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Abstract

We describe an executable specification of the operational semantics of an asyn-
chronous version of the π-calculus in Maude by means of conditional rewrite rules
with rewrites in the conditions. We also present an executable specification of the
may testing equivalence on non-recursive asynchronous π-calculus processes, using
the Maude metalevel. Specifically, we describe our use of the metaSearch opera-
tion to both calculate the set of all finite traces of a non-recursive process, and to
compare the trace sets of two processes according to a preorder relation that char-
acterizes may testing in asynchronous π-calculus. Thus, in both the specification of
the operational semantics and the may testing, we make heavy use of new features
introduced in version 2.0 of the Maude language and system.
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1 Introduction

Since its introduction in the seminal paper [11] by Milner, Parrow, and Walker,
the π-calculus has become one of the most studied calculus for name-based
mobility of processes, where processes are able to exchange names over chan-
nels so that the communication topology can change during the computation.
The operational semantics of the π-calculus has been defined for several differ-
ent versions of the calculus following two main styles. The first is the labelled
transition system style according to the SOS approach introduced by Plotkin

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume71.html�


Thati, Sen, and Mart́ı-Oliet

[13]. The second is the reduction style, where first an equivalence is imposed
on syntactic processes (typically to make syntax more abstract with respect
to properties of associativity and/or commutativity of some operators), and
then some reduction or rewrite rules express how the computation proceeds
by communication between processes.

The first specification of the π-calculus operational semantics in rewriting
logic was developed by Viry in [19], in a reduction style making use of de
Bruijn indexes, explicit substitutions, and reduction strategies in Elan [6].
This presentation was later improved by Stehr [14] by making use of a generic
calculus for explicit substitutions, known as CINNI, which combines the best
of the approaches based on standard variables and de Bruijn indices, and that
has been implemented in Maude.

Our work took the work described above as a starting point, together
with recent work by Verdejo and Mart́ı-Oliet [18] showing how to use the new
features of Maude 2.0 in the implementation of a semantics in the labelled
transition system style for CCS. This work makes essential use of conditional
rewrite rules with rewrites in the conditions, so that an inference rule in the
labelled transition system of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites. These rules are executable in version 2.0
of the Maude language and system [7]. However, this is not enough, because
it is necessary to have some control on the application of rules. Typically,
rewrite rules can be applied anywhere in a term, while the transitions in the
operational semantics for CCS or the π-calculus in the SOS style only take
place at the top. The new frozen attribute available in Maude 2.0 makes this
possible, because the declaration of an operator as frozen forbids rewriting its
arguments, thus providing another way of controlling the rewriting process.
Rewrite conditions when applying conditional rules are solved by means of
an implicit search process, which is also available to the user both at the
command level and at the metalevel. The search command looks for all the
rewrites of a given term that match a given pattern satisfying some condition.
Search is reified at the metalevel as an operation metaSearch.

In this way, our first contribution is a fully executable specification of
an operational semantics in the labelled transition system style for an asyn-
chronous version of the π-calculus (the semantics for the synchronous case is
obtained as a simple modification). This specification uses conditional rewrite
rules with rewrites in conditions and the CINNI calculus [14] for managing
names and bindings in the π-calculus. However, these two ingredients are not
enough to obtain a fully executable specification. A central problem to over-
come is that the transitions of a term can be infinitely branching. For instance,
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the term x(y).P can evolve via an input action to one of an infinite family of
terms depending on the name received in the input at channel x. Our solution
is to define the transitions of a process relative to an execution environment.
The environment is represented abstractly as a set of free (global) names that
the environment may use while interacting with the process, and transitions
are modelled as rewrite rules over a pair consisting of a set of environment
names together with a process.

Our next contribution is to implement the verification of the may-testing
preorder [12,3,5] between finitary (non-recursive) asynchronous π-calculus pro-
cesses, using again ideas from [18] to calculate the set of all finite traces of a
process. May testing is a specific instance of the notion of behavioral equiv-
alence on π-calculus processes; in may testing, two processes are said to be
equivalent if they have the same success properties in all experiments. An
experiment consists of an observing process that runs in parallel and interacts
with the process being tested, and success is defined as the observer signalling
a special event. Viewing the occurrence of an event as something bad hap-
pening, may testing can be used to reason about safety properties [4].

Since the definition of may testing involves a universal quantification over
all observers, it is difficult to establish process equivalences directly from the
definition. As a solution, alternate characterizations of the equivalence that
do not resort to quantification over observers have been found. It is known
that the trace semantics is an alternate characterization of may testing in
(synchronous) π-calculus [3], while a variant of the trace semantics has been
shown to characterize may testing in an asynchronous setting [5]. Specifically,
in both these cases, comparing two processes according to the may-testing
preorder amounts to comparing the set of all finite traces they exhibit. We
have implemented for finite asynchronous processes, the comparison of trace
sets proposed in [5]. We stress that our choice of specifying an asynchronous
version rather than the synchronous π-calculus, is because the characterization
of may testing for the asynchronous case is more interesting and difficult. The
synchronous version can be specified in an executable way using similar but
simpler techniques.

Our first step in obtaining an executable specification of may testing is
to obtain the set of all finite traces of a given process. This is done at the
Maude metalevel by using the metaSearch operation to collect all results of
rewriting a given term. The second step is to specify a preorder relation
between traces that characterizes may testing. We have represented the trace
preorder relation as a rewriting relation, i.e. the rules of inference that define
the trace preorder are again modeled as conditional rewrite rules. The final
step is to check if two processes are related by the may preorder, i.e. whether
a statement of the form P v Q is true or not. This step involves computing
the closure of a trace under the trace-preorder relation, again by means of the
metaSearch operation. Thus, our work demonstrates the utility of the new
metalevel facilities available in Maude 2.0.
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The structure of the paper follows the steps in the description above. Sec-
tion 2 describes the syntax of the asynchronous version of the π-calculus that
we consider, together with the corresponding CINNI operations we use. Sec-
tion 3 describes the operational semantics specified by means of conditional
rewrite rules. Sections 4 and 5 define traces and the preorder on traces, re-
spectively. Finally, Section 6 contains the specification of the may testing on
processes as described above. Section 7 concludes the paper along with a brief
discussion of future work.

Although this paper includes some information on the π-calculus and may
testing to make it as self contained as possible, we refer the reader to the
papers [5,3,11] for complete details on these subjects. In the same way, the
interested reader can find a detailed explanation about the new features of
Maude 2.0 in [7], and about their use in the implementation of operational
semantics in the companion paper [18].

2 Asynchronous π-Calculus Syntax

The following is a brief and informal review of a version of asynchronous π-
calculus that is equipped with a conditional construct for matching names. An
infinite set of channel names is assumed, and u, v, w, x, y, z, . . . are assumed to
range over it. The set of processes, ranged over by P, Q,R, is defined by the
following grammar:

P := xy |
∑
i∈I

αi.Pi | P1|P2 | (νx)P | [x = y](P1, P2) | !P

where α can be x(y) or τ .

The output term xy denotes an asynchronous message with target x and
content y. The summation

∑
i∈I αi.Pi non-deterministically chooses an αi,

and if αi = τ it evolves internally to Pi, and if αi = x(y) it receives an
arbitrary name z at channel x and then behaves like P{z/y}. The process
P{z/y} is the result of the substitution of free occurrences of y in P by z,
with the usual renaming of bound names to avoid accidental captures (thus
substitution is defined only modulo α-equivalence). The argument y in x(y).P
binds all free occurrences of y in P . The composition P1|P2 consists of P1 and
P2 acting in parallel. The components can act independently, and also interact
with each other. The restriction (νx)P behaves like P except that it can not
exchange messages targeted to x, with its environment. The restriction binds
free occurrences of x in P . The conditional [x = y](P1, P2) behaves like P1

if x and y are identical, and like P2 otherwise. The replication !P provides
an infinite number of copies of P . The functions for free names fn(.), bound
names bn(.) and names n(.), of a process, are defined as expected.

In the Maude specification for the π-calculus syntax that follows, the sort
Chan is used to represent channel names and each of the non-constant syn-
tax constructors is declared as frozen, so that the corresponding arguments
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cannot be rewritten by rules; this will be justified at the end of Section 3.

sort Chan .
sorts Guard GuardedTrm SumTrm Trm .
subsort GuardedTrm < SumTrm .
subsort SumTrm < Trm .

op _(_) : Chan Qid -> Guard .
op tau : -> Guard .
op nil : -> Trm .
op _<_> : Chan Chan -> Trm [frozen] .
op _._ : Guard Trm -> GuardedTrm [frozen] .
op _+_ : SumTrm SumTrm -> SumTrm [frozen assoc comm] .
op _|_ : Trm Trm -> Trm [frozen assoc comm] .
op new[_]_ : Qid Trm -> Trm [frozen] .
op if_=_then_else_fi : Chan Chan Trm Trm -> Trm [frozen] .
op !_ : Trm -> Trm [frozen] .

Note that the syntactic form
∑

i∈I αi.Pi has been split into three cases:

(i) nil represents the case where I = ∅,
(ii) a term of sort GuardedTrm represents the case where I = {1}, and

(iii) a term of sort SumTrm represents the case where I = [1..n] for n > 1. Since
the constructor + is associative and the sort GuardedTrm is a subsort of
SumTrm, we can represent a finite sum

∑
i∈I αi.Pi as (. . . (α1.P1 +α2.P2)+

· · ·αn.Pn).

To represent substitution on π-calculus processes (and traces, see Sec-
tion 4) at the language level we use CINNI as a calculus for explicit substitu-
tions [14]. This gives a first-order representation of terms with bindings and
capture-free substitutions, instead of going to the metalevel to handle names
and bindings. The main idea in such a representation is to keep the bound
names inside the binders as it is, but to replace its use by the name followed
by an index which is a count of the number of binders with the same name it
jumps before it reaches the place of use. Following this idea, we define terms
of sort Chan as indexed names as follows.

sort Chan .
op _{_} : Qid Nat -> Chan [prec 1] .

We introduce a sort of substitutions Subst together with the following
operations:

op [_:=_] : Qid Chan -> Subst .
op [shiftup_] : Qid -> Subst .
op [shiftdown_] : Qid -> Subst .
op [lift__] : Qid Subst -> Subst .

The first two substitutions are basic substitutions representing simple and
shiftup substitutions; the third substitution is a special case of simple substi-
tution; the last one represents complex substitution where a substitution can
be lifted using the operator lift. The intuitive meaning of these operations
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[a := x] [shiftup a] [shiftdown a] [lift a S]

a{0} 7→ x a{0} 7→ a{1} a{0} 7→ a{0} a{0} 7→ [shiftup a] (S a{0})
a{1} 7→ a{0} a{1} 7→ a{2} a{1} 7→ a{0} a{1} 7→ [shiftup a] (S a{1})

· · · · · · · · · · · ·
a{n+1} 7→ a{n} a{n} 7→ a{n+1} a{n+1} 7→ a{n} a{n} 7→ [shiftup a] (S a{n})
b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ [shiftup a] (S b{m})

Table 1
The CINNI operations.

is described in Table 1 (see [14] for more details). Using these, explicit sub-
stitutions for π-calculus processes are defined equationally. Some interesting
equations are the following:

eq S (P + Q) = (S P) + (S Q) .
eq S (CX(Y) . P ) = (S CX)(Y) . ([lift Y S] P) .
eq S (new [X] P) = new [X] ([lift X S] P) .

3 Operational Semantics

A labelled transition system (see Table 2) is used to give an operational se-
mantics for the calculus as in [5]. The transition system is defined modulo
α-equivalence on processes in that α-equivalent processes have the same tran-
sitions. The rules COM, CLOSE, and PAR have symmetric versions that are
not shown in the table.

Transition labels, which are also called actions, can be of five forms: τ (a
silent action), xy (free output of a message with target x and content y), x(y)
(bound output), xy (free input of a message), and x(y) (bound input). The
functions fn(.), bn(.) and n(.) are defined on actions as expected. The set of
all visible (non-τ) actions is denoted by L, and α is assumed to range over
L. As a uniform notation for free and bound actions the following notational
convention is adopted: (∅)xy = xy, ({y})xy = x(y), and similarly for input
actions. The variable ẑ is assumed to range over {∅, {z}}. The term (νẑ)P is
(νz)P if ẑ = {z}, and P otherwise.

We define the sort Action and the corresponding operations as follows:

sorts Action ActionType .
ops i o : -> ActionType .
op f : ActionType Chan Chan -> Action .
op b : ActionType Chan Qid -> Action .
op tauAct : -> Action .

The operators f and b are used to construct free and bound actions re-
spectively. Name substitution on actions is defined equationally as expected.

The inference rules in Table 2 are modelled as conditional rewrite rules
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INP:
∑

i∈I αi.Pi
xjz−→ Pj{z/y} j ∈ I, αj = xj(y)

TAU:
∑

i∈I αi.Pi
τ−→ Pj j ∈ I, αj = τ

OUT: xy
xy−→ 0

BINP:
P

xy−→ P ′

P
x(y)−→ P ′

y /∈ fn(P )

PAR:
P1

α−→ P ′
1

P1|P2
α−→ P ′

1|P2

bn(α) ∩ fn(P2) = ∅ COM:
P1

xy−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

y /∈ n(α) OPEN:
P

xy−→ P ′

(νy)P
x(y)−→ P ′

x 6= y

CLOSE:
P1

x(y)−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ (νy)(P ′

1|P ′
2)

y /∈ fn(P2) REP:
P |!P α−→ P ′

!P
α−→ P ′

IF:
P

α−→ P ′

[x = x](P, Q)
α−→ P ′

ELSE:
Q

α−→ Q′

[x = y](P, Q)
α−→ Q′

x 6= y

Table 2
A labelled transition system for asynchronous π-calculus.

with the premises as conditions of the rule. 1 Since rewrites do not have labels
unlike the labelled transitions, we make the label a part of the resulting term;
thus rewrites corresponding to transitions in the operational semantics are of
the form P ⇒ {α}Q.

Because of the INP and OPEN rules, the transitions of a term can be
infinitely branching. Specifically, in case of the INP rule there is one branch
for every possible name that can be received in the input. In case of the OPEN
rule, there is one branch for every name that is chosen to denote the private
channel that is being emitted (note that the transition rules are defined only
modulo α-equivalence). To overcome this problem, we define transitions over
pairs of the form [CS] P, where CS is a set of channel names containing all the
names that the environment with which the process interacts, knows about.
The set CS expands during bound input and output interactions when private
names are exchanged between the process and its environment.

The infinite branching due to the INP rule is avoided by allowing only the
names in the environment set CS to be received in free inputs. Since CS is
assumed to contain all the free names in the environment, an input argument
that is not in CS would be a private name of the environment. Now, since
the identifier chosen to denote the fresh name is irrelevant, all bound input

1 The symmetric versions missing in the table need not be implemented because the process
constructors + and | have been declared as commutative.
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transitions can be identified to a single input. With these simplifications,
the number of input transitions of a term become finite. Similarly, in the
OPEN rule, since the identifier chosen to denote the private name emitted is
irrelevant, instances of the rule that differ only in the chosen name are not
distinguished.

We discuss in detail the implementation of only a few of the inference rules;
the reader is referred to the appendix for a complete list of all the rewrite rules
for Table 2.

sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .
op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .

Note that the two operators are also declared above with the frozen at-
tribute, forbidding in this way rewriting of their arguments, as justified at the
end of this section.

The following non-conditional rule is for free inputs.

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

The next rule we consider is the one for bound inputs. Since the identifier
chosen to denote the bound argument is irrelevant, we use the constant ’U

for all bound inputs, and thus ’U{0} denotes the fresh channel received. Note
that in contrast to the BINP rule of Table 2, we do not check if ’U{0} is in the
free names of the process performing the input, and instead we shift up the
channel indices appropriately, in both the set of environment names CS and
the process P in the righthand side and condition of the rule. This is justified
because the transition target is within the scope of the bound name in the
input action. Note also that the channel CX in the action is not shifted down
because it is out of the scope of the bound argument. The set of environment
names is expanded by adding the received channel ’U{0} to it. Finally, we
use a special constant flag of sort Chan, to ensure termination. We add an
instance of flag to the environment set of the rewrite in condition, so that
the BINP rule is not fired again while evaluating the condition. Without this
check, we will have a non-terminating execution in which the BINP rule is
repeatedly fired.

crl [BInp] : [CS] P => {b(i,CX,’U)} [’U{0} [shiftup ’U] CS] P1
if (not flag in CS) /\

CS1 := flag ’U{0} [shiftup ’U] CS /\
[CS1] [shiftup ’U] P => {f(i,CX,’U{0})} [CS1] P1 .

The following rule treats the case of bound outputs.

crl [Open] : [CS] (new [X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

Like in the case of bound inputs, we identify all bound outputs to a single

8



Thati, Sen, and Mart́ı-Oliet

instance in which the identifier X that appears in the restriction is chosen as
the bound argument name. Note that in both the righthand side of the rule
and in the condition, the indices of the channels in CS are shifted up, because
they are effectively moved across the restriction. Similarly, the channel indices
in the action in the righthand side of the rule are shifted down since the action
is now moved out of the restriction. Note also that the exported name is added
to the set of environment names, because the environment that receives this
exported name can use it in subsequent interactions.

The PAR inference rule is implemented by two rewrite rules, one for the
case where the performed action is free, and the other where the action is
bound. The rewrite rule for the latter case is discussed next, while the one for
the former case is simpler and appears in the appendix.

var IO : ActionType
crl [Par] : [CS] (P | Q) =>

{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)
if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

Note that the side condition of the PAR rule in Table 2, which avoids
confusion of the emitted bound name with free names in Q, is achieved by
shifting up channel indices in Q. This is justified because the righthand side of
the rule is under the scope of the bound output action. Similarly, the channel
indices in the environment are also shifted up. Further, the set of environment
names is expanded by adding the exported channel Y{0}.

Finally, we consider the rewrite rule for CLOSE. The process P emits a
bound name Y, which is received by process Q. Since the scope of Y after the
transition includes Q, the rewrite involving Q in the second condition of the
rule is carried out within the scope of the bound name that is emitted. This
is achieved by adding the channel Y{0} to the set of environment names and
shifting up the channel indices in both CS and Q in the rewrite. Note that
since the private name being exchanged is not emitted to the environment,
we neither expand the set CS in the righthand side of the rule nor shift up the
channel indices in it.

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

We conclude this section with the following note. The operator { } is
declared frozen because further rewrites of the process term encapsulated
in a term of sort TraceTrm are useless. This is because all the conditions of
the transition rules only involve one step rewrites (the righthand side of these
rewrites can only match a term of sort TraceTrm with a single action prefix).
Further note that, to prevent rewrites of a term to a non well-formed term, all
the constructors for π-calculus terms (Section 2) have been declared frozen;
in the absence of this declaration we would have for instance rewrites of the
form P | Q => {A}.P1 | Q to a non well-formed term.
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4 Trace Semantics

The set L∗ is the set of traces. The functions fn(.), bn(.) and n(.) are extended
to L∗ in the obvious way. The relation of α-equivalence on traces is defined
as expected, and α-equivalent traces are not distinguished. The relation =⇒
denotes the reflexive transitive closure of

τ−→, and
β

=⇒ denotes =⇒ β−→=⇒.

For s = l.s′, we inductively define P
s

=⇒ P ′ as P
l

=⇒ s′
=⇒ P ′. We use P

s
=⇒

as an abbreviation for P
s

=⇒ P ′ for some P ′. The set of traces that a process
exhibits is then [|P |] = {s | P

s
=⇒}.

In the implementation, we introduce a sort Trace as supersort of Action
to specify traces.

subsort Action < Trace .
op epsilon : -> Trace .
op _._ : Trace Trace -> Trace [assoc id: epsilon] .
op [_] : Trace -> TTrace .

We define the operator [ ] to represent a complete trace. The motivation
for doing so is to restrict the equations and rewrite rules defined over traces to
operate only on a complete trace instead of a part of it. The following equation
defines α-equivalence on traces. Note that in a trace TR1.b(IO,CX,Y).TR2 the
action b(IO,CX,Y) binds the identifier Y in TR2.

ceq [TR1 . b(IO,CX,Y) . TR2] =
[TR1 . b(IO,CX,’U) . [Y := ’U{0}] [shiftup ’U] TR2]

if Y =/= ’U .

Because the operator op { } : Action TraceTrm -> TraceTrm is declared
as frozen, a term of sort EnvTrm can rewrite only once, and so we cannot ob-
tain the set of finite traces of a process by simply rewriting it multiple times in
all possible ways. The problem is solved as in [18], by specifying the trace se-
mantics using rules that generate the transitive closure of one step transitions
as follows:

sort TTrm .
op [_] : EnvTrm -> TTrm [frozen] .
var TT : TraceTrm .

crl [reflx] : [ P ] => {A} Q if P => {A} Q .
crl [trans] : [ P ] => {A} TT

if P => {A} Q /\ [ Q ] => TT /\ [ Q ] =/= TT .

We use the operator [ ] to prevent infinite loops while evaluating the
conditions of the rules above. If this operator were not used, then the lefthand
side of the rewrite in the condition would match the lefthand side of the rule
itself, and so the rule itself could be used in order to solve its condition. This
operator is also declared as frozen to prevent useless rewrites inside [ ].

We can now use the search command of Maude 2.0 to find all possible
traces of a process. The traces appear as prefix of the one-step successors
of a TTrm of the form [[CS] P]. For instance, the set of all traces exhibited
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by [mt] new [’y] (’x0 < ’y0 > | ’x0(’u) . nil) (where mt denotes the
empty channel set), can be obtained by using the following search command.

Maude> search [ [mt] new [’y] (’x{0} < ’y{0} > | ’x{0}(’u) . nil) ] =>!
X:TraceTrm .
search in APITRACESET : [[mt]new[’y](’x{0} < ’y{0} > | ’x{0}(’u) . nil)] =>!
X:TraceTrm .

Solution 1 (state 1)
states: 7 rewrites: 17344 in 110ms cpu (150ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}[’u{0}]new[’y](nil | ’x{0} < ’y{0} >)

Solution 2 (state 2)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {tauAct}[mt]new[’y](nil | nil)

Solution 3 (state 3)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}[’y{0}]nil | ’x{0}(’u) . nil

Solution 4 (state 4)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}{b(o, ’x{0}, ’y)}[’y{0} ’u{0}]nil | nil

Solution 5 (state 5)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{b(i, ’x{0}, ’u)}[’y{0} ’u{0}]nil | nil

Solution 6 (state 6)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{f(i, ’x{0}, ’y{0})}[’y{0}]nil | nil

No more solutions.
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

The command returns all TraceTrms that can be reached from the given
TTrm, and that are terminating (the ‘!’ in =>! specifies that the target should
be terminating). The required set of traces can be obtained by simply extract-
ing from each solution {a1}...{an}TT the sequence a1...an and removing
all tauActs in it. Thus, we have obtained an executable specification of the
trace semantics of asynchronous π-calculus.

5 A Trace Based Characterization of May Testing

The may-testing framework [12] is instantiated on asynchronous π-calculus as
follows. Observers are processes that can emit a special message µµ. We say

that an observer O accepts a trace s if O
s̄.µµ
=⇒, where s̄ is the trace obtained by

complementing the actions in s, i.e. converting input actions to output actions
and vice versa. The may preorder v over processes is defined as: P v Q if for

every observer O, P |O µµ
=⇒ implies Q|O µµ

=⇒. We say that P and Q are may-
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(Drop) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 6= ⊥
(Delay) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) 6= ⊥

(Annihilate) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 6= ⊥
Table 3

A preorder relation on traces.

equivalent, i.e. P = Q, if P v Q and Q v P . The universal quantification
on contexts in this definition makes it very hard to prove equalities directly
from the definition, and makes mechanical checking impossible. To circumvent
this problem, a trace based alternate characterization of the may equivalence
is proposed in [5]. We now summarize this characterization and discuss our
implementation of it.

The preorder ¹ on traces is defined as the reflexive transitive closure of
the laws shown in Table 3, where the notation (ŷ)· is extended to traces as
follows.

(ŷ)s =





s if ŷ = ∅ or b 6∈ fn(s)

s1.x(y).s2 if ŷ = {y} and there are s1, s2, x such that

s = s1.xy.s2 and y 6∈ n(s1) ∪ {x}
⊥ otherwise

For sets of traces R and S, we define R - S, if for every s ∈ S there is
an r ∈ R such that r ¹ s. The may preorder is then characterized in [5] as:
P v Q if and only if [|Q|] - [|P |].

The main intuition behind the preorder ¹ is that if an observer accepts
a trace s, then it also accepts any trace r ¹ s. The first two laws state that
an observer cannot force inputs on the process being tested. Since outputs
are asynchronous, the actions following an output in a trace exhibited by the
observer need not causally depend on the output. Hence the observer’s output
can be delayed until a causally dependent action, or dropped if there are no
such actions. The annihilation law states that an observer can consume its
own outputs unless there are subsequent actions that depend on the output.
The reader is referred to [5] for further details on this characterization.

We encode the trace preorder as rewrite rules on terms of the sort TTrace
of complete traces; specifically, the relation r ≺ s if cond, is encoded as s

=> r if cond. The reason for this form of representation will be justified
in Section 6. The function ({y})· on traces is defined equationally by the
operation bind. The constant bot of sort Trace is used by the bind operation
to signal error.

op bind : Qid Trace -> Trace .
op bot : -> Trace .
var TR : Trace . var IO : ActionType.

12
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ceq TR . bot = bot if t =/= epsilon .
ceq bot . TR = bot if t =/= epsilon .

eq bind(X , epsilon) = epsilon .

eq bind(X , f(i,CX,CY) . TR ) = if CX =/= X{0} then
if CY == X{0} then ([shiftdown X] b(i, CX , X)) . TR

else ([shiftdown X] f(i, CX , CY)) . bind(X , TR) fi
else bot fi .

eq bind(X , b(IO,CX,Y) . TR) = if CX =/= X{0} then
if X =/= Y then ([shiftdown X] b(i, CX , Y)) . bind(X , TR)

else ([shiftdown X] b(IO, CX , Y)) . bind(X , swap(X,TR)) fi
else bot fi .

The equation for the case where the second argument to bind begins with
a free output is not shown as it is similar. Note that the channel indices
in actions until the first occurrence of X{0} as the argument of a free input
are shifted down as these move out of the scope of the binder X. Further,
when a bound action with X as the bound argument is encountered, the swap

operation is applied to the remaining suffix of the trace. The swap operation
simply changes the channel indices in the suffix so that the binding relation
is unchanged even as the binder X is moved across the bound action. This is
accomplished by simultaneously substituting X{0} with X{1}, and X{1} with
X{0}. Finally, note that when X{0} is encountered as the argument of a free
input, the input is converted to a bound input. If X{0} is first encountered at
any other place, an error is signalled by returning the constant bot.

The encoding of the preorder relation on traces is now straightforward.

crl [Drop] : [ TR1 . b(i,CX,Y) . TR2 ] => [ TR1 . bind(Y , TR2) ]
if bind(Y , TR2) =/= bot .

rl [Delay] : [ ( TR1 . f(i,CX,CY) . b(IO,CU,V) . TR2 ) ] =>
[ ( TR1 . b(IO,CU,V) . ([shiftup V] f(i, CX , CY)) . TR2 ) ] .

crl [Delay] : [ ( TR1 . b(i,CX,Y) . f(IO,CU,CV) . TR2 ) ] =>
[ ( TR1 . bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) ) ]

if bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) =/= bot .

crl [Annihilate] : [ ( TR1 . b(i,CX,Y) . f(o,CX,Y{0}) . TR2 ) ] =>
[ TR1 . bind(Y , TR2) ]

if bind(Y , TR2) =/= bot .

Note that in the first Delay rule, the channel indices of the free input
action are shifted up when it is delayed across a bound action, since it gets
into the scope of the bound argument. Similarly, in the second Delay rule,
when the bound input action is delayed across a free input/output action,
the channel indices of the free action are shifted down by the bind operation.
The other two subcases of the Delay rule, namely, where a free input is to
be delayed across a free input or output, and where a bound input is to be
delayed across a bound input or output, are not shown as they are similar.

13
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Similarly, for Annihilate, the case where a free input is to be annihilated
with a free output is not shown.

6 Verifying the May Preorder between Finite Processes

We now describe our implementation of verification of the may preorder be-
tween finite processes, i.e. processes without replication, by exploiting the
trace-based characterization of may testing discussed in Section 5. The finite-
ness of a process P only implies that the length of traces in [|P |] is bounded,
but the number of traces in [|P |] can be infinite (even modulo α-equivalence)
because the INP rule is infinitely branching. To avoid the problem of having
to compare infinite sets, we observe that

[|Q|] - [|P |] if and only if [|Q|]fn(P,Q) - [|P |]fn(P,Q),

where for a set of traces S and a set of names ρ we define Sρ = {s ∈ S |
fn(s) ⊆ ρ}. Now, since the traces in [|P |] and [|Q|] are finite in length, it
follows that the sets of traces [|P |]fn(P,Q) and [|Q|]fn(P,Q) are finite modulo α-
equivalence. In fact, the set of traces generated for [[fn(P,Q)] P] by our
implementation described in Section 3, contains exactly one representative
from each α-equivalence class of [|P |]fn(P,Q).

Given processes P and Q, we generate the set of all traces (modulo α-
equivalence) of [[fn(P,Q)] P] and [[fn(P,Q)] Q] using the metalevel fa-
cilities of Maude 2.0. As mentioned in Section 4, these terms, which are
of sort TTrm, can be rewritten only once. The term of sort TraceTrm ob-
tained by rewriting contains a finite trace as a prefix. To create the set of all
traces, we compute all possible one-step rewrites. This computation is done at
the metalevel by the function TTrmtoNormalTraceSet that uses two auxiliary
functions TTrmtoTraceSet and TraceSettoNormalTraceSet.

op TTrmtoTraceSet : Term -> TermSet .
op TraceSettoNormalTraceSet : TermSet -> TermSet .
op TTrmtoNormalTraceSet : Term -> TermSet .

eq TTrmtoNormalTraceSet(T) = TraceSettoNormalTraceSet(TTrmtoTraceSet(T)) .

The function TTrmTraceSet uses the function allOneStepAux(T,N) that
returns the set of all one-step rewrites (according to the rules in Sections 3
and 4, which are defined in modules named APISEMANTICS and APITRACE, see
Figure A.1 in appendix) of the term T which is the metarepresentation of a
term of sort TTrm, skipping the first N solutions. In the following equations,
the operator u stands for set union.

Notice the use of the operation metaSearch, which receives as arguments
the metarepresented module to work in, the starting term for search, the
pattern to search for, a side condition (empty in this case), the kind of search
(which may be ’* for zero or more rewrites, ’+ for one or more rewrites, and
’! for only matching normal forms), the depth of search, and the required
solution number. It returns the term matching the pattern, its type, and
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the substitution produced by the match; to keep only the term, we use the
projection getTerm.

op APITRACE-MOD : -> Module .
eq APITRACE-MOD = [’APITRACE] .
var N : MachineInt . vars T X : Term .

op allOneStepAux : Term MachineInt Term -> TermSet .
op TraceTermToTrace : Term -> Term .

eq TTrmtoTraceSet(T) = allOneStepAux(T,0,’X:TraceTrm) .
eq allOneStepAux(T,N,X) =

if metaSearch(APITRACE-MOD,T,X,nil,’+,1,N) == failure
then ’epsilon.Trace
else TraceTermToTrace(getTerm(metaSearch(APITRACE-MOD,T,X,nil,’+,1,N)))

u allOneStepAux(T,N + 1,X) fi .

The function TraceTrmToTrace (whose equations are not shown), used
in allOneStepAux, extracts the trace a1.a2...an out of a metarepresenta-
tion of a term of sort TraceTrm of the form {a1}{a2}...{an}TT. The function
TraceSettoNormalTraceSet uses the metalevel operation metaReduce to con-
vert each trace in a trace set to its α-normal form. The operation metaReduce

takes as arguments a metarepresented module and a metarepresented term
in that module, and returns the metarepresentation of the fully reduced form
of the given term using the equations in the given module, together with its
corresponding sort or kind. Again, the projection getTerm leaves only the
resulting term.

eq TraceSettoNormalTraceSet(mt) = mt .
eq TraceSettoNormalTraceSet(T u TS) =

getTerm(metaReduce(TRACE-MOD,’‘[_‘] [ T ]))
u TraceSettoNormalTraceSet(TS) .

We implement the relation - on sets defined in Section 5 as the predicate
<<. We check if P v Q by computing this predicate on the metarepresented
trace sets [|P |]fn(P,Q) and [|Q|]fn(P,Q) as follows. For each (metarepresented)
trace T in [|P |]fn(P,Q), we compute the reflexive transitive closure of T with
respect to the laws shown in Table 3. The laws are implemented as rewrite
rules in the module TRACE-PREORDER. We then use the fact that [|Q|]fn(P,Q) -
[|P |]fn(P,Q) if and only if for every trace T in [|P |]fn(P,Q) the closure of T and
[|Q|]fn(P,Q) have a common element.

op TRACE-PREORDER-MOD : -> Module .
eq TRACE-PREORDER-MOD = [’TRACE-PREORDER] .
var N : MachineInt . vars T T1 T2 X : Term .
var TS TS1 TS2 : TermSet .

op _<<_ : TermSet TermSet -> Bool .
op _<<<_ : TermSet Term -> Bool .
op TTraceClosure : Term -> TermSet .
op TTraceClosureAux : Term Term MachineInt -> TermSet .
op _maypre_ : Term Term -> Bool .
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eq TS2 << mt = true .
eq TS2 << (T1 u TS1) = TS2 <<< T1 and TS2 << TS1 .
eq TS2 <<< T1 = not disjoint?(TS2 , TTraceClosure(T1)) .
eq T1 maypre T2 = TTrmtoNormalTraceSet(T2) << TTrmtoNormalTraceSet(T1) .

The computation of the closure of T is done by the function TTraceClosure.
It uses TTraceClosureAux to compute all possible (multi-step) rewrites of the
term T using the rules defined in the module TRACE-PREORDER, again by means
of the metalevel operation metaSearch.

eq TTraceClosure(T) = TTraceClosureAux(T,’TT:TTrace,0) .
eq TTraceClosureAux(T,X,N) =

if metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N) == failure
then mt
else getTerm(metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N))

u TTraceClosureAux(T,X,N + 1) fi .

This computation is terminating as the number of traces to which a trace
can rewrite using the trace preorder laws is finite modulo α-equivalence. This
follows from the fact that the length of a trace is non-increasing across rewrites,
and the free names in the target of a rewrite are also free names in the source.
Since the closure of a trace is finite, metaSearch can be used to enumerate all
the traces in the closure. Note that although the closure of a trace is finite, it
is possible to have an infinite rewrite that loops within a subset of the closure.
Further, since T is a metarepresentation of a trace, metaSearch can be applied
directly to T inside the function TTraceClosureAux(T,X,N).

We end this section with a small example, which checks for the may-testing
preorder between the processes P = a(u).b(v).(νw)(wv|au)+b(u).a(v).(bu|bw)
and Q = b(u).(bu|bw). We define constants TP and TQ of sort TTrm, along with
the following equations:

eq TP = [[’a{0} ’b{0} ’w{0}]
’a{0}(’u) . ’b{0}(’v) . new[’w](’w{0} < ’v{0} > | ’a{0} < ’u{0} >)

+ ’b{0}(’u) . ’a{0}(’v) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

eq TQ = [[’a{0} ’b{0} ’w{0}]
’b{0}(’u) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

The metarepresentation of these TTrms can now be obtained by using
’TP.TTrm and ’TQ.TTrm, and we can then check for the may-testing preorder
between the given processes as follows:

Maude> red ’TP.TTrm maypre ’TQ.TTrm .
reduce in APITRACESET : ’TP.TTrm maypre ’TQ.TTrm .
rewrites: 791690 in 2140ms cpu (2160ms real) (361422 rewrites/second)
result Bool: true
Maude> red ’TQ.TTrm maypre ’TP.TTrm .
reduce in APITRACESET : ’TQ.TTrm maypre ’TP.TTrm .
rewrites: 664833 in 1620ms cpu (1640ms real) (410390 rewrites/second)
result Bool: false

Thus, we have P v Q, but Q /v P . The reader can check that indeed,
[|Q|]fn(P,Q) - [|P |]fn(P,Q), but [|P |]fn(P,Q) /- [|Q|]fn(P,Q).
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7 Conclusions and Future Work

In this paper, we have described an executable specification in Maude of the
operational semantics of an asynchronous version of the π-calculus using con-
ditional rewrite rules with rewrites in the conditions as proposed by Verdejo
and Mart́ı-Oliet in [18], and the CINNI calculus proposed by Stehr in [14]
for managing names and their binding. In addition, we also implemented
the may-testing preorder for π-calculus processes using the Maude metalevel,
where we use the metaSearch operation to calculate the set of all traces for a
process and then compare two sets of traces according to a preorder relation
between traces. As emphasized throughout the paper, the new features intro-
duced in Maude 2.0 have been essential for the development of this executable
specification, including rewrites in conditions, the frozen attribute, and the
metaSearch operation.

An interesting direction of further work is to extend our implementation
to the various typed variants of π-calculus. Two specific typed asynchronous
π-calculi for which the work is under way are the local π-calculus (Lπ) [10]
and the Actor model [1,15]. Both of these formal systems have been used
extensively in formal specification and analysis of concurrent object-oriented
languages [2,8], and open distributed and mobile systems [9]. The alternate
characterization of may testing for both of these typed calculi was recently
published [16,17]. We are extending the work presented here to account for
the type systems for these calculi, and modifications to the trace based char-
acterization of may testing. We are also looking for interesting concrete appli-
cations to which this can be applied; such experiments may require extending
our implementation to extensions of π-calculus with higher level constructs,
although these may just be syntactic sugar.
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The diagram in Figure A.1 illustrates the graph of module importation in our
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show the module that contains the rewrite rules for the operational semantics
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Fig. A.1. The graph of module importation in the implementation.

of asynchronous π-calculus (Table 2). The function genQid used in the condi-
tion of the last Res rule generates an identifier that is fresh, i.e. an identifier
not used to construct channel names in the set passed as the argument to the
function.

mod APISEMANTICS is
inc APISYNTAX .
inc CHANSET .
inc TRACE .
sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .

op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .
op notinfn : Qid Trm -> Prop .

vars N : Nat . vars X Y Z : Qid .
vars CX CY : Chan . var CS CS1 CS2 : Chanset .
vars A : Action . vars P1 Q1 P Q : Trm .
var SUM : SumTrm . var IO : ActionType .

eq notinfn(X,P) = not X{0} in freenames(P) .

rl [Inp] : [CY CS] (CX(X) . P) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Tau] : [CS] (tau . P) => { tauAct } ([CS] P) .

rl [Tau] : [CS] ((tau . P) + SUM) => { tauAct } ([CS] P) .
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crl [BInp] : [CS] P => {b(i,CX,’u)} [’u{0} [shiftup ’u] CS] P1
if (not flag in CS) /\

CS1 := flag ’u{0} [shiftup ’u] CS /\
[CS1] [shiftup ’u] P => {f(i,CX,’u{0})} [CS1] P1 .

rl [Out] : [CS] CX < CY > => { f(o,CX,CY) } ([CS] nil) .

crl [Par] : [CS] (P | Q) => {f(IO,CX,CY)} ([CS] (P1 | Q))
if [CS] P => {f(IO,CX,CY)} ([CS] P1) .

crl [Par] : [CS] (P | Q) =>
{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)

if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

crl [Com] : [CS] (P | Q) => {tauAct} ([CS] (P1 | Q1))
if [CS] P => {f(o,CX,CY)} ([CS] P1) /\

[CY CS] Q => {f(i,CX,CY)} ([CY CS] Q1) .

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] f(IO,CX,CY)} [CS] (new [X] P1)

if CS1 := [shiftup X] CS /\
[CS1] P => {f(IO,CX,CY)} [CS1] P1 /\
(not X{0} in (CX CY)) .

crl [Res] : [CS] (new [X] P) => {tauAct} [CS] (new [X] P1)
if [CS] P => {tauAct} [CS] P1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] b(o,CX,Z)} [Z{0} CS] new[X]([ Y := Z{0} ] P1)
if Z := genQid(X{0} CS freenames(P)) /\

[[shiftup X] CS] P => {b(o,CX,Y)} [CS1] P1 /\
X{0} =/= CX .

crl [Open] : [CS] (new[X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

crl [If] : [CS1] (if CX = CX then P else Q fi) => {A} [CS2] P1
if [CS1] P => {A} [CS2] P1 .

crl [Else] : [CS1] (if CX = CY then P else Q fi) => {A} [CS2] Q1
if CX =/= CY /\ [CS1] Q => {A} [CS2] Q1 .

crl [Rep] : [CS1] (! P) => {A} [CS2] P1
if [CS1] (P | (! P)) => {A} [CS2] P1 .

endm
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