its argument set of failure sequences are covered.

3.4.3 Example Policies
We give brief examples of how one can use the filter and
cluster policies. Suppose that a tester is interested in testing
the tolerance of the setup stage of a distributed systems pro-
tocol against crashes. The tester can write the flt predicate
in Figure 4. The filter policy fpGen(flt) would retain a fail-
ure sequence fs only if every fit in fs corresponds to a crash
in the setup stage (execution of the setup function).

In failure testing, since we are concerned with testing the
correctness of recovery paths of a system, one way to re-
duce the number of failure sequences to test would be to
cluster them according to the recovery paths that they would
lead to. Out of all failure sequences that would lead to a par-
ticular recovery path, we can just choose and test one. To
achieve this, we can write the cluster predicate in Figure 5.
If two failure sequences fs1 and fs2 have the same last fit,
and their prefixes that leave the last fit out (fs1P and fs2P
respectively) result in the same recovery path, then we can
consider fs1 and fs2 to be equivalent in terms of the recovery
paths that they would lead to since they involve injecting the
same failure at the same execution point in the same recovery

λ fs1, fs2. (
let rec(fs) = allFips(fs) \ allFips(()) in
let eq(fs1, fs2) = (rec(fs1) == rec(fs2)) in
let (f11, ..., f1m) = fs1 in
let fs1P = (f11, ..., f1(m−1)) in
let (f21, ..., f2n) = fs2 in
let fs2P = (f21, ..., f2(n−1)) in

(eq(fs1P , fs2P ) ∧ (f1m == f2n) ∧ (m ≥ 2)
∧ (n ≥ 2))

)

Figure 5. Recovery path cluster. Cluster two failure se-
quences if their last fit s are the same and their prefixes (that
exclude the last fit s) result in the same recovery path.

path. PREFAIL’s test workflow is such that when deciding
whether to test a failure sequence (e.g., fs1), all of its pre-
fixal sequences (e.g., fs1P ) would have already been tested,
and thus we would have already seen the recovery paths that
they lead to. Figure 5 uses the function rec to characterize a
recovery path. It uses the set of all fips seen in the recovery
path to characterize it. From all fips observed during an ex-
ecution in which a failure sequence is injected, we subtract
out the fips that are observed during normal program exe-
cution (that is, when no failure is injected) to obtain the fips
seen in the recovery path. More details about recovery path
clustering can be found in Section 4.4.

PREFAIL also enables composition of policies. For ex-
ample, the policies that use the predicates in Figures 4 and 5
(fpGen(flt) and cpGen(cls)) can be composed to first fil-
ter out only those failure sequences that have crashes in the
setup stage, and then to cluster the filtered sequences accord-
ing to the recovery paths that they would lead to. Section 4
shows how to write the policies in Python in PREFAIL, and
also gives many other examples of policies.

3.5 Test Workflow Algorithm
Having outlined the major components of PREFAIL, this sec-
tion presents the detailed algorithm of PREFAIL’s test work-
flow (Algorithm 3). PREFAIL takes a system Sys to test,
a list of tester-written predicates Preds, and the maximum
number of failures N to inject in an execution of the sys-
tem. The testing process runs in N + 1 steps. At step i
(0 ≤ i ≤ N ), the FI engine of PREFAIL executes the sys-
tem Sys once for each failure sequence of length i that it
wants to test, and injects the failure sequence during the ex-
ecution of the system. FSc is the set of all failure sequences
that should be tested in the current step, and FSn is the set
of failure sequences that should be tested in the next step.
Initially FSc is set to a singleton set with the empty failure
sequence as the only element. Therefore, in step 0 the FI en-
gine executes Sys and injects an empty sequence of failures,
i.e. it does not inject any failure. The FI engine observes the
fips that are seen during execution, computes fits from
them, and adds singleton failure sequences with these fits



Algorithm 3 PREFAILTest Workflow
1: INPUT: System under test (Sys), List of flt

and cls predicates (Preds), Maximum number of

failures per execution (N)

2: FSc = {()}
3: FSn = {}
4: for 0 ≤ i ≤ N do
5: for each failure sequence fs in FSc do
6: Execute Sys and inject fs during execution

7: Profile execution using fips observed

during execution

8: for each fit f computed from a fip in

postInjectionFips(fs) do
9: fs′ = Append f to fs

10: FSn = FSn ∪ fs′

11: end for
12: end for
13: FSn = Prune(Preds, FSn)
14: FSc = FSn

15: FSn = {}
16: end for

Algorithm 4 Prune(Preds, FS)
1: FSP = FS
2: for predicate pr in Preds do
3: if pr is a filter predicate then
4: p = fpGen(pr)

5: end if
6: if pr is a cluster predicate then
7: p = cpGen(pr)

8: end if
9: FSP = p(FSP )

10: end for
11: return FSP

to FSn. Therefore, FSn has failure sequences that the FI en-
gine can exercise in the next step, i.e. in the i = 1 step.
Before PREFAIL proceeds to the next step, it prunes down
the set FSn using the predicates written by testers. The pred-
icates in Preds are used to generate policies that are then
applied to FSn (Algorithm 4). The policy generated from
the first predicate is applied first to FSn, the second policy
is then applied to the result of the first policy and so on.
Note that the order of predicates is important since the poli-
cies generated from them may not commute. In step i = 1,
FSc is set to the pruned down FSn from the previous step,
and FSn is reset to the empty set. For each failure sequence
fs in FSc, the failure-injection tool executes Sys and injects
fs during execution. For each fit f that it computes from
a fip observed after fs has been injected (that is, a fip

in postInjectionFips(fs)), it generates a new failure se-
quence fs′ by appending f to fs, and adds fs′ to FSn. Af-
ter Sys has been executed once for each failure sequence in
FSc, PREFAIL prunes down the set FSn with predicates and

moves to the next step. This process is repeated till the last
step.

4. Crafting Pruning Policies
In this section, we present the pruning policies that we
have written and their advantages. More specifically, we
present our integration of PREFAIL to Hadoop File Sys-
tem (HDFS) [42], an underlying storage system for Hadoop
MapReduce [1], and show the policies that we wrote for it.
We begin with an introduction to HDFS and then present the
policies.

Overall, we make three major points in this section. First,
by clearly separating the failure-injection mechanism and
policy and by providing useful abstractions, we can write
many different pruning policies clearly and concisely. Sec-
ond, we show that policies can be easily composed together
to achieve different testing objectives. Finally, we show that
some policies can be reused for different target systems. We
believe these advantages show the power of PREFAIL. We
chose Python as the language in which testers can write poli-
cies in PREFAIL, though any other language could have also
been chosen.

4.1 HDFS Primer
HDFS is a distributed file system that can scale to thousands
of nodes. Here we describe the HDFS write protocol in
detail. Figure 6 shows a simplified illustration of the write
I/Os (both file system and network writes) occurring within
the protocol. The protocol by default stores three replicas in
three nodes, and is divided mainly into two stages: the setup
stage and the data transfer stage; later, we will see how the
recovery for each stage is different.

Our FI engine is able to emulate hardware failures on
every I/O (every box in Figure 6). As illustrated, there are
13 failure points that the FI engine interposes in this write
protocol. (Note that, in reality, the write protocol performs
more than 40 I/Os). At every I/O, the FI engine can inject a
crash, a disk failure (if it’s a disk I/O), or a network failure
(if it’s a network I/O). The figure also depicts many possible
ways in which multiple failures can occur. For example,
two crashes can happen simultaneously at failure-injection
points B1 and B2, or a disk failure at D1 and a network failure
at E3, and many more. Interested readers can learn more
about HDFS from here [42, 46] and our extended technical
report (which depicts the write protocol in more detail) [29].

4.2 Pruning by Failing a Component Subset
In distributed systems like HDFS, it is common to have
multiple nodes participating in a distributed protocol. As
mentioned earlier, let’s say we have N participating nodes,
and the developer wants to inject two failures on two nodes.
Then there are

(
N
2

)
failure sequences that one could inject.

Worse, on every node (as depicted in Figure 6), there could
be many possible points to exercise the failure on that node.
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I/O # Notes
A Forward setup message to downstream nodes.

(The last node does not need to forward the setup message)
B After receiving setup message, create temporary block and meta files.
C Stream data bytes to downstream nodes.

(The last node does not need to stream the data bytes)
D Write bytes to the block and meta files.
E Send commit acks to upstream nodes.

Figure 6. HDFS Write Protocol. The figure presents a simplified illustration of the HDFS write protocol. Each box represents an I/O
(file system or network), and thus a failure-injection point. For ease of reading, we label each failure-injection point with an alphabetical
symbol plus the node ID. The protocol begins with the client forming a pipeline (Client-N1-N2-N3) to the three nodes where replicas of a file
will be stored. The client obtains these target nodes from the master (communication between client and master is not shown). For simplicity,
we don’t show many other I/Os such as other acknolwedgment and disk I/Os. We also do not show the rack-aware placement of replicas.

1 d e f c l s (fs1 , fs2):

2 rs1 = abstractOut(fs1 , ‘node’)

3 rs2 = abstractOut(fs2 , ‘node’)

4 r e t u r n (rs1 == rs2)

Figure 7. Ignore nodes cluster. Return true if two failure
sequences have the same failures with the same contexts not con-
sidering the nodes in which they occur. The function abstractOut

removes the mappings for nodes from the fip s in its argument fail-
ure sequence.

To reduce the number of failure sequences to test, a devel-
oper might just wish to inject failures at all possible failure-
injection points in any two nodes. She can write a cluster
policy that uses the function in Figure 7 to cluster failure
sequences that have the same context when the node is not
considered as part of the context. With this policy, the devel-
oper can direct the FI engine to exercise failure sequences
with two failures such that if the FI engine has already ex-
plored failures on a pair of nodes then it should not explore
the same failures on a different pair of nodes. Using Figure 6
as an example, a failure sequence with simultaneous crashes
at D1 and D2 is equivalent to another with crashes at D2 and
D3.

We also want to emphasize that this type of pruning pol-
icy could be used for other systems. Consider a RAID sys-
tem [37] withN disks that a tester wishes to test by injecting
failures at any two of its N disks. To do this, we definitely
need a FI engine that works for RAID systems, but we can
re-use much of the policy that we wrote for distributed sys-
tems for RAID systems. The only difference would be in
the keys in the fips whose mappings we want to remove
(i.e., for distributed systems we removed the mappings for
the ‘node’ key in Figure 7, for RAID systems we remove the
mappings for ‘disk’ key).

1 d e f f l t (fs):

2 last = FIP (fs [ len(fs) - 1 ])

3 r e t u r n not explored (last , ‘loc’)

Figure 8. New source location filter. Return true if the
source location of the last fip has not been explored. The function
FIP returns the fip in the argument fit .

1 d e f c l s (fs1 , fs2):

2 last1 = FIP (fs1[len(fs1) - 1])

3 last2 = FIP (fs2[len(fs2) - 1])

4 r e t u r n (last1[‘loc’] == last2[‘loc’])

Figure 9. Source location cluster. Return true if the fip s in
the last fit s have the same source location.

4.3 Pruning via Code-Coverage Objectives
Developers can achieve high-level testing objectives using
policies. One common objective in the world of testing is to
have some notion of “high coverage”. In the case of failure
testing, we can write policies that achieve different types of
coverage. For example, a developer might want to achieve a
high coverage of source locations of I/O calls where failures
can happen.

To achieve high code-coverage with as few experiments
as possible, the tester can simply compose the policies that
use the flt function shown in Figure 8 and the cls function
shown in Figure 9. The filter policy explores failures at pre-
viously unexplored source locations by filtering out a failure
sequence if the fip in its latest fit (last) has an unex-
plored source location. The function FIP in Figure 8 returns
the fip in the argument fit. The function explored re-
turns true if a failure has already been injected at the source
location in the last fip in a previous failure-injection ex-
periment. For brevity, we do not show the source code of



fit Recovery Path (Fig. 10) SL SL+N
A1c {ABCDE}×{234} 2 2
B2c {ABCDE}×{134} 2 4
C1c {FGI}×{23}, {CDE}×{23} n n

C2c {FGJ}×{13}, {CDE}×{13} l l

D1c {FG}×{23}, {CDE}×{23} # #
E2c {FG}×{13}, {CDE}×{13} # 5

Table 2. HDFS Write Recovery. The table shows the de-
tailed recovery I/Os of some fit s within the HDFS write protocol.
The first column shows the fit s. A1c is the fit for crash at the I/O
A1. (For simplicity, we do not distinguish here between an I/O and
the failure-injection point that corresponds to the execution of the
I/O). The second column shows the recovery paths returned by the
getRecoveryPath function (Figure 10) for every fit shown in
the first column1. To save space, we use×; {AB}×{12} represents
the I/Os A1, A2, B1, and B2. The third and fourth columns represent
two ways of characterizing the recovery path; the same shape rep-
resents the same class of recovery path. For example, the third col-
umn represents the characterization shown in Figure 11 which uses
source location (SL) to characterize recovery. The fourth column
uses source location and node ID (SL+N) to characterize recovery.

these functions. The cls function in Figure 9 clusters fail-
ure sequences that have the same source location in their last
fits. Thus, after the filter policy has filtered out failure se-
quences that have unexplored source locations, the cluster
policy would cluster the failure sequences with the same un-
explored source location into one group. With these policies,
PREFAIL would exercise a failure sequence for each unex-
plored source location.

4.4 Pruning via Recovery-Coverage Objectives
In failure testing, since we are concerned with testing the
correctness of recovery paths of a system, another useful
testing goal is to rapidly explore failures that lead to dif-
ferent recovery paths. To do this, a tester can write a cluster
policy that clusters failure sequences leading to the same re-
covery path into a single class. PREFAIL can then use this
policy to exercise a failure sequence from each cluster, and
thus exercise a different recovery path with each failure se-
quence. Below, we first describe the HDFS write recovery
protocol, and then explain the whole process of recovery-
coverage based pruning in two steps: characterizing recovery
path, and clustering failure sequences based on the recovery
characterization.

1 d e f getRecoveryPath (fs):

2 a = allFips(fs)

3 a0 = allFips ([])

4 rPath = a - a0

5 r e t u r n rPath

Figure 10. Obtaining Recovery Path FIPs. Line 2 uses the
function allFips (§3.3) to get the set of all fip s, a , observed
during the execution in which fs is injected. Line 3 obtains the set
of fip s observed when no failure is injected (represented by “[]”).
Line 4 performs the “diff” of the two sets to obtain the fip s in the
recovery path taken when fs is injected.

4.4.1 HDFS Write Recovery
As mentioned before, the HDFS write protocol is divided
mainly into two stages: the setup stage and the data trans-
fer stage. The recovery for each stage is different. Table 2
shows in detail the recovery I/Os, that is, the I/Os that occur
during execution while recovering from an injected failure
(or failure sequence). We will gradually discuss the contents
of the table in the following sections. In the setup stage, if
a node crashes, the recovery protocol will repeat the whole
write process again with a new pipeline. For example, in the
first row of Table 2, after N1 crashes at I/O A1 (A1c), the
protocol executes the entire set of I/Os again (ABCDE) in
the new pipeline (N2-N3-N4). However, if a node crashes in
the second stage, the recovery protocol will only repeat the
second stage with some extra recovery I/Os on the surviving
datanodes. For example, in the fifth row of Table 2, after N1
crashes at D1 (D1c), the protocol first performs some syn-
chronization I/Os (FG), and then repeats the second stage
I/Os (CDE) on the surviving nodes (N2 and N3).

4.4.2 Characterizing Recovery Path
To write a recovery clustering policy, a tester has to first
decide how to characterize the recovery path taken by a
system. One way to characterize would be to use the set of
fips observed in the recovery path. Figure 10 returns the
“difference” of the fips observed in the execution in which
a failure sequence is injected and the fips in the execution
in which no failure is injected. The difference can be thought
of as the fips that are observed in the “extra” execution that
results or the recovery path that is taken when the failure
sequence is injected.

A tester can use the set of fips observed in the recovery
path to characterize the recovery path. Thus, two failure
sequences that result in the same set of fips in the recovery
path are considered to be equivalent. Instead of using all of

1 The reader might wonder why the I/Os A, B, C, D, and E appear again
in the recovery paths even though the getRecoveryPath function returns
the “diff” between the I/Os in the execution with failures and in the normal
execution path, and thus should exclude those I/Os. The answer is that these
I/Os are executed in the recovery path too, but with different contexts (e.g.
different message content, different generation number) that we incorporate
in the fip. For simplicity, we do not discuss these detailed contexts here.



8 d e f eqvBySrcLoc (fs1 , fs2):

9 r1 = getRecoveryPath (fs1)

10 r2 = getRecoveryPath (fs2)

11 c1 = abstractIn(r1, ‘loc’)

12 c2 = abstractIn(r2, ‘loc’)

13 r e t u r n c1 == c2

Figure 11. Equivalence of recovery paths. Return true
if two failure sequences result in the system executing I/Os at
the same set of source locations during recovery. The function
abstractIn retains only the mappings for the source locations
(‘loc’) in the fip s in its argument set.

the context in the fips, the tester might abstract out the fips
and use only part of the context in them to characterize a
recovery path. For example, the tester might want to use only
the source locations of fips. Thus, she might consider two
recovery paths to be the same if the I/Os in them occur at
the same set of source locations. The function in Figure 11
considers this relaxed characterization of recovery paths.
Thus, in PREFAIL, a tester has the power and flexibility to
decide how to characterize and cluster recovery paths.

If we use the equivalence function in Figure 11 to cluster
failure sequences that result in the same recovery path into
the same class, then we would obtain four different equiv-
alence classes for the HDFS write protocol. The third col-
umn in Figure 2 shows the four classes: 2, n, l, and #
which represent the recovery paths {ABCDE}, {CDEF},
{CDEG}, and {CDE} respectively. Note that the recovery
paths of A1c and B2c are considered to be equivalent (2) as
they have I/Os at the same set of source locations {ABCDE}
even if the I/Os are executed in different nodes. However, if
the tester decides to characterize recovery paths using both
source location and node ID, then the recovery paths of A1c
and B2c would be considered to be different (2 and 4), as
shown in the last column in Table 2.

Figure 12 provides more details of how different I/Os
shown in Figure 6 are grouped into different recovery
classes. The left figure shows 4 recovery classes that result
from the use of only source location to distinguish between
different recovery paths. Even by just using source location,
PREFAIL is able to distinguish between the two main recov-
ery classes in the protocol (2 and #). Furthermore, PRE-
FAIL also finds two unique cases of failures that result in
two more recovery classes (n and l). In the first one (n), a
crash at C1 leaves the surviving nodes (N2 and N3) with zero-
length blocks, and thus the recovery protocol executes I/Os
at a different source location (labeled with I in Table 2). In
the second one (l), a crash at C2 leaves the surviving nodes
(N1 and N3) with different block sizes (the first node has re-
ceived the bytes, but not the last node), and thus I/Os at yet
another different source location (labeled as J) are executed.

Figure 12b shows the 8 recovery classes that result when
node ID is used in addition to the source location to char-
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Figure 12. Recovery Classes of HDFS Write Protocol.
The symbols (e.g., A1, A2) represent I/Os described in Figure 6. A
shape (e.g., 2) surrounding an I/O #X represents the equivalence
class of the I/O with regard to the recovery path that is taken by
HDFS when a crash occurs at that I/O. Different shapes represent
different equivalence classes. The two figures show how the I/Os
are grouped differently into equivalence classes when recovery
paths are characterized in different ways (e.g., (a) using source
location only and (b) using source location and node ID).

1 d e f c l s (fs1 , fs2):

2 last1 = fs1 [ len(fs1) - 1 ]

3 last2 = fs2 [ len(fs2) - 1 ]

4 prefix1 = fs1 [ 0 : len(fs1) - 1 ]

5 prefix2 = fs2 [ 0 : len(fs2) - 1 ]

6 isEqv = eqvBySrcLoc (prefix1 , prefix2)

7 r e t u r n isEqv and (last1 == last2)

Figure 13. Equivalent-recovery clustering. Cluster two
failure sequences if their prefixes (that exclude the last fit s) result
in the same recovery path and their last fit s are the same. Line
6 uses the eqvBySrcLoc function in Figure 11 to compute the
equivalence of the recovery paths of the prefixes.

acterize recovery paths. If the tester uses all of the con-
text present in a fip, the I/Os in the write protocol will be
grouped into 10 recovery classes. Interested readers can find
the explanations behind the different numbers of recovery
classes in [29]. In general, the more context information in
fips considered, the more we can distinguish between dif-
ferent recovery paths, and hence the more the number of re-
covery classes of I/Os. Lesser context leads to fewer recov-
ery classes and thus fewer failure-injection experiments, but
might miss some corner-case bugs.

4.4.3 Clustering Failure Sequences
After specifying the characterization of a recovery path,
the tester can simply write a cluster policy that uses the
cls function in Figure 13. Given this policy, if there are
two failure sequences, (prefix1, last) and (prefix2,

last), such that prefix1 and prefix2 result in the same
recovery path, then PREFAIL will exercise only one of the
two sequences.



1 d e f f l t (fs):

2 f o r f i n fs:

3 fp = FIP(f)

4 isCrash = (fp[‘failure ’] == ‘crash’)

5 isWrite = (fp[‘ioType ’] == ‘write’)

6 isBefore = (fp[‘place’] == ‘before ’)

7 i f isCrash and
( no t (isWrite and isBefore)):

8 r e t u r n False

9 r e t u r n True

Figure 14. Generic crash optimization. The function
accepts a failure sequence if all crash failures in the sequence are
injected before write I/Os. If a failure sequence has a crash that is
not injected before a write I/O, then that sequence is rejected, and
thus not exercised by the FI engine.

To illustrate the result of this policy, let’s consider the ex-
ample in Table 2. The fit Fc (crash at I/O F) can be exer-
cised after any of the crashes at {DE}×{123} (i.e., 6 fits).
Without the specified equivalent-recovery clustering, PRE-
FAIL will run 6 experiments (D1cFc.. E3cFc). But with this
policy, PREFAIL will group all of the 6 failure sequences
into a single class (D1c/../E1c + Fc) as all the prefixes have
the same recovery class (#, as shown in Figure 12), and thus
will run only 1 experiment to exercise any of the 6 failure
sequences. If the tester changes the clustering function such
that it uses both source location and node ID to characterize
a recovery path (Figure 12b), then PREFAIL will run three
experiments as the prefixes now fall into three different re-
covery classes (#,5, and t).

4.5 Pruning via Optimizations
In general, failures can be injected before and/or after every
read and write I/O, system call or library call. For some types
of failures like crashes or disk failures, there are optimiza-
tions that can be performed to eliminate unnecessary failure-
injection experiments. In the following sections, we present
policies that implement optimizations for crashes and disk
failures in distributed systems. Appendix A describes the op-
timizations for network failures and disk corruption. By re-
ducing the number of individual failure-injection tasks, these
optimizations also help in reducing the number of multiple-
failure sequences.

4.5.1 Crashes
In a distributed system, read I/Os performed by a node affect
only the local state of the node, while write I/Os potentially
affect the states and execution of other nodes. Therefore,
we do not need to explore crashing of nodes around read
I/Os. We can just explore crashing of nodes before write
I/Os. Figure 14 shows a flt function that can be used to
implement this optimization.

The second optimization that we can do for crashes is
that we do not crash a node before the node performs a

network write I/O that sends a message to an already crashed
node. This is because crashing a node before a network write
I/O can only affect the node to which the message is being
sent, but the receiver node is itself dead in this case. The
flt function that implements this optimization is shown in
Figure 16 in Appendix A.

4.5.2 Disk Failures
For disk failures (permanent and transient), we inject failures
before every write I/O call, but not before every read I/O call.
Consider two adjacent Java read I/Os from the same input
file (e.g., f.readInt() and f.readLong()). It is unlikely
that the second call throws an I/O exception, but not the first
one. This is because the file is typically already buffered by
the OS. Thus, if there is a disk failure, it is more likely the
case that an exception is already thrown by the first call.
Thus, we can optimize and only inject read disk failures
on the first read of every file (i.e., we assume that files are
always buffered after the first read). The subsequent reads to
the file will naturally fail. The policy for this optimization
is similar to the one for network failure optimization that is
explained in Appendix A (Figure 17).

4.6 Failing Probabilistically
Finally, a tester can inject multiple failures if they satisfy
some probabilistic criteria. We have not explored this strat-
egy in great extent because we need some real-world failure
statistic to perform real evaluation. However, we believe that
specifying this type of policy in PREFAIL will be straight-
forward. For example, the tester can write a policy as simple
as: return true if prob(fs) > 0.1. That is, inject a failure se-
quence fs only if the probability of the failures happening
together is larger than 0.1. The tester needs to implement
the prob function that ideally uses some real-world failure
statistic (e.g., a statistic that shows the probability distribu-
tion of two machine crashes happening at the same time).

In summary, the programmable policy framework allows
testers to write various failure exploration policies in order
to achieve different testing and optimization objectives. In
addition, as different systems and workloads employ differ-
ent recovery strategies, we believe this programmability is
valuable in terms of systematically exploring failures that
are appropriate for each strategy.

5. Evaluation
In this section, we evaluate the different aspects of PREFAIL.
We first list our target systems and workloads, along with
the bugs that we found (§5.1 and §5.2). Then, we quantify
the effectiveness of pruning policies that we have written
(§5.3). Finally, we show the implementation complexity of
PREFAIL (§5.4).

5.1 Target Systems, Workloads, and Bugs
We have integrated PREFAIL on different releases of three
popular “cloud” systems: HDFS [42] v0.20.0, v0.20.2+320,



and v0.20.2+737 (the last one is a release used by Cloud-
era customers [13]), ZooKeeper [27] v3.2.2 and v3.3.1, and
Cassandra [33] v0.6.1 and v0.6.5. These integrations show
that it is easy to port our tool to real-world systems and re-
leases. We evaluate PREFAIL on four HDFS workloads (log
recovery, read, write, and append), two Cassandra workloads
(key-value insert and log recovery), and one ZooKeeper
workload (leader election). In this work, we focused more
on Cloudera’s HDFS, and thus present extensive evaluation
numbers for it. We present partial results for other releases.

5.2 Bugs Found
With PREFAIL, we were able to find all of the 16 bugs
in HDFS v0.20.0 that we had reported in our previous
work [22]. We were told that many internal designs of HDFS
have changed since that version. After we integrated PRE-
FAIL to a much newer HDFS version (v0.20.2+737), we
found 6 more previously unknown bugs (three have been
confirmed, and three are still under consideration). Impor-
tantly, the developers believe that the bugs are crucial ones
and are hard to find without a multiple-failure testing tool.
These bugs are basically availability (e.g., the HDFS master
node is unable to reboot permanently) and reliability bugs
(e.g., user data is permanently lost). For brevity of space, we
explain below only one of the new recovery bugs. This bug
is present in the HDFS append protocol, and it happens be-
cause of multiple failures.

The task of the append protocol is to atomically append
new bytes to three replicas of a file that are stored in three
nodes. With two node failures and three replicas, append
should be successful as there is still one working replica.
However, we found a recovery bug when two failures were
injected; the append protocol returns error to the caller and
the surviving replica (that has the old bytes) is inaccessi-
ble. Here are the events that lead to the bug: The first node-
crash causes the append protocol to initiate a quite complex
distributed recovery protocol. Somewhere in the middle of
this recovery, a second node-crash happens, which leaves the
system in an unclean state. The protocol then initiates an-
other recovery again. However, since the previous recovery
did not finish and the system state was not properly cleaned,
this last initiation of recovery (which should be successful)
cannot proceed. Thus, an error is returned to the append
caller, and worse since the surviving replica is in an unclean
state, the file cannot be accessed.

5.3 Effectiveness of Policies
We now report the effectiveness of some of the pruning
policies that we have written. We first present the code-
coverage (Section 4.3) and recovery-coverage (Section 4.4)
based policies, and then the optimization-based policies
(Section 4.5).

 1

 10

 100

 1000

 10000

 100000

Wrt App LogR Wrt* App* Wrt App LogR Wrt* App*

#
E

x
p

e
ri
m

e
n
ts

 (
lo

g
 s

c
a
le

)

(2 failures/run)                         (3 failures/run)

Pruning speedup with diverse policies

BF
R-All
R-LN

R-L
CC

Figure 15. #Experiments run with different coverage-
based policies. The y-axis shows the number of failure-injection
(just crash-only failure) experiments for a given policy and a work-
load. The x-axis shows the workloads: the write (Wrt), append
(App), and log recovery (LogR) protocols from Cloudera’s ver-
sion of HDFS. We also run workloads from the old HDFS release
v0.20.0 (marked with *), which has a different design (and hence
different results). Two and three crashes were injected per exper-
iment for the bars on the left- and right-hand sides respectively.
CC and BF represent the code-coverage policy and brute-force ex-
ploration, respectively. R-L, R-LN, and R-All represent recovery-
coverage policies that use three different ways to characterize re-
covery (§4.3): using source location only (L), source location and
node (LN ), and all information in fip (All). We stopped our ex-
periments when they reached 10,000 (Hence, the maximum number
of experiments is 10,000).

5.3.1 Coverage-Based Policies
We show the benefits of using different coverage-based fail-
ure exploration policies to prune down the failure space in
different ways. Figure 15 shows the different number of ex-
periments that PREFAIL runs for different policies. An ex-
periment takes between 5 to 9 seconds to run. Here, we inject
crash-only failures so that the numbers are easy to compare.
The figure only shows numbers for multiple-failure experi-
ments because injecting multiple failures is where the major
bottleneck is.

With PREFAIL, a tester can choose different policies, and
hence different numbers of experiments and speed-ups, de-
pending on her time and resource constraints. For example,
the code-coverage policy (CC) gives two orders of magni-
tude improvement over the brute-force approach because it
simply explores possible crashes at source locations that it
has not exercised before (e.g., after exploring two crashes,
there is no new source location to cover in 3-crash cases).
Recovery clustering policies (R-L, R-LN, etc.) on the other
hand run more experiments, but still give an order of magni-
tude improvement over the brute-force approach. The more



#Failed
Workload #F Exps #Bugs #BugsR
Write 2 0 0 0

3 46 1 1
Append 2 14 2 2

3 31 (*) 2 (*) 2
LogRecovery 2 6 3 0

3 3 (*) 3 0

Table 3. #Bugs found. The table shows the number of failed
experiments (#Failed Exps) for a given workload using the simplest
recovery clustering policy (R-L in Figure 15) and the number of
crashes per run (#F), along with the actual number of bugs that
trigger the failed experiments (#Bugs). The last column (#BugsR)
is the number of bugs that can be found using randomized failure
injection. (*) implies that these are the same bugs (i.e., bugs in 2-
failure cases often appear again in 3-failure cases).

relaxed the recovery characterization, the lesser the number
of experiments (e.g., R-L vs. R-All).

Pruning is not beneficial if it is not effective in finding
bugs. In our experience, the recovery clustering policies are
effective enough in rapidly finding important bugs in the
system. To capture recovery bugs in the system, we wrote
simple recovery specifications for every target workload.
For example, for HDFS write, we can write a specification
that says “if a crash happens during the data transfer stage,
there should be two surviving replicas at the end”. If a
specification is not met, the corresponding experiment is
marked as failed.

Table 3 shows the number of bugs that we found even
with the use of the most relaxed recovery clustering policy
(R-L, which only uses source location to characterize recov-
ery). But again, a more exhaustive policy could find bugs
that were not caught by a more relaxed one. For example,
we know an old bug that might not surface with R-L pol-
icy, but does surface with R-LN policy which uses source
location and node ID to characterize recovery. The last col-
umn in the table shows the number of bugs that we can find
by using randomized failure injection, that is, by randomly
choosing the execution points at which to inject crashes. For
each workload, we execute the system as many times as we
do for the recovery clustering policy, and randomly inject
crashes in each execution. Randomized failure injection can
find the bugs for the write and append workloads, but not
for the log recovery workload. This is because the bugs for
the log recovery workload are corner-case bugs; the propor-
tion of failure sequences that lead to a log recovery bug is
much smaller than that for a write or an append bug. This
shows that randomized failure injection, though simple to
implement, is not effective in finding corner-case bugs that
manifest only in specific failure scenarios.

Workload Crash Disk Net Data
Failure Failure Corruption

H. Read 2/42 1/4 4/17 1/4
H. Write 57/454 27/27* 45/200 N.A.
H. Append 111/880 43/60 117/380 1/18
H. LogR 36/128 39/64 N.A. 3/28
C. Insert 33/102 25/25* 12/26 N.A.
C. LogR 84/196 89/98 N.A. 5/14
Z. Leader 39/132 21/21* 31/45 N.A.

Table 4. Benefits of Optimization-based Policies. The
table shows the benefits of the optimization-based policies on four
HDFS workloads (H), two Cassandra workloads (C), and one
ZooKeeper workload (Z). Each cell shows two numbers X/Y where
Y and X are the numbers of failure-injection experiments for single
failures without using and with using the optimization respectively.
N.A. represents a not applicable case; the failure type never occurs
for the workload. For write workloads, the replication factor is
3 (i.e., 3 nodes participating). (*) These write workloads do not
perform any disk read, and thus the optimization does not work
here.

5.3.2 Optimization-Based Policies
Table 4 shows the effectiveness of the optimizations of dif-
ferent failure types that we described in Section 4.5. The
optimizations for network failures and data corruption are
shown in Appendix A. Each cell presents two numbers X/Y
where Y and X are the numbers of failure-injection exper-
iments for single failures without using and with using the
optimization respectively. Overall, depending on the work-
load, the optimizations bring 21 to 1 times (5 on average) of
reduction in the number of failure-injection experiments.

5.4 Complexity
The FI engine is based on our previous work [22], which
is written in 6000 lines of Java code. We added around 160
lines of code to this old tool so that it passes on appropri-
ate failure and execution abstractions to the FI driver. The
FI driver is implemented in 1266 lines of Python code. It
implements a library of functions that testers can use to ac-
cess fits, fips and execution profiles passed on by the FI
engine. It also uses the policies written by testers to prune
down the set of failure sequences that can be exercised by FI
engine. We have written a number of different pruning poli-
cies in Python using the library provided by the FI driver. On
an average, we wrote a policy in 17 lines of Python code.

6. Limitations
PREFAIL does not control all kinds of non-determinism
present in a system execution (e.g., network message order-
ing). Therefore, two executions of the same system against
the same workload might be different, and PREFAIL might
not be able to inject a failure sequence that seemed possible
to inject from a previous system execution. In future work,



we plan to control the non-determinism that arises out of
network message ordering and also expose it to testers and
provide support for writing policies that can express the mes-
sage orderings to test for.

7. Related Work
In this section, we compare our work with other work that re-
lates to failure-injection. More specifically, we discuss other
related work that provide some language support for speci-
fying failure-injection tasks, and present techniques to prune
down large failure spaces.

There has been some work in designing a clear language
support for expressing which failures to inject. FAIL (Fault
Injection Language) is a domain-specific language that de-
scribes failure scenarios for Grid middleware [25]. FIG also
uses a domain-specific language to inject failures at library
level [8]. Orchestra uses TCL scripts to inject failures at
TCP level [16]. Genesis2 uses a scripting language to specify
service-level failures [30]. LFI uses an XML-based language
to trigger failures at library level [35]. These works however
do not describe how a wide range of policies can be writ-
ten in their languages. Furthemore, the tester might need to
write code from scratch to build the failure-injection tasks in
these languages. In contrast, in our work, we abstract out a
failure-injection task, and let testers easily use the informa-
tion in the abstraction to write policies.

Our work is motivated by the need to exercise multi-
ple failures especially to test cloud software systems. As
mentioned before, one major challenge is the large num-
ber of combinations of failures to explore. One direct way
to explore the space is via randomness. For example, ran-
dom injection of failures is employed by the developers at
Google [11], Yahoo! [44], Microsoft [47], Amazon [24], and
other places [26]. Random failure-injection is relatively sim-
ple to implement, but the downside is that it can easily miss
corner-case bugs that manifest only when specific failure se-
quences are injected.

Another approach is to exhaustively explore all possible
failure scenarios by injecting sequences of failures in all pos-
sible ways during execution. However, we found that within
the execution of a protocol (e.g., distributed write protocol,
log recovery), there are potentially thousands of possible
combinations of failures that can be exercised, which can
take hundreds of hours of testing time [23]. Thus, exhaus-
tive testing is plausible only if the tester has enough time
budget and computing resources.

Other than random and exhaustive approaches, there has
been some work in devising smart techniques that systemat-
ically prune down large failure spaces. Extensible LFI [36]
for example automatically analyzes the system to find code
that is potentially buggy in its handling of failures (e.g., sys-
tem calls that do not check some error-codes that could be
returned). AFEX [31] automatically figures out the set of
failure scenarios that when explored can meet a certain given

coverage criterion like a given level of code coverage. It uses
a variation of stochastic beam search to find the failure sce-
narios that would have the maximal effect on the coverage
criterion. Fu et al. [19] use compile-time analysis to find
which failure-injection points would lead to the execution
of which error recovery code. They use this information to
guide failure injection to obtain a high coverage of recov-
ery code. To the best of our knowledge, the authors of these
works do not address pruning of combinations of multiple
failures in distributed systems.

The multiple-failure combinatorial explosion problem is
similar to the state explosion problem in model check-
ing. Existing system model-checkers [47, 48] use domain-
specific optimization techniques to address the state explo-
sion problem. However, when it comes to multiple failures,
we did not find any system model-checker that is able to
effectively prune down combinations of multiple failures.
We believe that some of the pruning strategies that we have
introduced in our work can be integrated within a system
model checker.

There has been some work in program testing [7, 15, 21]
that uses tester-written specifications or input generators to
produce all non-isomorphic test inputs bounded by a given
size. The specifications or generators can be thought of as
being analogous to the tester-written pruning policies in
PREFAIL, and the process of generating inputs from them
by pruning down the input space can be thought of as being
analogous to the process of pruning down the failure space
using policies. The specifications are used only for the pur-
pose of generating test inputs, and there is no support to ad-
dress failures in the specifications.

8. Conclusion
We have presented PREFAIL, a programmable failure-
injection tool that provides appropriate failure abstractions
and execution profiles to let testers write a wide variety
of policies to prune down large spaces of multiple-failure
combinations. Currently, we are adding two other important
features to PREFAIL: support for triaging of failed experi-
ments, and parallelizing the whole architecture of PREFAIL.
Since debugging each failed experiment can take a signifi-
cant amount of time (many hours or even days), being able
to automatically triage failed experiments according to the
bugs that caused them can be very useful. Policies in PRE-
FAIL already prune down a failure space and result in a
speed-up of the entire failure testing process, but paralleliz-
ing PREFAIL would lead to an even greater speed-up. The
test workflow of PREFAIL can in fact be very easily paral-
lelized.

Overall, our goal in building PREFAIL is to help to-
day’s large-scale distributed systems “prevail” against pos-
sible hardware failures that can arise. Although so far we
use PREFAIL primarily to find reliability bugs, we envision
PREFAIL will empower many more program analyses “un-



der failures”. That is, we note that many program analy-
ses (related to data races, deadlocks, security, etc.) are of-
ten done when the target system faces no failure. However,
we did find data races and deadlocks under some failure sce-
narios. Therefore, for today’s pervasive cloud systems, we
believe that existing analysis tools should also run when the
target system faces failures. The challenge is that some pro-
gram analyses might already be time-consuming. Running
them with failures will prolong the testing time. We believe
the pruning policies that PREFAIL supports will be valuable
in reducing the testing time for these analyses. And again,
we hope that our work attracts other researchers to present
other pruning alternatives.
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A. Appendix
We explain the optimizations that we perform to eliminate
redundant failure-injection experiments for network failures
and disk corruption.

A.1 Network Failures
For network failures, we can perform an optimization simi-
lar to disk failures (Section 4.5.2). Since there is no notion
of file in network I/Os, we keep information about the latest
network read that a thread of a node performs. If a particu-
lar thread performs a read call that has the same sender as
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1 d e f f l t (fs):

2 f o r i i n range(len(fs)):

3 fp = FIP(fs[i])

4 isNet = (fp[‘ioTarget ’] == ‘net’)

5 isWrite = (fp[‘ioType ’] == ‘write’)

6 isCrash = (fp[‘failure ’] == ‘crash’)

7 rNode = fp[‘receiver ’]

8 pfx = fs[0:i]

9 if isNet and isWrite and isCrash and

10 nodeAlreadyCrashed(pfx , rNode):

11 return False

12 return True

Figure 16. Crash optimization for network writes. The
function accepts a failure sequence if for each crash at a network
write to a receiver node rNode in the sequence, there is no pre-
ceding crash in the sequence that occurs in the node rNode . The
function nodeAlreadyCrashed (also implemented by the tester
but not shown) takes a failure sequence and a node as arguments,
and returns true if there is a crash failure in the sequence that oc-
curs in the given node.

1 d e f f l t (fs):

2 f o r i i n range(len(fs)):

3 fp = FIP(fs[i])

4 isNetFail = (fp[‘failure ’] ==

‘netfail ’)

5 isRead = (fp[‘ioType ’] == ‘read’)

6 sender = fp[‘sender ’]

7 node = fp[‘node’]

8 thread = fp[‘thread ’]

9 time = fp[‘time’]

10 pfx = fs[0:i]

11 allFS = allFitSeqs ()

12 i f isNetFail and isRead and
13 ( no t first(pfx , node , thread ,

time , sender , allFS)):

14 r e t u r n False

15 r e t u r n True

Figure 17. Network failure optimization. The function
checks for each network failure at a read I/O in a failure sequence
to see if it is the first read of data in its thread that is sent by its
sender to its node. The function first (also implemented by the
tester, but not shown) determines this condition for each network
failure in the failure sequence. The key time in a fip records the
time when the fip was observed during execution in the FI engine.
This key helps in determining the temporal position of a read in the
list of all failure sequences allFS passed on by the FI engine.

the previous call, then we assume that it is a subsequent read
on the same network message from the same sender to this
thread (potentially buffered by the OS), and thus we do not
explicitly inject a network failure on this subsequent read.
In addition, we clear the read history if the node performs a
network write, so that we can inject network failures when

the node performs future reads on different network mes-
sages. Also, we do not inject a network failure if one of the
nodes participating in the message is already dead. Figure 17
shows the flt function that can be used to implement the
optimization for network failures.

A.2 Data Corruption
In the case of disk corruption, after data gets corrupted, all
reads of the data give unexpected values for the data. It is
possible but very unlikely that the first read of the data gives
a non-corrupt value and the second read in the near future
gives a corrupt one. Thus, we can perform an optimization
similar to the disk-failure case (Section 4.5.2).


