
Separating Functional and Parallel Correctness
using Nondeterministic Sequential Specifications

Jacob Burnim, George Necula, and Koushik Sen
Department of Computer Science, University of California, Berkeley

{jburnim,necula,ksen}@cs.berkeley.edu

Abstract

Writing correct explicitly-parallel programs can be very
challenging. While the functional correctness of a pro-
gram can often be understood largely sequentially, a
software engineer must simultaneously reason about the
nondeterministic parallel interleavings of the program’s
threads of execution. This complication is similarly a
challenge to automated verification efforts.

Thus, we argue that it is desirable to decompose a pro-
gram’s correctness into its sequential functional correct-
ness and the correctness of its parallelization. We pro-
pose achieving this decomposition by specifying the par-
allel correctness of a program with a nondeterministic
but sequential version of the program. In particular, if
a software engineer annotates the intended algorithmic
nondeterminism in a program, then the program can act
as its own specification in verifying the correctness of its
parallelism. We can interpret the annotated program as
sequential but nondeterministic, and then verify the cor-
rectness of the parallelism by showing that it introduces
no additional nondeterminism.

1 Introduction

Writing correct multithreaded programs is very difficult,
in large part because most of a programmer’s attention
is focused on the functional correctness of a sequential
interpretation of their code. It is very hard to consider
at the same time the additional behaviors from all pos-
sible interleavings during a parallel execution. Thus, all
too often the parallel correctness of a program is an af-
terthought. We share a widespread belief [3] that the only
way to make multithreaded programming accessible to a
large number of programmers is to come up with pro-
gramming paradigms and associated tools that simplify
reasoning about parallel correctness and enable reason-
ing about functional correctness in a sequential or nearly-
sequential way.

Automated parallelization work such as [13] is the
most direct expression of this strategy. The major dif-
ficulty is to parallelize a program to achieve good per-
formance while remaining completely faithful to its se-
quential semantics. An alternate approach is to verify
that an existing parallel program implements a sequen-
tial or nearly-sequential specification. Examples of re-
cent work along this line are atomicity analyses such as
[14, 9, 10, 17, 8, 18, 11, 7]. However, both automated
parallelization and analysis of parallel programs become
ineffective when the synthesis or the verification of the
parallelization of the code becomes entangled with the
functional correctness of the program.

We recognize that parallelization correctness depends
on and extends sequential functional correctness, which
is a very hard problem on its own. We believe that in or-
der to break this gridlock and make progress, it is useful
to decompose correctness into functional correctness and
parallelization correctness.

Our Approach. We aim to separate the correctness of
the parallelization of a program from its functional cor-
rectness, with the ultimate goal of providing effective
tools for verification of the parallelization, while allow-
ing the programmer to concentrate on the functional cor-
rectness of the code on a simpler sequential or nearly-
sequential execution model.

A key simplifying assumption available to the devel-
oper of sequential code is the determinism of the execu-
tion model. In contrast, parallel programs exhibit several
sources of nondeterminism. The most obvious one is the
nondeterministic behavior due to the interleaving of par-
allel threads, sometimes called scheduler nondetermin-
ism. Scheduler nondeterminism is essential to make par-
allel threads execute simultaneously and to harness the
power of parallel chips. We believe that often the pro-
grammer strives to preserve the determinism of his ap-
plication even in face of nondeterministic scheduling.

In previous work [4] we argued that programmers



should be provided with a framework to allow them to
express deterministic behavior of parallel programs di-
rectly and easily. We believe that for many parallel pro-
grams the deterministic aspect of the execution can be
verified, either through static or through dynamic anal-
ysis, without the need to verify much of the functional
correctness of the application. In the terms of our ear-
lier discussion about decomposing correctness reason-
ing, determinism checking ensures the correctness of
the parallelization—i.e., the irrelevance of scheduling
nondeterminism—largely separated from the functional
correctness of the application.

We observe that manually parallelized programs of-
ten employ algorithms that are different than their se-
quential versions. In some cases the algorithm itself is
nondeterministic. Examples of such nondeterministic al-
gorithms include branch-and-bound algorithms, which
may produce multiple valid outputs for the same input.
Such algorithmic nondeterminism is very often tightly
coupled with the functional correctness of the code. In
these cases, efforts to verify the deterministic behavior
of a program become entangled in the program’s func-
tional correctness. To address such programs, we pro-
pose to separate the reasoning about the algorithmic and
the scheduler sources of nondeterminism

Thus, we argue for a specification technique based on
nondeterministic sequential programs. Using this tech-
nique the programmer will have an opportunity to ex-
press the expected algorithmic nondeterminism in a se-
quential program. Reasoning about the correctness of the
nondeterministic sequential program is still difficult, but
not much more difficult than reasoning about the correct-
ness of the sequential program. In contrast, we expect to
be able to develop automatic techniques to show that the
scheduler nondeterminism does not add any additional
behavior to a nondeterministic sequential program.

Using such a specification technique, we expect to be
able to map dynamic traces of a parallel execution of
the program into equivalent nondeterministic sequential
traces where there is no interleaving, although some of
constructs are resolved nondeterministically. As a con-
crete use of these techniques, we envision a parallel-
program debugging methodology that presents to the pro-
grammer a virtual nondeterministic sequential view of a
parallel execution. Thus, the programmer debugs the ac-
tual parallel execution, but needs to focus only on the
correctness of the nondeterministic sequential version.

In the rest of this paper, we first briefly describe our
previous work on specifying and checking determinism,
and describe an example where the verification of such
a specification cannot be separated from the functional
correctness of a program (Section 2). We then describe
our idea of using nondeterministic sequential specifica-
tions on this motivating example (Section 3).

2 Specifying Semantic Determinism

In our previous work [4], we argued that programmers
should be provided with a framework that will allow
them to express deterministic behavior of parallel pro-
grams directly and easily. Formally, we proposed [4] the
following construct for the specification of determinism:

deterministic assume(Pre(s0, s′0)) {
P

} assert(Post(s, s′));

Here Pre and Post are predicates over two program
states in different executions resulting from different
thread schedules. Formally, this specification states that
for any program states s0, s′0, s, and s′, if (1) Pre(s0, s′0)
holds, (2) an execution of P from s0 terminates and re-
sults in state s, and (3) an execution of P from s′0 termi-
nates and results in state s′, then Post(s, s′) must hold.

The advantage of our deterministic specifications is
that they provide a way to specify the correctness of just
the use of parallelism in a program, independent of the
full functional correctness. We also developed a directed
testing based approach to check such specifications.

2.1 Motivating Example
Consider the generic, sequential branch-and-bound pro-
cedure given in Figure 1. The search procedure finds a
minimum-cost solution in a given solution space. Ini-
tially, the FIFO work-queue queue holds a single ele-
ment representing the entire space to be searched. The
procedure repeatedly retrieves a unit of work—i.e. a re-
gion of the solution space— from queue and either:
(1) prunes the region if its lower bound exceeds the
best cost found so far, (2) exhaustively searches for the
minimal solution the region when the region is smaller
than some threshold, or (3) splits the regions into smaller
pieces for later processing.

Consider the parallel version of this branch-and-bound
procedure given in Figure 2. The code is quite simi-
lar to that in Figure 1, but the parallel version uses a
parallel-for construct which can spawn a new par-
allel iteration whenever queue contains a work item.
The loop terminates when all spawned iterations have
finished and queue is empty. Further, the code uses
an atomic construct to safely update shared variables
best and best soln in Lines 7-10. (And the queue
data structure must be thread-safe.)

2.2 The Challenge of Separating Parallel
and Functional Correctness

We would like to verify that the procedure in Figure 2 is a
correct parallelization of the sequential procedure in Fig-

2



1: for (work in queue) {
2: if (soln lower bound(work) >= best)
3: continue;
4: if (size(work) < THRESHOLD) {
5: soln = find_min_soln(work);

6: if (cost(soln) < best) {
7: best = cost(soln);
8: best_soln = soln;
9: }

10: } else {
11: queue.add(split(work));
12: }
13: }

Figure 1: A generic branch-and-bound procedure.

1: par-for (work in queue)) {
2: if (soln lower bound(work) >= best)
3: continue;
4: if (size(work) < THRESHOLD) {
5: soln = find_min_soln(work);
6: atomic {
7: if (cost(soln) < best) {
8: best = cost(soln);
9: best_soln = soln;

10: }
11: }
12: } else {
13: queue.add(split(work));
14: }
15: }

Figure 2: A parallel branch-and-bound procedure.

ure 1. Ideally, this effort would require reasoning about
the parallel and synchronization constructs in Figure 2,
but would not require us to reason about the functional
correctness of the sequential code.

Using our deterministic specification framework, we
can express the parallel correctness as follows:

deterministic
assume (queue.equals(queue’)) {

... code from Figure 2 ...
} assert (best == best’);

That is, that every run of the parallel search on the same
input finds a solution with the same minimal cost. Sim-
ilarly, we could attempt to show that every parallel exe-
cution produces a solution with the same cost as the se-
quential procedure. We argue that such an effort cannot
escape complex reasoning about the functional correct-
ness of the code.

The functional correctness of a branch-and-bound
search depends critically on the correctness of the bound-
ing procedure soln lower bound. In particular,
for any solution s in a region w, we must have that
cost(s) ≥ soln lower bound(w). This guaran-
tees that it is safe to prune region work when we have
soln lower bound(work) ≥ best—because no
soln in work can have cost less than best soln.

Suppose we have an instance of the generic branch-
and-bound procedure in which soln lower bound
contains a bug. In particular, suppose best = 100 and
queue is as shown in Figure 3.

The sequential procedure happens to find the cor-
rect minimal solution in this case. The procedure first
processes item a. The procedure will not prune item
a because soln lower bound(a) < best. Af-
ter searching for find min soln(a), the procedure
updates best to 2. Then, region b will similarly
not be pruned, but best will not be updated because

cost(find min soln(b)) > 2. Finally, region c
will be pruned because soln lower bound(c) > 2.
Note that this is also a possible execution of the parallel
version of the procedure.

The parallel procedure, even if correctly parallelized,
may return an incorrect solution. This procedure can
process a, b, and c all in parallel. Suppose it first
computes soln lower bound(b) < 100 and then
computes soln lower bound(c) < 100, and thus
prunes neither. Suppose further that the procedure then
searches regions b and c for find min soln(b) and
find min soln(c), updating shared variable best
to cost(find min soln(b)) = 3. The procedure
will then prune a because soln lower bound(a) is
incorrectly larger than 3.

Thus, we cannot show that the parallel version of the
search produces equivalent results to the sequential ver-
sion. Yet, because queue is a thread-safe concurrent
queue and because we ensure that updates to best and
best soln are atomic, we can clearly see that the pro-
cedure has been parallelized correctly. The error here is
essentially a sequential bug.

This suggests that we need a weaker notion of par-
allel correctness. To have a hope of statically proving
the correctness of the parallelism in such complex pro-
grams, even when they are sequentially correct, we need
a notion of parallel correctness that is better decoupled
from functional correctness.

3 Nondeterministic Specifications

We propose specifying the parallel correctness of a pro-
gram using a nondeterministic but sequential version of
the program. We argue that such an approach decom-
poses the effort of verifying a parallel program into: (1)
verifying the parallelism by showing that the nondeter-

3



queue:!
soln_lower_bound: 4!

cost(min_soln): 2!

size < THRESHOLD!

a:!

soln_lower_bound: 0!

cost(min_soln): 3!

size < THRESHOLD!

b:!

soln_lower_bound: 5!

cost(min_soln): 9!

size < THRESHOLD!

c:!

dequeue(a)! deqeueu(b)! dequeue(c)! prune b?! prune c?! update(b)! update(c)! prune a!

dequeue(b)! prune b?! update(b)! deqeue(c)! prune c?! update(c)! deqeue(a)! prune a!

Figure 3: A queue from the generic branch-and-bound procedure of Figures 1, 2, and 4. Note that
soln lower bound(a) is not correct—it should be smaller than cost(find min soln(a)).

ministic sequential and parallel versions of the program
are equivalent, and (2) verifying functional correctness
of the nondeterministic sequential version.

Consider the branch-and-bound procedure given in
Figure 4. This code is the same as the parallel pro-
cedure in Figure 2, except that we have added a non-
deterministic Boolean value to the condition at Line 2:
“&& *”. That is, even when the procedure finds that it
could prune region work, we permit it to nondeterminis-
tically process work anyway. Further, we have replaced
the parallel-for construct with a nondeterministic
for-loop. This loop may remove items from queue in
any order, rather than always removing from the front
of queue, but is restricted to run sequentially—i.e. one
iteration at a time.

We can use this nondeterministic, sequential version
of the procedure, in Figure 4, to decompose the verifi-
cation effort for the parallel code in Figure 2. The first
piece of the verification effort is to show that the paral-
lel version is equivalent to the nondeterministic sequen-
tial version. We can think of the nondeterministic se-
quential version as a specification of the parallel version,
in which a programmer annotates the acceptable or ex-
pected nondeterminism. In this view, the parallelization
is correct when the results of nondeterministic parallel
thread scheduling exhibit only this expected nondeter-
minism.

The second piece of the verification effort—
completing the functional correctness of the parallel
code—can then be performed on the nondeterministic
but sequential version. This step remains challenging.
However, since it does not need to consider scheduler
nondeterminism it should be only a slight extension of
the functional correctness argument of the sequential ver-
sion. In fact for such correctness verification, one could
use model-checking algorithms and tools based on pred-
icate abstraction [16, 2, 12] that have been developed for
both deterministic and nondeterministic sequential pro-
grams with procedures. These model checkers use the
fact that reachability of configurations of pushdown sys-
tems is decidable [1, 6]. Note that such techniques can-
not be directly applied to verify functional correctness
of parallel programs, as the verification of multithreaded
Boolean programs with procedures is undecidable [15].

For ease of use by programmers, we propose that
a parallel program and its nondeterministic and se-
quential executable specification can be the same soft-
ware artifact, with two different interpretations or se-
mantics. That is, nondeterministic expressions (*’s)
can be added to the code of the parallel program,
but default to always being true or false, depend-
ing on the context, when the code is interpreted as a
parallel program. But when the code is interpreted
as a nondeterministic sequential program, the expres-
sions are nondeterministically true or false. Sim-
ilarly, parallel constructs such as parallel-for or
cobegin are given different semantics under the nonde-
terministic sequential interpretation—for example, with
a parallel-for becoming a nondeterministic for-
loop as in Figures 2 and 4.

3.1 Reduction for Parallel Correctness

We propose using a reduction-based [14] approach to
prove parallel correctness by showing the equivalence
of a parallel program to its nondeterministic, sequential
version. The key idea is to show that, given an execu-
tion trace of a parallel program, we can construct a trace

1: nondet-for (work in queue)) {
2: if ((soln lower bound(work) >= best)

&& *)
3: continue;
4: if (size(work) < THRESHOLD) {
5: soln = find_min_soln(work);
6: atomic {
7: if (cost(soln) < best) {
8: best = cost(soln);
9: best_soln = soln;

10: }
11: }
12: } else {
13: queue.add(split(work));
14: }
15: }

Figure 4: A nondeterministic and sequential generic
branch-and-bound procedure.

4



queue:!
soln_lower_bound: 4!

cost(min_soln): 2!

size < THRESHOLD!

a:!

soln_lower_bound: 0!

cost(min_soln): 3!

size < THRESHOLD!

b:!

soln_lower_bound: 5!

cost(min_soln): 9!

size < THRESHOLD!

c:!

dequeue(a)!dequeue(b)! dequeue(c)! prune b?! prune c?! update(b)! update(c)! prune a!

dequeue(b)! prune b?! update(b)! dequeue(c)! prune c?! update(c)! dequeue(a)! prune a!

Figure 5: Reduction example. Top trace is from parallel program; bottom is from nondeterministic sequential.

of the nondeterministic sequential program that produces
an identical result.

For example, consider the parallel branch-and-bound
execution described in Section 2.1. The queue is
as shown in Figure 3 and initially best = 100.
The top trace in Figure 5 is a trace of this execu-
tion: Items a, b, and c are each dequeued in sep-
arate threads. Then soln lower bound is com-
puted for b and for c and neither is pruned. Then
find min soln(b) is executed and best is up-
dated with cost(find min soln(b)) = 3 (oper-
ation “update(b)”). Then the procedure executes
find min soln(c), and best is not updated be-
cause cost(find min soln(b)) > best (operation
“update(c)”). Finally, soln lower bound(a) is
computed and a is pruned.

For this execution trace, we can construct an equiv-
alent execution trace of the nondeterministic sequential
branch-and-bound procedure, shown as the bottom trace
in Figure 5. This is a trace of the nondeterministic se-
quential procedure—the nondeterministic-for
loop processes b, then c, and then a. The dotted arrows
in Figure 5 show that this trace is a rearrangement of the
parallel trace.

This rearrangement in Figure 5 is a dynamic reduc-
tion [14] of the execution, guaranteeing that the rear-
ranged execution produces the same result as the origi-
nal. The reduction is possible because:

• A dequeue operation is a right-mover. We can
move a dequeue later in an execution relative to
the operations of other threads—i.e. move it to the
right—without changing the result of the program.

• With our added nondeterminism, a prune opera-
tion is also a right-mover. Without this nondeter-
minism, we cannot safely move a prune operation
later in an execution, relative to the other threads,
because some update operation could decrease
best. Thus, the prune check would fail when exe-
cuted before this decrease of best, but succeed if
executed after. (On the other hand, if the prune
already succeeded, then it would still succeed if
moved later in the execution because best never
increases.)

But the added nondeterminism allows the prune
operation to decline to prune a region work, even
when soln lower bound exceeds best. Thus,
we can move rightward a failing prune check
without changing its effect on the program.

Not shown in the above example are left-movers, op-
erations that can be scheduled earlier in the program exe-
cution without changing their effect on the program, and
both-movers, which are both left- and right-movers.

The above example shows that we can use reduction to
dynamically check parallel correctness. That is, given a
trace of a parallel program, we can classify the operations
in the trace as left- and right-movers and report that the
parallelism in the trace is correct if, by reordering the
left- and right-movers, we can construct a trace of the
corresponding nondeterministic sequential program.

In general, we believe that we can statically show, as
in [5], that atomic operations in parallel programs, with
the added nondeterminism from their nondeterministic
sequential specifications, are left- and right-movers. By
showing, for example, that each iteration of a parallel
loop consists of a series of right-movers, followed possi-
bly by one atomic non-mover, and then a series of left-
movers, we can prove that each iteration is atomic, and
thus the parallel loop is equivalent to its nondeterministic
sequential counterpart.

We expect that we may encounter cases when this
technique does not work as easily as described here—it
could be that the only nondeterministic sequential execu-
tion that produces identical output cannot be constructed
be rearranging the given parallel execution. In our fu-
ture work, we plan to investigate the extent to which this
technique is applicable to a wide range of parallel pro-
grams and, based on experimental evidence, to propose
extensions that can increase its applicability.

Acknowledgments

This work supported in part by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227), by Sun Microsys-
tems and by matching funding from UC MICRO (Award #08-
113), by NSF Grants CNS-0720906 and CCF-0747390, and by
a DoD NDSEG Graduate Fellowship.

5



References
[1] AUTEBERT, J.-M., BERSTEL, J., AND BOASSON, L. Context-

free languages and pushdown automata. 111–174.

[2] BALL, T., AND RAJAMANI, S. The SLAM Toolkit. In 13th Con-
ference on Computer Aided Verification (CAV) (2001), vol. 2102
of LNCS, pp. 260–264.

[3] BOCCHINO, R., ADVE, V., ADVE, S., AND SNIR, M. Parallel
programming must be deterministic by default. In First USENIX
Workship on Hot Topics in Parallelism (HOTPAR 2009) (March
2009).

[4] BURNIM, J., AND SEN, K. Asserting and checking determinism
for multithreaded programs. In 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (2009),
ACM.

[5] ELMAS, T., QADEER, S., AND TASIRAN, S. A calculus of
atomic actions. In POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (New York, NY, USA, 2009), ACM, pp. 2–15.

[6] FINKEL, A., WILLEMS, B., AND WOLPER, P. A direct symbolic
approach to model checking pushdown systems. In Proc. 2nd Int.
Workshop on Verification of Infinite State Systems (INFINITY’97)
(1997), vol. 9 of Electronic Notes in Theor. Comp. Sci., Elsevier.

[7] FLANAGAN, C. Verifying commit-atomicity using model-
checking. In 11th International SPIN Workshop (2004), pp. 252–
266.

[8] FLANAGAN, C., AND FREUND, S. N. Atomizer: a dynamic
atomicity checker for multithreaded programs. In 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (2004), pp. 256–267.

[9] FLANAGAN, C., AND QADEER, S. A type and effect system
for atomicity. In Proc. of the ACM SIGPLAN conference on
Programming language design and implementation (PLDI’03)
(2003), pp. 338–349.

[10] FREUND, S. N., AND QADEER, S. Checking concise specifica-
tions for multithreaded software. Journal of Object Technology
3, 6 (2004), 81–101.

[11] HATCLIFF, J., ROBBY, AND DWYER, M. B. Verifying atomic-
ity specifications for concurrent object-oriented software using
model-checking. In Proc. of the International Conference on
Verification, Model Checking and Abstract Interpretation (VM-
CAI’04) (2004), pp. 175–190.

[12] HENZINGER, T., JHALA, R., MAJUMDAR, R., AND SUTRE,
G. Lazy Abstraction. In 29th ACM Symposium on Principles of
Programming Languages (POPL) (2002), pp. 58–70.

[13] KULKARNI, M., PINGALI, K., WALTER, B., RAMA-
NARAYANAN, G., BALA, K., AND CHEW, L. P. Optimistic
parallelism requires abstractions. In PLDI ’07: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language
design and implementation (New York, NY, USA, 2007), ACM,
pp. 211–222.

[14] LIPTON, R. J. Reduction: A method of proving properties of
parallel programs. Communications of the ACM 18, 12 (1975),
717–721.

[15] RAMALINGAM, G. Context-sensitive synchronization-sensitive
analysis is undecidable. ACM Trans. Program. Lang. Syst. 22, 2
(2000), 416–430.

[16] S. GRAF, AND H. SAIDI. Construction of abstract state graphs
with PVS. In Conference on Computer Aided Verification
(CAV’97) (1997), vol. 1254 of LNCS, pp. 72–83.

[17] WANG, L., AND STOLLER, S. D. Run-time analysis for atom-
icity. In 3rd Workshop on Run-time Verification (RV’03) (2003),
vol. 89 of ENTCS.

[18] WANG, L., AND STOLLER, S. D. Accurate and efficient run-
time detection of atomicity errors in concurrent programs. In
Proc. ACM SIGPLAN 2006 Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP) (Mar. 2006), ACM Press,
pp. 137–146.

6


