NDetermin: Inferring Nondeterministic Sequential
Specifications for Parallelism Correctness

Jacob Burnim Tayfun Elmas

George Necula ~ Koushik Sen

EECS Department, University of California, Berkeley, CA, USA
{jburnim, elmas,necula, ksen}@cs.berkeley.edu

Abstract

Nondeterministic Sequential (NDSeq) specifications have been
proposed as a means for separating the testing, debugging, and veri-
fying of a program’s parallelism correctness and its sequential func-
tional correctness. In this work, we present a technique that, given a
few representative executions of a parallel program, combines dy-
namic data flow analysis and Minimum-Cost Boolean Satisfiability
(MinCostSAT) solving for automatically inferring a likely NDSeq
specification for the parallel program. For a number of Java bench-
marks, our tool NDETERMIN infers equivalent or stronger NDSeq
specifications than those previously written manually.

1. Introduction

As multicore and manycore processors become increasingly com-
mon, more and more programmers must write parallel software.
But writing such parallel software can be difficult and error prone.
In addition to reasoning about the often-sequential functional cor-
rectness of each component of a program in isolation, a program-
mer must simultaneously consider whether multiple components
running in parallel, their threads interleaving nondeterministically,
can harmfully interfere with one another.

In an earlier paper [2] we proposed nondeterministic sequential
(NDSeq) specifications as a means for decomposing the reasoning
about a program’s parallelism and its functional correctness. To
explain the problem addressed by NDSeq specifications, consider
the simple parallel program in Figure 1(a). The program consists
of a parallel for-loop, written as coforeach—each iteration of this
loop attempts to perform a computation (Line 6) on shared variable
x, which is initially 0. Each iteration uses an atomic compare-
and-swap (CAS) operation to update shared variable x. If multiple
iterations try to concurrently update x, some of these CAS’s will fail
and those parallel loop iterations will recompute their updates to x
and try again.

If we can specify the full functional correctness of our example
program—i.e., specify precisely which final values of x are correct
for each input value of x—then this specification will clearly imply
that the parallelization of the program was correct. Although it may
look straightforward to write such a formal specification for our
motivating example, we believe that it will be a very difficult task
for many large and complex programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’12, February 25-29, 2012, New Orleans, Louisiana, USA.

Copyright © 2012 ACM 978-1-4503-1160-1/12/02. .. $10.00

1: coforeach (i in 1,...,N) { 1: nd-foreach(i in 1,...,N) {
2 bool done = false; 2 bool done = false;
3 while (!done) { 3 while (!done) {
4 4 if (*) {
5: int prev=x; 5: int prev=x;
6: int curr=i * prev + ij; 6: int curr=i * prev + i;
7: bool c=CAS(x,prev,curr);| 7: bool c=CAS(x,prev,curr);
8 if (o) { 8 if (o) {
9 done = true; 9: done = true;
10:} } } 10:} } 1}
(a) Parallel program (b) NDSeq specification

Figure 1. Simple parallel program to perform the reduction in
line 6 for the integers {1,...,N}, in some arbitrary order, and an
NDSeq specification for the program.

A natural approach to specifying parallelism correctness would
be to specify that the program in Figure 1(a) must produce the same
final value for x as a version of the program with all parallelism
removed—i.e., the entire code is executed by a single thread. How-
ever, in this case we do not get a sequential program equivalent
to the parallel program. For example, the parallel program in Fig-
ure 1(a) is free to execute the computations at line 6 in any non-
deterministic order. Thus, for the same input value of x, different
thread schedules can produce different values for x at the end of
the execution. On the other hand, executing the loop sequentially
from 1 to N will always produce the same, deterministic final value
for x. Suppose that such extra nondeterministic behaviors due to
thread interleavings are intended; the challenge here is how to ex-
press these nondeterministic behaviors in a sequential specification.

We addressed this challenge in [2] by introducing a specifica-
tion mechanism that the programmer can use to declare the in-
tended, algorithmic notions of nondeterminism in the form of a
sequential program. Such a nondeterministic sequential specifica-
tion (NDSeq) for our example program is shown in Figure 1(b).
This specification is intentionally very close to the actual parallel
program, but its semantics is sequential with two nondeterministic
aspects. First, the nd-foreach keyword in line 1 specifies that the
loop iterations can run in any permutation of the set 1, ..., N. This
part of the specification captures the intended (or algorithmic) non-
determinism in the behavior of the program, caused in the parallel
program by running threads with arbitrary schedules. Any addi-
tional nondeterminism is an error, due to unintended interference
between interleaved parallel threads, such as data races or atomic-
ity violations. Second, the i£(*) keyword in line 4 specifies that the
iteration body may be skipped nondeterministically, at least from a
partial correctness point of view; this is acceptable, since the loop
in this program fragment is already prepared to deal with the case
when the effects of an iteration are ignored following a failed CAS
statement. In summary, all the final values of x output by the paral-
lel program in Figure 1(a) can be produced by a feasible execution
of the NDSeq specification in Figure 1(b). Then, we say that the
parallel program obeys its NDSeq specification, and, the functional
correctness of a parallel program can be tested, debugged, and ver-

ified sequentially on the NDSeq specification, without any need to
reason about the uncontrolled interleaving of parallel threads.

In [2], we also proposed a sound runtime technique that checks
a given representative interleaved execution trace of a structured-
parallel program, whether there exists an equivalent, feasible ex-
ecution of the NDSeq specification. This technique was able to
check the parallelism correctness of a number of complex Java
benchmark programs.

2. Inferring NDSeq Specifications

The key difficultly with the manual approach is that writing such
specifications, and especially the placement of the if(*) con-
structs, can be can be a time-consuming and challenging process,
especially to a programmer unfamiliar with such specifications. If
a programmer places too few if(*) constructs, she may not be able
to specify some intended nondeterministic behaviors in the paral-
lel code. However, if she places too many if(*) constructs, or if
she place them in the wrong places, the specification might allow
too much nondeterminism, which will likely violate the intended
functionality of the code.

Therefore, we believe that automatically inferring NDSeq spec-
ifications can save programmer time and effort in applying NDSeq
specifications. In particular, we believe that using an inferred spec-
ification as a starting point is much simpler than writing the whole
specification from scratch. Further, our inference algorithm can de-
tect parallel behaviors that no possible NDSeq specification would
allow, which often contain parallelism bugs. More generally, such
inferred specifications can aid in understanding and documenting
a program’s parallel behavior. Finally, inferring NDSeq specifica-
tions is a step towards an automated approach to testing and ver-
ification of parallel programs by decomposing parallelism and se-
quential functional correctness.

Our contribution in this work is to give an algorithm, running
on a set of input execution traces, for inferring a minimal nondeter-
ministic sequential specification such that the checking approach
described in [2] on the input traces succeeds. Choosing a minimal
specification—i.e., with a minimal number of 1£(*), is a heuristic
that makes it more likely that the inferred specification matches the
intended behavior of the program.

Our key idea is to reformulate the runtime checking algorithm
in [2] (explained below) as a constraint solving and optimiza-
tion problem, in particular a Minimum Cost Boolean Satisfiability
(MinCostSAT) problem.

Given a parallel execution of such a program, our algorithm
in [2] performs a conflict-serializability [4] check to verify that the
same behavior could have been produced by the NDSeq version
of the program. For our example program in Figure 1, we think of
each parallel loop iteration as a transaction and check an interleaved
execution of the parallel loop can be serialized with respect to the
NDSeq specification—i.e. whether the final result (for our example,
the value of the shared variable x) can be obtained by running
the loop iterations sequentially in some nondeterministic order.
But first, our technique combines a dynamic dependence analysis
with a program’s specified nondeterminism to show that conflicts
involving certain operations in the trace can be soundly ignored
when performing the conflict-serializability check.

In order to report an execution serializable, we must be able to
show that all conflict cycles between parallel transactions can be
safely ignored. For this, we perform a dynamic data flow analysis
and use the if(*) in the program’s NDSeq specification in this
analysis. In particular, we need to identify relevant events in the
traces: (i) final writes to the shared variable x, and (ii) all events on
which events in (i) are (transitively) dependent. Then, we check if
there is any conflict cycle formed by only relevant events; we can
safely ignore the cycles that contain irrelevant events.

Benchmark # Parallel #IEC)'s lnferre(d N[?Seq
Constructs Specification
#1if(*)’s | Correct?
sor 1 0 0 yes
matmult 1 0 0 yes
series 1 0 0 yes
crypt 2 0 0 yes
JGF moldyn 4 0 0 yes
lufact 1 0 0 yes
raytracer 1 0 - -
raytracer (fixed) 1 0 0 yes
montecarlo 1 0 0 yes
pi3 1 0 0 yes
P keysearch3 2 0 0 yes
mandelbrot 1 0 0 yes
phylogeny 2 3 - -
phylogeny (fixed) 2 3 1 yes
non-blocking stack 1 2 2 yes
non-blocking queue 1 2 2 yes
meshrefine 1 2 2 yes

Table 1. Experimental results. All if(*) annotations inferred by
our tool were verified manually to be correct.

In order to infer an NDSeq specification, we observe a set of
representative parallel execution traces for which the standard con-
flict serializability check gives conflict cycles. Since we are infer-
ring an NDSeq specification for the program, not for a single trace,
using multiple traces allows us to observe variations in the execu-
tions and improves the reliability of the inferred NDSeq specifica-
tion.

We then construct and solve a MinCostSAT formula that takes
as input the events in the input traces and the conflict cycles de-
tected by the standard conflict serializability check. While generat-
ing the formula, we encode the reasoning about relevant events and
conflict cycles described above as constraints in the formula. In
particular, the constraints enforce the data dependencies between
the events and conditions to ignore all observed conflict cycles in
the input traces. The MinCostSAT formulation contains variables
corresponding to possible placement of if(*)s in the program. If
this formula is satisfiable, then the solution gives us a minimal set
of statements S* in the program, such that the input traces are all
serializable with respect to the NDSeq specification obtained by en-
closing all statements in S* with i£(*). The minimal such solution
for our example in Figure 1(a) places a single i£(*) that encloses
lines 5-10. Thus, our algorithm produces the correct NDSeq speci-
fication given in Figure 1(b). We refer to the reader to our technical
report [1] for the details of our MinCostSAT formulation.

3. Results

In this section, we describe our efforts to experimentally evaluate
our approach to inferring likely nondeterministic sequential (ND-
Seq) specifications for parallel programs. In particular, we aim to
evaluate the following claim: By examining a small number of rep-
resentative executions, our specification inference algorithm can
automatically generate the correct set of 1£(*) annotations for real
Java programs.

To evaluate this claim, we implemented our technique in a pro-
totype tool for Java, called NDETERMIN, and applied NDETERMIN
tool to the set of Java benchmarks for which NDSeq specifications
were previously written manually [2]. We compared the quality and
accuracy of our automatically-inferred i£(*)s to the ones in their
manually-written NDSeq specifications.

The names, sizes, and brief descriptions of the benchmarks
we used to evaluate NDETERMIN are listed in Table 1. Several
benchmarks are from the Java Grande Forum (JGF) benchmark
suite [5] and the Parallel Java (PJ) Library [3].

The results of our experimental evaluation are summarized in
Table 1. (See our technical report [1] for the full table.) The column
labeled “All”, under “Size of Trace (Events)”, reports the number of

total events seen in the last execution (of five) of each benchmark,
and the column labeled “Sliced Out” reports the number of events
removed by our dynamic slicing. NDETERMIN searches for i£(*)
placements to eliminate cycles of transactional conflicts involving
sliced out events.

The second-to-last column of Table 1 reports the number of
if(*) constructs in the inferred NDSeq specification for each
benchmark. We manually determined whether each of the inferred
if(*) annotations was correct—i.e., captures all intended nonde-
terminism, so that the parallel program is equivalent to its NDSeq
specification, but no extraneous nondeterminism that would allow
the NDSeq version of the program to produce functionally incor-
rect results. All of the inferred specifications were correct.

For many of the benchmarks, NDETERMIN correctly infers that
no if(*) constructs are necessary. All but one of these benchmarks
are simply conflict-serializable. As discussed in [2], montecarlo
is not conflict-serializable, but the non-serializable conflicts afftect
neither the control-flow nor the final result of the program.

For benchmarks stack, queue, and meshrefine, NDETER-
MIN infers an NDSeq specification exactly equivalent to the manual
specifications from [2]. That is, NDETERMIN infers the same num-
ber of i£(*) constructs and places them in the same locations as
in previous manually-written NDSeq specifications. We note that
NDETERMIN finds specifications slightly smaller than the manual
ones, which include a small number of adjacent statements in the
if(*) that do not strictly need to be enclosed, although in each case
the overall behavior of the NDSeq specification is the same whether
or not these statements are included in the if(*).

Further, for benchmark phylogeny (fixed), while the previ-
ous manual NDSeq specification included three i£(*) constructs,
NDETERMIN correctly infers that only one of these three is actually
necessary. The extra 1£(*) appear to have been manually added to
address some possible parallel conflicts that, in fact, can never be
involved in non-serializable conflict cycles. That is, these two ex-
traneous if(*) allow the NDSeq specification to perform several
nondeterministic behaviors seen during parallel execution of the
benchmark. But NDETERMIN correctly determines that these be-
haviors are possible in the NDSeq specification even without these
if(*).

Note that for two benchmarks, raytracer and phylogeny,
NDETERMIN correctly reports that no NDSeq specification (i.e.,
no solution to the SAT instance) exists (indicated by “-” in Ta-
ble 1). That is, NDETERMIN detects that the events of the dynamic
slice (i.e., those not removed by dynamic slicing) are not conflict-
serializable. These conflicts exist because both benchmarks contain
parallelism errors (atomicity errors due to insufficient synchroniza-
tion). As a result of these errors, these two parallel applications can
produce incorrect results that no sequential version could produce.

These experimental results provide promising preliminary evi-
dence for our claim that NDETERMIN can automatically check se-
rializability by way of inferring i£(*) necessary for the NDSeq
specification of parallel correctness for real parallel Java programs.
We believe adding nondeterministic i£(*) constructs is the most
difficult piece of writing a NDSeq specification, and thus our infer-
ence technique can make using NDSeq specifications much easier.
Further, such specification inference may allow for fully-automated
testing and verification to use NDSeq specifications to separately
address parallel and functional correctness.

References

[1] NDetermin: Inferring nondeterministic sequential specifications for
parallelism correctness. Technical report. http://goo.gl/W3RMS.

[2] J. Burnim, T. Elmas, G. Necula, and K. Sen. NDSeq: Runtime checking
for nondeterministic sequential specifications of parallel correctness. In
Programming Language Design and Implementation (PLDI), 2011.

[3] A. Kaminsky. Parallel Java: A Unified API for Shared Memory and
Cluster Parallel Programming in 100% Java. In Parallel and Distributed
Processing Symposium (IPDPS), March 2007.

[4] C. Papadimitriou. The theory of database concurrency control. Com-
puter Science Press, 1986.

[5] L. A. Smith, J. M. Bull, and J. Obdrzédlek. A parallel Java Grande
benchmark suite. In Supercomputing (SC), 2001.

