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Abstract
Large scientific code bases are often composed of several layers
of runtime libraries, implemented in multiple programming lan-
guages. In such situation, programmers often choose conserva-
tive synchronization patterns leading to suboptimal performance.
In this paper, we present context-sensitive dynamic optimizations
that elide barriers redundant during the program execution. In our
technique, we perform data race detection alongside the program
to identify redundant barriers in their calling contexts; after an ini-
tial learning, we start eliding all future instances of barriers occur-
ring in the same calling context. We present an automatic on-the-fly
optimization and a multi-pass guided optimization. We apply our
techniques to NWChem—a 6 million line computational chemistry
code written in C/C++/Fortran that uses several runtime libraries
such as Global Arrays, ComEx, DMAPP, and MPI. Our technique
elides a surprisingly high fraction of barriers (as many as 63%)
in production runs. This redundancy elimination translates to ap-
plication speedups as high as 14% on 2048 cores. Our techniques
also provided valuable insight about the application behavior, later
used by NWChem developers. Overall, we demonstrate the value of
holistic context-sensitive analyses that consider the domain science
in conjunction with the associated runtime software stack.

1. Introduction
The scalability of parallel software is often determined by its syn-
chronization behavior. Synchronization operations such as locks,
barriers and fences not only introduce overheads, but also affect
scalability of parallel applications. Consequently, synchroniza-
tion optimizations have received a fair share of attention in both
shared [15, 24] and distributed [20, 38] memory programming.
Despite the large existing body of work and the perceived impor-
tance of the problem, these optimizations have not been deployed
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in “commercial” or production compilers for the dominant pro-
gramming models in the HPC realm.

The MPI library standard 1.0 was ratified on May 5th 1994,
and yet after 20 years and multiple compiled MPI efforts [14, 17,
21, 29], synchronization optimizations are performed manually in
codes. The UPC language standard 1.0 has been ratified on May
13th 1999, yet after 15 years of compiler development [1, 3, 18]
we are in a similar position. Part of this can be attributed to the
significant engineering efforts required to build production quality
compilers, and part can be attributed to the inherent conservative
nature of static analysis. There is a real need for deploying syn-
chronization optimizations in production quality tools to enhance
the performance of production parallel software. As we continue to
scale systems both up and out, the impact of communication opti-
mization on end-to-end performance can only grow.

A barrier is a classical synchronization construct used in paral-
lel programs. Every process executing a barrier waits until all other
processes participating in the barrier arrive at the barrier. Since bar-
riers involve system-wide communication, they incur high latency
and scale poorly. Furthermore, a delay in one process to arrive at
a barrier, either due to load imbalance or due to operating sys-
tem stalls [10, 28], causes delay in all participating processes. In
the ensuing text, references to a “barrier” mean such inter-process
synchronization mechanism often used in Single Program Multi-
ple Data (SPMD) programs. Other intra-process synchronization
mechanisms such as barriers between CPU threads within a same
process, memory barriers a.k.a fences, and barriers between multi-
ple hardware threads within a GPU, which are homonymous with
the term barrier, are not pertinent to our discussion.

A barrier may be necessary in only some execution contexts, but
not all contexts. Redundant barriers in hot execution contexts offer
an excellent opportunity for optimizing communication-intensive
scientific codes. In this paper, we discuss our experiences build-
ing an application-specific dynamic optimization able to detect and
skip barriers that are redundant in their runtime calling contexts.
The application is the NWChem [37]— a computational chemistry
code with more than 6 million lines of C, Fortran77, and C++ code.
NWChem is implemented on top of multiple abstraction layers for
data and communication. NWChem includes software abstractions
for its own internal tasking, load balancing, memory management
and checkpoint/restart mechanisms. The abstractions used for soft-
ware modularity hinder optimizations. Specifically, communication
libraries written for generic use introduce context-sensitive redun-



dant synchronization that become a handicap in scaling NWChem
to take full advantage of emerging supercomputers.

Our idea to address the context-sensitive redundant barrier syn-
chronization is very simple: execute the program alongside a dy-
namic data race detector, identify barriers by their calling contexts
(program stack), determine if they are redundant in a particular
context, then speculatively skip future executions in the same call-
ing context. In our definition, a barrier is redundant if and only
if skipping the operation introduces no data races. Since precise
data race detection is not our objective, we can afford to employ
a coarse-grained data race detection mechanism that may report
false positives. By relaxing precision, we achieve low overhead in
our analysis—a key requirement for dynamic optimizations. To our
knowledge, both the idea of assessing the redundancy of synchro-
nization using online, coarse-grained data race detection and the
context-sensitive elision are novel. We explore an automated on-
line optimization and a multi-pass guided optimization. In the rest
of this paper, we use the terms on-the-fly, online, and one-pass in-
terchangeably. Similarly, we use the terms offline, multi-pass, and
feedback-based optimization interchangeably.

The online algorithm first learns the dynamic “characteristics”
of barriers, then speculatively skips the redundant barriers. The
approach is input independent and required detailed application-
specific knowledge to build an ad-hoc data race detector running
with less than 1% runtime overhead. The detector is inherently
conservative and engineered to not provide false negatives.

In the multi-pass approach, we execute the program on several
training inputs and collect a large set of calling contexts where the
barriers may be redundant in an execution. We classify contexts
into equivalences classes, where all contexts in an equivalence class
share a common subcontext. Subcontexts capture the intuition that
the barrier redundancy inside a library module is determined by
prior barrier calls performed by its callers. Subcontexts provide
useful insights about places of redundancy in the code. We then use
a directed testing approach to execute the program, skipping any
barrier whose full calling context contains any of the subcontexts
designated for elision. Test-driven validation builds developer con-
fidence in the elision process. The set of subcontexts that both pass
testing and/or developer inspection become inputs for production-
time barrier elision.

Online and offline techniques were able to elide respectively
up to 45% and 63% of all barriers encountered during NWChem
science production runs. Eliding barriers resulted in end-to-end
application runtime improvements up to 14%, when running on
2048 cores. In addition, our approaches provide valuable tools
for program understanding. We have uncovered several redundant
barriers, e.g. in the ComeEx memory allocation module, which we
then removed from the source repository version of NWChem.

Our approaches use dynamic program analysis and speculation.
They are guaranteed to catch bad speculation at runtime and abort
execution, but this may be undesirable at large scale. Bad specu-
lation has not happened in our productions runs and as any other
program transformation tool, developer confidence in their appli-
cability has to be gained through testing coverage. Modern scien-
tific programs utilizing the checkpoint-restart technique make our
technique even more attractive.

Overall, this work showcases the benefits of a holistic approach
to code analysis. We analyze computational chemistry solvers in
conjunction with runtime implementations using context-sensitive
analyses. This approach uncovers code patterns that induce redun-
dant synchronization. As science moves towards multiscale multi-
physiscs simulations, we expect context-sensitive analyses to be-
come invaluable program optimization tools.

The rest of the paper is organized as follows. Section 2 de-
scribes the aspects of synchronization in modern scientific codes

def$MatMul(…)${$
$$$$if$(…)$
$$$$$$$$Barrier();$
$$$$/*$Library$implementa:on$*/$
$$$$if$(…)$
$$$$$$$$Barrier();$
}$

def$ClientB()${$
$$$$.$.$.$
$$$$Barrier();$
$$$$MatMul$(…);$
$$$$Barrier();$
$$$$$.$.$.$
}$
$

def$ClientA()${$
$$$$.$.$.$
$$$$MatMul(…);$
$$$$.$.$.$
}$
$
$
$

def$ClientC()${$
$$$$.$.$.$
$$$$if$(.$.$.){$
$$$$$$$$Barrier();$
$$$$}$
$$$$MatMul$(…);$
$$$$.$.$.$
}$

Simple$redundancy$No$redundancy$ Complex$redundancy$

Figure 1: Composition of synchronized API calls.

and Section 3 provides the necessary properties of safe barrier eli-
sion. Section 4 sketches the online barrier elision technique, while
Section 5 presents the offline analysis approach. Section 6 high-
lights the structure of NWChem together with implementation de-
tails of our infrastructure. Section 7 provides the insights we gained
about NWChem via our techniques. Section 8 presents an empirical
evaluation, with further discussion in Section 9. Section 10 presents
the related work, and finally Section 11 provides conclusions.

2. The Problem with Synchronization
Large scientific applications [16, 33] employ a hierarchy of li-
braries to implement layered abstractions. In the absence of contex-
tual knowledge, libraries are designed for generality in such a way
that any parallelism is quiesced upon entry and exit from the re-
spective module. As tracking individual dependencies is challeng-
ing, the synchronization usually involves heavyweight operations
such as barriers and fences. For example, ScaLAPACK [4] calls use
collective synchronization semantics, which may hinder the over-
all application scalability. Application programmers may also add
synchronization to ensure semantic guarantees when employing li-
braries for asynchronous operations. In cases where a lower-level
library routine provides stronger synchronization guarantees than
advertised in its interface specification, the ensuing communication
redundancy causes non-trivial performance overheads.

Figure 1 illustrates scenarios where transitions from higher-
level abstractions to lower-level abstractions can sometimes cause
redundant barriers. The ClientA()→MatMul() transition has
no redundancy since the ClientA() relies on the barriers pro-
vided by the MatMul() function in the lower-level library. The
ClientB()→MatMul() and ClientC()→MatMul() transitions
can make some barriers redundant, and it is progressively more
complex to detect or eliminate such redundancies. Eliminating bar-
riers in the MatMul() function breaks the code in the ClientA(),
whereas keeping barriers in the MatMul() function causes redun-
dancy in other clients. As shown later in Section 7 this is a common
occurrence in NWChem.

Static program analysis [15, 20, 24, 38] has been successfully
used for synchronization optimizations and it may be able to han-
dle our example. However, static analysis faces great engineering
challenges when dealing with the characteristics of existing full-
fledged HPC applications which: 1) use combinations of multiple
languages, such as C/C++/Fortran; 2) are written in a modular fash-
ion with calls into manifold “libraries”; and 3) are built on lay-
ers with different semantic abstractions. While language design-
ers [7, 11, 12] and application developers are striving to expose
concurrency inside an application, software engineering practices
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Figure 2: Data dependence and barrier redundancy

(modularity, composability) and development tools (multiple com-
pilers) are busy killing it.

Over-conservative synchronization already appears in the cur-
rent generation of HPC codes. This is likely to be pervasive in
the next generation of codes designed for extreme scaling. As the
scientific community is moving towards multiphysics multiscale
simulations, HPC codes are universally refactored as compositions
of parallel libraries, solvers and runtimes. The next generation of
codes which employ Domain Specific Languages (DSL) [22, 34] or
high-productivity languages such as Chapel [11] will exhibit simi-
lar characteristics, as their compilers use source-to-source transla-
tion with calls into libraries implementing the language-level ab-
stractions. In these cases statements are compiled mostly indepen-
dently from one another into complicated hierarchies of parallel
calls.

Reasoning about synchronization is particularly challenging in
codes that use Partitioned Global Address Space (PGAS) abstrac-
tions and one-sided Remote Direct Memory Access (RDMA) [11,
12, 25, 26] based communication. Memory in the PGAS model is
classified as either local or global. Local memory can be accessed
only by a single task. Global memory can be accessed by any task
using load/store instructions or RDMA operations. Unlike MPI,
where Send/Recv pairs couple data transfers and synchronization,
in PGAS the two are decoupled.

The optimizations thereinafter are designed to eliminate re-
dundant barrier operations in the NWChem computational chem-
istry code described in Section 6. NWChem combines PGAS and
RDMA concepts; the scientific community foresees that future
codes will employ at least one of these mechanisms.

3. Reasoning About Barrier Elision
A barrier may be redundant if there are no data dependence edges
(read-write, write-read, or write-write) originating from before the
the barrier on one task and terminating after the barrier on another
task. Figure 2(a) shows a barrier necessary to resolve a write-read
conflict. Figures 2(b)- 2(e) show several cases of redundant barri-
ers with no data dependence between processes across the barrier.
A data race detector finds dependencies by tracking individual ad-
dresses accessed by the processing elements (PEs) before a barrier
and comparing these with accesses after the barrier.

In practice, address tracking for data race detection may incur
higher costs than barrier elision could hope to gain. For example,
Park et al. [27] describe a precise data race detector using dynamic
analysis for PGAS programs with one-sided communication, which
incurs 50% overhead at 2000 cores. Their technique is directly
applicable here, but its runtime overhead is higher than the total
time spent by NWChem in barriers (up to 20%) in our experiments.

Memory accesses in PGAS models can be distinguished as
follows:

• N - access to memory that is private to a processing element
(PE) and cannot be accessed by any other PE.

• L - access to memory that has affinity with one PE, which can
perform load/stores into it. Access from any other PE involves
RDMA or other calls into the runtime.

• R - access to memory that is remote and can be accessed only
using RDMA.

To achieve lower overhead, we over-approximate the dependen-
cies by assuming that any access (L,R) of shared data before the
barrier can alias with any (L,R) shared data access after the barrier.
Furthermore, we don’t distinguish a write from a read, and treat
any access as a write operation. Because precise knowledge of in-
dividual addresses is no longer needed, this assumption reduces the
overhead of instrumenting each memory access and simplifies anal-
ysis. We only need to intercept access to shared data.

In the following, the term “barrier”, denoted by B, refers to a
dynamic instance of a barrier operation, regardless of its source
code location. We associate a memory access summary value (Si)
with any portion of the program executed between two barrier
operations. This access summary has one of the (N,L,R) values
and it is computed as the transitive closure of the types of all
memory accesses in that particular code region on ith PE. The
access summary is computed using the meet operation described
below.

Definition 1 (ACCESS:
∧

). N , L, and R form a monotonically
descending lattice, where the meet operation (

∧
) between two

types of accesses is defined as follows:

N
∧

N = N

N
∧

L = L
∧

N = L

N
∧

R= R
∧

N = R

L
∧

L = L

L
∧

R = R
∧

L = R

R
∧

R = R

Intuitively, this provides a hierarchy of observability for memory
accesses. Remote operations (R) take precedence over all other
types. Operations on shared data with local affinity (L) take prece-
dence over access to private data (N ).

3.1 Ideal Barrier Elision
Given any execution trace Sb

iBS
a
i , where Sb

i and Sa
i are the mem-

ory access summaries of task i before and after the barrier B, we
compute a trace with global access summaries as SbBSa, where
Sb =

∧Procs
i=0 Sb

i and Sa =
∧Procs

i=0 Sa
i .

For any sequence SbBSa, there can be nine different orderings
of global access summaries—shown in column 2 of Table 1. For
each combination, we can decide whether the barrier is redundant
based on the observability of the access summary. When a barrier
is deleted the global access summaries before and after it need to be
combined into a single value, Sb ∧Sa. If the barrier is retained, the
access summary before the barrier has no relevance to what ensues
after the barrier and hence remains Sa. As Table 1 shows, in six of
the nine variations, the barrier can be safely eliminated. Intuitively,
any barrier preceded by remote accesses R is retained, any barrier
that neighbors purely local accesses N can be elided, as well as
barriers surrounded by shared accesses with local affinity L.



Rule Trace Transformation Memory access summary
1 NBN N�BN N

∧
N = N

2 NBL N�BL N
∧

L = L

3 NBR N�BR N
∧

R = R

4 LBN L�BN L
∧

N = L

5 LBL L�BL L
∧

L = L
6 LBR LBR (none) R

7 RBN R�BN R
∧

N = R
8 RBL RBL (none) L
9 RBR RBR (none) R

Table 1: The rules that dictate allowable transformations, given
an observed execution trace SbBSa. The new memory access
summary comes into effect when the transformation is applied.

NB1L︸ ︷︷ ︸B2NB3R

Rule 2
N��B1 LB2N︸ ︷︷ ︸B3R

Rule 4
N��B1L��B2 LB3R︸ ︷︷ ︸

Rule 6
N��B1L��B2LB3R

Table 2: Example application of rules from Table 1.

Given a trace, the rules can be applied in any order. Considering
a sample trace NB1LB2NB3R, Table 2 shows a sequence of
valid barrier elision transformations.

While providing good opportunity for barrier elision, there are
several challenges to implementing this approach:

1. The transformations require inspecting the access summary
both before and after the barrier.

2. The transformation performed at one barrier affects the result-
ing access summary after the barrier, hence the transformation
possible at the subsequent barrier. In the previous example, ap-
plying Rule 4 at barrier B2 changes the access summary af-
ter B2 from N to L; consequently, at B3, one can’t use Rule1
NB3R =⇒ N��B3R. Thus, an optimal barrier deletion algo-
rithm requires processing the whole program execution trace.

3. Knowing the system-wide access summary at a barrier requires
a communication with all processes, which defeats the purpose
of deleting the barrier.

3.2 Practical Barrier Elision
For practical reasons we adopt a simplified approach that uses only
information about the memory access summary before a barrier in a
manner that is independent of the order of the barrier elision. From
Table 1 the following is apparent:

1. Any barrier preceded by purely local accesses (global access
summary N) can be elided.

2. Elision of barriers preceded by purely local access does not
affect the “redundancy” of any barriers that follow.

Indeed, consider the execution trace NB1XB2Y , where
X,Y ∈ {N,L,R}. After the N��B1 transformation, the access
summary before B2 is N

∧
X = X . Hence, deleting B1 has no

effect on the access summary before B2. Consequently, the trans-
formations possible at B2 are unaffected by the transformation per-
formed at B1.

We summarize our simplified transformation rules in Table 3.
We apply the simplified transformation to the earlier example in
order in Table 4.

These rules capture three out of the previous six cases where eli-
sion is possible and performed really well in practice for NWChem.

Rule Trace Transformation
1 NB N�B
2 RB RB (none)
3 LB LB (none)

Table 3: Simplified rules used in our implementation.

NB1︸ ︷︷ ︸LB2NB3R

Rule 1
N��B1 LB2︸ ︷︷ ︸NB3R

Rule 3
N��B1LB2 NB3︸ ︷︷ ︸R

Rule 1
N��B1LB2N��B3R

Table 4: Example application of rules from Table 3.

Some codes using PGAS paradigms but optimized for locality may
have barriers surrounded by L summaries, i.e. accesses in the global
space but with local affinity. Our simplified approach will classify
these barriers as necessary. Note that this case is optimized explic-
itly by the NWChem developers.

The final issue is that of necessity of performing communication
in order to compute the global access summary before a barrier. We
identify a barrier by its call path, a.k.a. calling context. We assume
that a barrier that is repeatedly redundant in a calling context is
likely to remain redundant for rest of the execution under the same
calling context. This behavior forms the basis of our online elision
technique described in detail in Section 4.

Alternatively, the program behavior can be observed for entire
training executions at small scale and barriers that are always re-
dundant in some calling contexts can be identified in a postmortem
analysis. A production run can elide a barrier whenever its calling
context matches that of the preprocessed-designated calling con-
texts. This approach forms the basis of our offline analysis dis-
cussed in detail in Section 5.

Because of this speculative elision, our techniques work well
for the repeatable behavior present in indirect HPC solvers. For
other programs, a future iteration or a production run might behave
differently than what has been learned for a calling context. In
these cases, our approach is guaranteed to catch and report the
misspeculation.

4. Automatic Single-Pass Barrier Elision
The online barrier elider works in two phases: it learns about
barriers within their full calling contexts and then speculatively
elides those deemed redundant (see Algorithm 1).

We identify each barrier B by its calling context c, represented
as B̂c. We encode the calling context as a hash, H(c), formed
from the call chain starting from main to the current barrier in-
clusive of all functions1 along the path. The algorithm maintains
a monotonically increasing barrier sequence number, incrementing
on encountering each barrier, to distinguish between different bar-
rier episodes.

During the learning phase, we observe and memorize if a barrier
is redundant in its calling context across all participating processes.
Our algorithm replaces the barrier with a reduction2 to compute
the global access summary. The reduction performs a min operation
Sb =

∧Procs
p=0 Sb

p on the local access summaries (Sb
p) before the

barrier. A global access summary result can be either R or N .

1 Return address of the callee, to be specific.
2 On current systems, the cost of a reduction is comparable to a barrier, if the
message sent is small (eight bytes in our case) and the reduction operation
is short (less than 10 instructions in our case).



Algorithm 1: Automatic on-line barrier deletion
Input: p = self /* implicit process identifier */
Result: SUCCESS for elided barrier or return value from a participated barrier

1 enum {PARTICIPATE=0, SKIP=1, LEARNING=THRESHOLD+SKIP,
CB=LEARNING+1}

2 /* ctxtId is same as H(c) in the prose. */

3

4 ctxtId = Hash(GetCallingContex())
5 /* dict is a dictionary of <context hash, memorized

transformation> */

6

7 if ctxtId /∈ dict then
99 /* First visit to this barrier */

10 val = MinReduce(in Sb
p, out Sb, ...)

11 if Sb == N then
12 dict[ctxtId] = LEARNING
13 else //Sb 6= N
14 dict[ctxtId] = PARTICIPATE
1616 /* reset local state */

17 Sb
p = N

18 return val
19 if Sb

p == N then
20 switch dict[ctxtId] do
21 case SKIP
22 return SUCCESS
23 case PARTICIPATE
24 return MinReduce(in N, ... )
25 otherwise
26 /* Learning */

27 val = MinReduce(in N, out Sb, ...)
28 if Sb == N then
3030 /* When dict[ctxtId] reaches SKIP, we will

start eliding */

31 dict[ctxtId]−−
32 else // Sb 6= N
33 dict[ctxtId] = PARTICIPATE
34 return val
35 else // Sb

p 6= N
36 switch dict[ctxtId] do
37 case PARTICIPATE
38 val = MinReduce(in Sb

p, ...)
39 case SKIP
4141 /* Breaking consensus, Optimistic */

42 val = MinReduce(in CB, out Sb,... )
43 if Sb 6= CB then
4545 /* Not all PEs broke consensus. */

46 Report misspeculation.
4848 /* else, All PEs broke the consensus, program

is safe. */

49 otherwise
50 /* Veto in skipping */

51 val = MinReduce(in Sb
p, out Sb, ...)

52 dict[ctxtId] = PARTICIPATE
5454 /* reset local state Sb

p */

55 Sb
p = N

56 return val

• If R, then each PE memorizes B̂c as necessary, and learning
stops for that barrier; any barrier deemed necessary once, will
remain classified as necessary.

• If N , then each PE records B̂c as a candidate for elision, and
learning continues. If subsequent threshold number of visits to
B̂c also result in the N state, then B̂c is promoted to an elidible
barrier; any barrier once classified as redundant will be skipped
for the rest of the execution.

Speculation can fail, but the implementation will detect any
misspeculation and then tries to recover, or aborts the execution.

The implementation continues to maintain up-to-date global ac-
cess summaries between barriers and piggybacks the summary for
elided barriers onto the barriers still executed. If a PE decides that a
barrier previously elided became necessary, there are two options:

1. Pessimistic. Record misspeculation (and abort).

2. Optimistic. Assume that all PEs detect the same broken consen-
sus, allowing all to participate in the barrier and maintain the
integrity of the system.

We take the optimistic approach and replace the barrier with
a min reduction with a special status CB , representing the fact
that the consensus is broken. The meet operation is augmented
such that CB

∧
CB = CB ,CB

∧
R = R,CB

∧
N = N . If the

resulting global status after the reduction is also CB , it means
that all PEs broke the consensus and each one participated in the
synchronization. If such is the case, we have two options:

1. Pessimistic. Locally downgrade the context B̂t as necessary in
all PEs to avoid future consensus breaks.

2. Optimistic. Assume the pattern will hold and expect future
instances of B̂t to be skippable or equally recoverable, and thus
retain the barrier as redundant.

We take again the optimistic approach. Finally, a subtle case
arises when some PEs break consensus for a specific barrier and
wait in a reduction operation with the CB state, while other PEs
skip that barrier, advance, and break consensus in a later, different,
barrier. This leads to two mismatching reduction operations, and
possible incorrect behavior or even deadlock. To handle this case,
each PE passes the aforementioned unique barrier sequence num-
ber in each reduction operation; if the sequence numbers do not
match, we record the misspeculation.

Training Threshold: The duration of the learning phase is tun-
able. Shortening the learning phase might increase the number
of barriers classified as redundant, but it might also increase the
chance of misspeculation. In the current implementation we use a
static threshold determined through testing. The value can also be
selected at runtime by developers. We discuss more details about
learning in the context of NWChem in Section 8.

For an arbitrary application, the suggested method to choose
the right training threshold is to first run the application on training
inputs. During training runs, we log the decisions for all the barriers
in the program without performing the barrier elision. Then, we
analyze the logs offline to determine the upper bound on repetitions
before a barrier stabilizes. We can use this threshold for the actual
production runs where the barrier elision will be performed.

We have not encountered misspeculation in our experiments.
NWChem contains a checkpoint-restart feature. We plan to black-
list misspeculated barriers and replace abortions with restarts.

5. Guided Multipass Barrier Elision
Figure 3 presents the workflow for a multi-pass procedure that
separates learning about barrier redundancy into offline training.
The training inputs are small-scale representatives of various real
inputs. After learning, the redundant contexts are classified, vali-
dated, and approved for consumption by a barrier elider module
for production runs. The offline analysis has different characteris-
tics from the online transformation:

1. It increases the chance of deleting the barriers missed during
online learning.

2. It provides developers with an opportunity to inspect redundant
contexts.

3. It increases developer confidence by inducing a validation step.
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Figure 3: Workflow of offline barrier elision.

We start with a set of training inputs and run a redundant barrier
detector (RBD) alongside the execution. Currently, we use the same
detector from the online analysis, but note that this can be replaced
with any other race detector, even a more imprecise one. The RBD
observes each barrier in its full calling context, classifying it as
either redundant (if all operations preceding the barrier are always
private) or necessary (if at least one operation preceding the barrier
was not private). RBD logs all barrier contexts for each test input.

We then perform an offline analysis, where we merge all redun-
dant barrier contexts from all training runs into a single set (RBC )
and all all non-redundant barrier contexts into another set (NRBC ).
In this phase, we classify a barrier in a calling context as redundant
if it appears in the set of redundant barrier contexts but not in the
set of non-redundant barrier contexts (in any inputs). This forms
the set of Elidible Candidate Contexts ECC = RBC −NRBC .

Sub-Context Classification: We classify the contexts in ECC
based on the intuition that in modular software paths through a cer-
tain library module are probably determined by initial conditions
set by the module’s callers. In this case there may be paths local to
the module where a barrier is always redundant and there may be
callers that always exercise these. This is captured by the common
parts of the calling context leading to redundant barriers, referred
to as sub-contexts.

Consider the example in Figure 4. Module 1 always forces a
barrier before calling Module 4, which eventually calls a barrier—
represented by the calling context suffix N→B. Barriers called
through myriad call paths all sharing the suffix M→N→B are
redundant. However, the same is not true for Modules 2 and 3,
which do not enforce a barrier when calling a barrier through
context suffix N→B. This provides the insight that the call-
path suffix M→N→B causes a redundant barrier, whereas the
suffix N→B alone is not redundant. Inspecting myriad redun-
dant full call paths such as {main→· · ·W→M→N→B},· · · ,
{main→· · ·Z→M→N→B} is tedious and cannot provide this
type of insight.

Based on the aforementioned observation, our subcontext clas-
sification employs the Algorithm 2 to find the shortest common suf-
fix of a context inside all redundant barriers. The algorithm groups
redundant barrier contexts in equivalence classes such that each
class can be represented by a shortest common suffix. The distin-
guishing shortest common suffix meets the following two criteria:

1. It does not appear as a suffix of any contexts in the non-
redundant barriers set (NRBC ). This ensures that the barrier
is redundant.

2. The suffix of length one less is present in the (NRBC ) set. This
ensures that the distinguishing suffix is the shortest to classify
the subcontext as redundant.

The algorithm terminates since ECC monotonically decreases
in size reaching ∅, when the length of suffix equals the maximum
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Figure 4: Suffix of redundant barriers.

Algorithm 2: Barrier suffix context classifier
Input: NRBC/*Non-redundant Barrier Contexts*/
Input: RBC/*Redundant Barrier Contexts*/
Output: ECS/*Elidible Context Suffixes*/

1 ECC = RBC-NRBC /*Elision candidate contexts*/
2 ECS = ∅
3 len = 1
4 while ECC 6= ∅ do
5 /*Find suffixes of length=len*/
6 A = {Suffix (C, len) ∀ C ∈ ECC}
7 B = {Suffix (C, len) ∀ C ∈ NRBC}
8 /*Find elidible suffixes of length=len*/
9 S = A-B

10 ECS = ECS
⋃

S
11 /*Remove classified contexts from ECC*/
12 ECC = ECC - {∀ C ∈ ECC s.t. Suffix (C, len) ∈ S}
13 len++
14 return ECS

length context. In the aforementioned example, the call paths
{main→· · ·W→M→N→B},· · · ,{main · · ·Z→M→N→B}
will be classified into one equivalence class represented by the
common suffix M→N→B.

The output of this stage is the set ECS , which contains subcon-
texts necessary to designate a barrier as redundant.

Test Validation: The test module orders the sets in ECS by their
cardinality, i.e. the number of redundant barriers that share a par-
ticular sub-context, picks the largest one, and starts extending the
set including one sub-context at a time to test. The testing employs
a barrier elider module that elides barriers whose runtime calling
contexts match the sub-contexts being tested. Test validation cross-
checks against the expected results.



We also present the sorted ECS and the testing results to the
developer for further investigation. The developer then has the
option to further filter the contexts based on intuition.

Production-Time Barrier Elision: The developer-approved con-
texts become inputs to production runs. The production runs use
a barrier elider module to skip barriers whose contexts match the
developer approved elidible contexts. We present the details of in-
sights gained from our technique in Section 7. These production
runs have the same safety guarantees of identifying misspeculation
and the possibility of restarting as the online algorithm.

6. Barrier Elision in NWChem
6.1 NWChem Scientific Details
NWChem [37] is a computational chemistry code widely used in
the scientific community. It provides a portable and scalable im-
plementation of several Quantum Mechanics and Molecular Me-
chanics methods: Coupled-cluster (QM-CC), Hartree-Fock (HF),
Density functional theory (DFT), Ab initio molecular dynamics
(AIMD) etc. The results in this paper are for high-accuracy QM-
CC, where many of the NWChem computational cycles are spent.
QM-CC is by far the most computationally intensive and there-
fore the most scalable method in NWChem. The other methods
have increasing demand for global synchronization, such as the HF
method that generates starting vectors for QM-CC. As we move
along to the methods that demand more synchronization, we expect
the optimizations developed in this paper to deliver even better per-
formance gains. Two different science production runs were used
to evaluate the benefits of barrier elision:

DCO: Accurate simulation of the photodissociation dynamics and
thermochemistry of the dichlorine oxide (Cl2O) molecule.
This simulation is important for understanding the catalytic de-
struction of ozone in the stratosphere, where this molecule plays
the role of reaction intermediate.

OCT: Simulation of the thermochemistry and radiation absorption
of the oxidized cytosine molecule (C4H6N3O2). This simula-
tion is key to understanding the role of oxidative stress and free
radical induced damage to DNA.

Both runs first perform a HF simulation to obtain starting vectors.
Subsequently, each run performs a different type, but algorithmi-
cally similar, QM-CC simulation.

6.2 NWChem Code Structure
NWChem contains more than 6 million lines of code written in C,
C++, Fortran and Python. In addition to the chemistry solvers (in
Fortran, C++, Python), it contains a complicated runtime infras-
tructure (in C) that implements support for tasking, load balancing,
memory management, resiliency, communication and synchroniza-
tion. Communication and synchronization in NWChem is handled
across multiple software modules. Global Arrays [26] (GA) pro-
vide shared memory array abstractions for distributed memory pro-
gramming with primitives such as Get and Put on array sections.
GA is implemented on top of MPI, as well as the Aggregate Remote
Memory Copy Interface (ARMCI) [25] and Communication run-
time for Exascale (ComEx) [13] communication libraries. These
libraries make the Global Arrays layer portable by hiding the low-
level RDMA and synchronization primitives. ARMCI and ComEx
are implemented on top of native communication APIs such as
Cray DMAPP, InfiniBand Verbs, and IBM PAMI, among others.
Our analysis and instrumentation spans all layers from chemistry
to DMAPP.

The NWChem code base contains highly modular software
written in multiple programming languages and composes multiple

runtimes and paradigms: it has global address space abstractions,
dynamic tasking and load balancing and one-sided communication.
The code is also hand optimized to elide unnecessary synchroniza-
tion where possible, for example when all tasks perform local op-
erations. We believe these are all characteristics of future scientific
codes for the Exascale era. Our work makes the following useful
observations related to this type of code architectures: 1) as modu-
lar software implies “modular” contexts, flow sensitive and context
sensitive analyses yield good results; and 2) as runtimes are written
with portability in mind, holistic dynamic analyses that examine
applications and runtimes in conjunction yield good results.

6.3 Instrumenting NWChem
The important design concerns related to instrumenting the pro-
gram execution for our analyses are portability and overhead.

We aim to provide portability of NWChem together with the
analysis to other hardware. We also aim to provide a portable anal-
ysis that can be applied to other code infrastructures. Our design
choice was to intercept the lowest-level RDMA APIs to identify
all remote memory accesses, while our algorithm and workflow re-
mains independent of the application, run-time environment, and
the hardware. We achieve this by performing link-time 3 wrapping
of lowest-level communication libraries and diverting the neces-
sary calls through our instrumentation layer. Library interposing
via LD PRELOAD will work similarly. Other portable runtimes such
as GASNet also present a single interface that resolves into system
specific API calls. Note that portability is enabled by the fact that
we are interested in the presence of these operations at runtime,
rather than their exact semantics.

On the Cray hardware, the DMAPP layer provides a low-level
system communication API. In any scientific application running
on Cray’s supercomputers, the higher-level communication ab-
stractions eventually resolve to some DMAPP calls for RDMA op-
erations. By link-time redefinition of DMAPP RDMA operations,
we can intercept several configurations of NWChem such as its
Global Arrays abstraction running on ARMCI, ComEx, or MPI.
We have also audited the InfiniBand verbs API and believe our ap-
proach trivially ports to that system API.

To correctly elide synchronization, the analysis needs to pre-
cisely detect accesses to local memory that bypass the standard
RDMA calls for efficiency. We provide a plugin functionality that
the developers can use to mark regions of code that perform such
bypassing. As overhead and precision are a concern, the art is
to identify the right level of granularity. With the cooperation of
NWChem developers we have audited the code, identified opera-
tions at different levels of abstraction and understood their side-
effects. We then manually inserted the instrumentation at only
two places in the NWChem code to recognize all local accesses
that have global visibility. These are the comex get nbi() and
comex put nbi() calls, which resolve in either remote-access
DMAPP calls or local memory accesses.

Another way by which local accesses can have global effects is
by applications gaining a local pointer to the shared address space.
Global Arrays have a well-defined interface for gaining a pointer
access (ga access) and releasing the access (ga release) to the
local shared regions. By keeping track of the number of outstanding
accesses, we conservatively disable the execution regions where it
is unsafe to elide barriers. Several levels of global memory abstrac-
tion and the fact that “casting” sometimes occurs in an unprincipled
manner based on code knowledge have complicated this process.
Augmenting our offline analysis with a full-fledged data race detec-
tor would simplify this process. A principled approach to creating

3 When callers and callees are defined in the same file, link-time approaches
need to be augmented with source modifications.
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Figure 5: Barrier synchronization in Hartree-Fock solver. Nine barriers,
across five modules written in Fortran and C.

aliases between global and local pointers or using smart pointers
can ease the task of a dynamic analysis frameworks in Partitioned
Global Address Space programs.

6.4 Managing Execution Contexts
In our implementation, we identify contexts by unwinding the stack
and computing a hash value based on the frame return address. We
used libunwind [23] for unwinding and Google dense hash ta-
bles [35] for fast searching of contexts. We compiled the applica-
tion by enabling frame pointers, and the overhead of unwinding
was negligible in our experiments.

The online algorithm requires the calling contexts to be con-
textually aligned, i.e. the barriers do not need to be textually
aligned [20], but their calling contexts always match the same way.
At a barrier’s calling context for a process, if the the calling contexts
of other processes participating in the same barrier do not remain
stable, it will hinder the learning process. Conservatively, we do
not elide any barriers with contextual misalignment. To detect con-
textually misaligned barriers, we pass the context hash of each bar-
rier in the reduction operation during the learning process. We drop
contexts from eliding if we detect misalignment during learning.
We note that the context hash can be different on different process
for dynamically loaded binaries. By canonicalizing the instruction
pointer as a <load-module:instruction-offset> pair, we can obtain
system-wide consistent context hashes. One can also use program
debugging information to construct canonical context hashes.

7. NWChem Application Insights
Figure 5 presents the dynamic call graph of a routine inside the
Hartree-Fock solver which destroys an atomic task counter, copies
the data from global memory to local memory, and destroys the
global memory. As shown, the code causes execution of nine barri-
ers ( three are redundant) across five levels of software abstraction.

By examining barriers in conjunction with their dynamic be-
havior, we uncovered context-sensitive and context-insensitive re-
dundant barriers. Most of the redundant barriers during NWChem
execution are context sensitive. Figures 6 shows dynamic call-
graphs from the nxtask and pnga add patch routines, where
pnga destroy is sometimes called in sequence based on the in-
put arguments. Internally, pnga destroy calls barriers at entry and
exit. In this case the programmer adds an additional pnga sync
call that causes a redundant barrier when the previous calls to
pnga destroy already enforce barriers.

We also uncovered context-insensitive barriers, some new, some
already known to the NWChem developers. As we continue to an-
alyze traces we expect to find more of these situations. Figure 7
shows how inside comex malloc and comex free a barrier op-
eration is dominated by another collective operation, in this case

if(A_created)-
-pnga_destroy(g_A)-

if(B_created)-
-pnga_destroy(g_B)-

-
if(local_sync_end)-

-pnga_sync()-
-

-grp_sync()-//-Entry-
-comex_free()-
-grp_sync()-//-Exit-

Barrier()-

Barrier()-

Barrier()-

pnga_destroy()-

-grp_sync()-//-Entry-
-comex_free()-
-grp_sync()-//-Exit-

Barrier()-

Barrier()-

Barrier()-
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Barrier()-

pnga_sync()-

Redundant-

Global&Arrays& ARMCI& ComEx&
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Figure 6: Context- and flow-sensitive redundant barriers: each
pnga destroy performs 3 barriers.

int comex_malloc(){ !
  . . . !
  MPI_Allgather(…); !
  /*all local ops*/ !
  MPI_Barrier(comm);0
  . . . !
}0

Redundant0
barrier0

Implicit00
barrier0

int comex_free(){ !
  . . . !
  MPI_Allgather(…); !
  /*all local ops*/ !
  MPI_Barrier(comm);0
  . . . !
}0

Figure 7: Context-insensitive redundant barriers in ComEx.

MPI_Barrier 
   comex_barrier(ga-5-2/comex/src-dmapp/comex.c:866) 
      do_gop(ga-5-2/comex/src-armci/message.c:193) 
        armci_msg_lgop(ga-5-2/comex/src-armci/message.c:462) 
          gai_get_shmem(ga-5-2/global/src/base.c:2382) 

533 different calling contexts 

Figure 8: Common subcontext of a top redundant barrier in NWChem.

an Allgather. As probably this is highly likely to happen in a
context-sensitive manner, we have started extending the analysis to
perform elision based on knowledge about all collective operations
in the program.

Figure 8 shows one of the top subcontexts found by our offline
analysis. The redundant barrier is common to a group operation
function (do gop). 8% of redundant barriers (11186 out of 138072)
happen in this subcontext. 7% (553 out of the total 7959) of the
unique redundant barrier contexts have this suffix in their calling
contexts. On investigation, we found that in the do gop routine,
redundant barriers are intentionally introduced for portability, but
not needed in most production system software configurations.
These occur to quiesce the caller runtime upon any transition into a
callee runtime, e.g. when transitioning from ComEx into an explicit
independent MPI call inside the application. Our analysis can be
configured to keep these barriers when needed.

The key insight is that redundancy is determined by clustering
of calls at several levels of abstraction removed from the actual
operation. In the NWChem case, this spans different programming
languages and runtime implementations. Understanding the code
by mere visual inspection is probably beyond most humans, and
our analysis techniques provide useful insight to developers.

Most redundant barriers are context sensitive, but our sub-
context based classification indicates that there are a few contexts
that contribute to large fraction of the redundancy. In these cases a
synchronized/non-synchronized dual implementation is feasible at
the application level.



Input Number Time(s) Total Speedup / Barriers elided Unique
of cores Barriers Offline Online Contexts

DCO
512 731 138072 0.7% / 63% 0.3% / 41.7% 7959

1024 1084 138072 7.6% / 63% 0.2% / 41.4% 7959
2048 1362 138072 13.9% / 63% 13.3% / 41.4% 7959

OCT
512 570 72188 3.4% / 63% 1.7% / 44.5% 4702

1024 586 72188 6.6% / 63% 4.4% / 44.6% 4702
2048 624 72188 6.0% / 63% 6.5% / 44.6% 4702

Table 5: End-to-end performance results for the dichlorine oxide (DCO) and oxidized cytosine (OCT) simulations.
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Figure 9: Impact of variation in fraction of deletable barriers on
barrier elision. As more fraction of barriers become redundant,
execution time reduces due to barrier elision.

8. Performance Evaluation
We evaluate performance on a Cray XC30 MPP installed at the
National Energy Research Scientific Computing Center (NERSC).
Each of its 5200 nodes contains two 12-core Ivy Bridge processors
running at 2.4 GHz. Each processor has four DDR3-1866 memory
controllers which can sustain a stream bandwidth in excess of
50 GB/s. Every four nodes are connected to one Aries network
interface chip. The Aries chips form a 3-rank dragonfly network.
Note that depending on the placement within the system, traffic
can traverse either electrical or optical links.

8.1 Microbenchmarks
In Figure 9, we present results from a microbenchmark written to
asses the runtime overhead of our implementation. The code per-
forms 500,000 barrier operations. We vary the degree of barrier
redundancy from 0% to 100% in 1,000 different contexts. To indi-
cate that a barrier is necessary, the micro benchmark calls a dummy
function before it, which sets a flag in our instrumentation library.
The performance is presented for a run using 9,600 MPI ranks and
a stack depth of 16. The figure indicates that the analysis adds a
negligible runtime overhead per barrier operation and it is able to
improve performance as the degree of barrier redundancy increases.

Overall, the performance improvements are determined by the
scalability of barrier operations and the scalability of the analysis.
Barrier latency grows with the number of cores. For example, we
observe 30µs and 130µs at 2400 and 19200 processors, respec-
tively. Overall the analysis overhead is independent of the number
of cores, but increases with the number of barrier contexts during
execution and with the depth of the program stack. The offline anal-
ysis seems to have a slightly lower overhead than the online anal-
ysis. For example, the overhead per barrier operation varies from
4.7µs to roughly 8µs when increasing stack depth from 4 to 64
and providing thousands of contexts. The maximum stack depth
for any barrier during the NWChem runs is 21.

8.2 NWChem
Figure 5 presents the end-to-end performance improvements
observed for two aforementioned science production runs of
NWChem. As shown, both methods are able to uncover a large
number of redundant barriers, up to 45% and 63% for online and of-
fline analyses respectively. This translates into application speedup

up to 13.3% and 13.9% on 2048 cores, with online analysis and of-
fline analysis respectively. Note that we report end-to-end speedup,
which in NWChem includes a significant I/O portion.

Since the online algorithm learns behavior for a tunable number
of repetitions of the same context, it may miss barriers that are re-
dundant in a large number of independent contexts. The algorithm
learns only once and it misses the cases where barriers become re-
dundant later in the execution. To asses optimality, we compare
the decisions of our online algorithm with the “true” barrier redun-
dancy extracted using the data race information for an execution.

For the dichlorine oxide input, the code executes a total of
138,072 barriers in 7959 unique contexts. Only 45,614 barriers are
required, according to our data race detection. The online algorithm
learns for 31,750 barriers and elides 57,238 barriers in 2359 con-
texts, succeeding in deleting 41% of the redundant barriers. During
the speculation phase 5238 more barriers become redundant dur-
ing execution, but are not skipped by our implementation. Similar
trends are observable for other inputs. Overall, these results indi-
cate that our techniques are able to skip a significant fraction of
the redundant barriers. Extending the algorithms to re-learn redun-
dancy is easy and may further improve performance.

Other performance improvements may be possible by specializ-
ing the learning process to exploit module information and dynam-
ically tailoring the stabilization threshold. For example, for our in-
puts we set 10 as the learning threshold, where as maximum thresh-
old required was seven, and the vast majority of contexts stabilized
by their 3rd learning iteration.

Memory Overhead: A key contributor to the memory overhead
is the size of the hash table used to memorize the contexts. In
both DCO and OCT scientific runs, the size of the hash tables
were only 456KB per process. This size is insignificant compared
to tens of Giga bytes of scientific data resident per process. Our
instrumentation added an additional 1MB binary code to an already
180MB NWChem’s statically-linked executable.

Higher Impact of Barrier Elision: At the time of writing this pa-
per, we have identified a redundant initialization in NWChem for
the dichlorine oxide input. This finding was based on insights from
NWChem experts and further corroborated by a dead write detec-
tion tool [9]. Due to contention for the on-chip memory controllers,
this redundancy impacts the execution time from 15% up to 50%,
depending on the number of processes per node. Eliminating the
redundant initialization reduces the overall running time. This opti-
mization increases the percentage contribution of the communica-
tion in the overall execution. We have not been able to collect the
new data with barrier elision with this modification due to time con-
straints and the cost of large-scale executions. We expect speedup
due to our offline elision technique to increase from 13.9% to as
high as 28%. Similarly, the online elision technique would show
application speedup of up to 27%.

9. Discussion
The analyses exploit some inherent characteristics of the NWChem
code base, which composes multiple iterative solvers written using
SPMD parallelism. As the online method learns behavior, iterative



algorithms present more optimization opportunity. Fortunately, this
is the case with many scientific codes, which eschew direct solvers
in favor of indirect iterative solvers. In order to make the overhead
of classification palatable for the multi-pass approaches it is de-
sired that behavior learned at low concurrency applies to high con-
currency. This is the case for most existing SPMD codes. For the
few scientific codes that have been tuned to switch solvers based
on concurrency, training at the appropriate concurrency or writing
synthetic tests for solvers is required. Overall, we believe that this
type of context sensitive dynamic analysis is applicable to many
other scientific codes.

The combination of an ad-hoc lightweight data race detector
with context-sensitive voting in synchronization operations (bar-
riers) enables even more powerful synchronization optimizations.
We are already considering extensions for reasoning about barri-
ers in conjunction with other collectives, for transforming blocking
collective calls into non-blocking calls, and for relaxing conserva-
tive communication synchronization operations such as fences. We
believe these optimizations are useful for the Molecular Mechanics
solvers in NWChem, whose scalability is limited by collective op-
erations. Other code bases such as Cyclops Tensor Framework [34]
will directly benefit from similar optimizations.

Mining the context information generated by our analyses al-
ready provided insight into the code characteristics, which can be
used for manual transformations. We believe there is an opportu-
nity to refine the notions of context (e.g. to clusters of variables)
and to extend the classification methods in order to develop useful
program understanding tools for large scale codes.

Online barrier elision requires a low analysis runtime overhead,
which we achieved by using a simplified and conservative race
detector. The multi-pass approach can use precise race detectors in
the offline training, and thus has the potential of uncovering a larger
number of redundant barrier contexts. Note that as the race detector
generates seeds for offline classification using testing, it can be
also replaced by some other search procedure based on choosing
contexts without any race information.

Our approaches are not sound and use dynamic program anal-
ysis and speculation. They are guaranteed to catch bad speculation
at runtime and abort execution, but this may be undesirable at large
scale. Bad speculation has not happened in our productions runs
and as any other program transformation tool, developer confidence
in their applicability has to be gained through testing coverage.

10. Related Work
Concurrency analysis can be traced back to the work of Shasha
and Snir [32]. Static program analysis that examines the synchro-
nization in parallel programs has been applied for parallelization
purposes as well as performance optimizations. Jeremiassen and
Eggers [19] present a static barrier analysis for SPMD codes (Stan-
ford SPLASH) used to eliminate false sharing on shared mem-
ory machines. Zhang et al. [38, 39] present concurrency analyses
for shared (OpenMP) and distributed (MPI) programming models
with textually unaligned barriers. Kamil et al. [20] describe con-
currency analyses for a programming language textually aligned
barriers. They use the analysis for static data race detection in Tita-
nium. Agarwal et al. [2] present a may-happen-in-parallel analysis
for X10 programs with unstructured parallelism.

Runtime elision of synchronization operations has received a
fair share of attention in both software and hardware. Many tech-
niques have been developed for lock elision in Java, glibc, or the
Linux kernel. At the hardware level, speculative lock elision has
been described by Rajwar et al. [30] and it is available now in hard-
ware implementations such as Intel TSX.

Sharma et al. [31] describe a dynamic program analysis to detect
functionally irrelevant barriers in MPI programs. In their definition,

a barrier is irrelevant if its removal does not alter the overall MPI
communication structure of the program. They use a model checker
to try program interleavings. Their technique uncovers irrelevant
barriers in many small benchmarks containing a few hundred lines
of code. Our notion of redundancy takes into account data races
and we automatically elide the redundant operations.

Lightweight instrumentation of parallel programs is a well ex-
plored areas. Library interposing and link-time function wrapping
are standard techniques to intercept function calls. These tech-
niques are extensively used in performance analysis tools such as
HPCTOOLKIT [36]. Our on-demand call stack unwinding tech-
nique on each barrier bears similarity with HPCTOOLKIT’s call
stack sampling. HPCTOOLKIT maintains an unwind recipe for
each range of instructions by analyzing the binary code at runtime.
Our technique deviates from this since we compile the code with
frame pointers to ensure perfect stack unwinds. Binary analysis is
directly applicable to improve our technique. An alternative context
collection technique is to instrument every call and return instruc-
tion and eagerly compute the call path [8]. Eager call path collec-
tion techniques, while suitable for frequent unwinds, are unsuitable
when the call path is needed infrequently. Context-sensitive dy-
namic analyses have been explored in the computer security also.
Most of the approaches use stack walking for context identifica-
tion. Recent work by Bond and McKinley [5, 6] refines the notion
of a context to avoid stack unwinding overhead. Their probabilistic
calling contexts are directly usable in our analyses.

11. Conclusions and Future Work
In this paper we present context-sensitive dynamic program analy-
ses able to detect and eliminate redundant barrier operations in the
NWChem computational chemistry code. By applying techniques
of learning and speculation we are able to eliminate up to 63% of
the barriers executed during science production runs. This trans-
lated into end-to-end speedup as high as 14% at 2048 cores.

We believe that our paper describes both a problem and solu-
tions common to many other scientific codes. NWChem combines
multiple programming languages (Fortran, C, C++) and runtimes
(MPI, ComEx, GA) into a modular code base that provides solvers,
memory management, tasking and load balancing, as well as fault
tolerance mechanisms. NWChem uses modern programming con-
cepts such as PGAS and RDMA and already contains internal op-
timizations to eliminate redundant synchronization.

In the NWChem case, modular software engineering intro-
duced a very high number of context-sensitive redundant barrier
operations. The magnitude was surprising to everybody, including
NWChem experts.

As scientific codes are evolving towards multiphysics multi-
scale simulations and increasingly start using PGAS or one-sided
communication, it is likely that redundant synchronization will be-
come more prevalent. Our idea of running an online data race de-
tector to detect redundant operations can be easily incorporated into
performance analysis tools to provide application tuning insight.
Analyses similar to ours, that examine applications alongside run-
times, can provide further software understanding support, as well
as automated optimization tools.
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